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It has been demonstrated that, in a one-dimensional wave system, monochromatic waves may be generated
which are completely localized to the region of excitation or which propagate in only one direction. We further
the discussion of such nonpropagating and directional excitations and demonstrate that they can be extended to
excitations of an arbitrary finite number of frequencies. Two techniques for mathematically constructing these
excitations are discussed. Furthermore, the relation between nonpropagating excitations and nonscattering
scatterers is discussed. The results presented here may be useful in the development of devices for one-
dimensional and quasi-one-dimensional wave systems.
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I. INTRODUCTION

Well-established results in classical physics can still occa-
sionally yield new surprises; not too long ago it was demon-
strated that unusual interference effects can arise in one-
dimensional wave systems such as vibrating strings. In
particular, it was shown �1� that under certain conditions, a
monochromatic driving force applied to a localized region of
a string will produce no excitation outside the region of the
applied force. Such nonpropagating excitations are closely
related to so-called nonradiating sources and other “invis-
ible” objects �2�, and invisibility has recently received re-
newed attention in the literature �3,4�.

Later work on nonpropagating excitations demonstrated
their existence even in the presence of damping or excita-
tions of finite bandwidth �5,6�. Furthermore, a number of
other curious effects relating to nonpropagating excitations
have been studied numerically �7�, among them the existence
of directional excitations, which propagate only in one direc-
tion away from the region of applied force.

It is well known that nonradiating sources are mathemati-
cally closely related to their scattering counterparts, known
as nonscattering scatterers �2�. However, the one-
dimensional versions of nonscattering scatterers have not
been studied in detail, although some research has been done
on reflectionless stratified media �8�.

In this article we further the discussion of nonpropagating
and directional excitations and demonstrate that they can be
extended to the excitations of an arbitrary finite number of
frequencies. Two techniques for mathematically constructing
such excitations are described. The relevance to one-
dimensional nonscattering scatterers is discussed.

II. NONPROPAGATING AND UNIDIRECTIONAL
EXCITATIONS

We first briefly review the basic principles of directional
and nonpropagating excitations, and then discuss two meth-
ods of constructing such excitations at a single frequency of
excitation �. In the next section we will consider extending
these results to multiple frequencies.

We consider a general one-dimensional wave system with
wave amplitude y�x , t� excited by a driving force q�x , t� lo-

calized to the region a�x�b of an otherwise infinite do-
main. This system satisfies the wave equation

�2y�x,t�
�x2 −

1

v2

�2y�x,t�
�t2 = q�x,t� , �1�

where v is the velocity at which the wave propagates. If we
restrict ourselves to harmonic driving forces, q�x , t�
=q�x�exp�−i�t�, the steady-state wave amplitude will also be
monochromatic—i.e., y�x , t�=y�x�exp�−i�t�—and the prob-
lem is reduced to studying solutions of the one-dimensional
Helmholtz equation

d2y�x�
dx2 + k2y�x� = q�x� , �2�

where the wave number k=� /v.
The general solution to this equation has been shown to

be ��9�, Chap. 4�

y�x� =
1

2ik
�

a

b

q�x��exp�ik�x − x���dx�. �3�

Outside of the region of applied force, to its right and left,
Eq. �3� is reduced to the forms

�y�x��R =
exp�ikx�

2ik
�

a

b

q�x��exp�− ikx��dx�, �4�

�y�x��L =
exp�− ikx�

2ik
�

a

b

q�x��exp�ikx��dx�. �5�

The integrals in these two equations are proportional to the
Fourier transform of the force density, given by the equation

q̃�K� = �
−�

�

q�x��e−i2�Kx�dx�. �6�

Of particular interest are circumstances in which the force
distribution satisfies one or both of the following conditions:

q̃�k�� = 0, q̃�− k�� = 0, �7�

where k�=k /2�. As can be seen from Eqs. �4� and �5�, a
system for which both conditions are satisfied will produce
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no wave amplitude outside the region of applied force: the
result is an excitation which is localized to this region—i.e.,
a nonpropagating excitation. If only one of the conditions �7�
is satisfied, the excitation will propagate in only one direc-
tion; i.e., it will be a directional excitation.

It is not obvious at first glance how to construct examples
of such localized excitations. We consider here two math-
ematical techniques of construction, each with their own in-
dividual advantages and disadvantages.

A. Amplitude construction

For the rest of this paper, we consider a coordinate system
such that a=−x0 and b=x0. This allows us to easily consider,
without any loss of generality, nonpropagating excitations of
even and odd symmetry.

It is well known that the solution of the Helmholtz equa-
tion must be continuous and possess continuous first deriva-
tives. From this knowledge, it has been shown previously �1�
that all nonpropagating excitations satisfy the boundary con-
ditions

y�− x0� = y�x0� = 0, �dy

dx
�

x=−x0

= �dy

dx
�

x=x0

= 0. �8�

In other words, the wave amplitude and its first derivative
must vanish on the boundary of the region of applied force.

This observation suggests a straightforward way of con-
structing nontrivial examples of nonradiating sources: any
function y�x� which is continuous, possesses continuous first
derivatives, and satisfies the boundary conditions �8� repre-
sents within −x0�x�x0 the field generated by a nonpropa-
gating source. Once a function y�x� is chosen, the force dis-
tribution q�x� may be found by an application of Eq. �2�.
Similar constructions of nonradiating sources in three dimen-
sions based on the boundary conditions have also been in-
vestigated by several authors �10–13�.

We may use a similar method to construct directional ex-
citations by replacing one pair of the boundary conditions
�8�. It can be seen from Eq. �5� that every wave propagating
to the left of the region of applied force has the general form

�y�x��L = A0 exp�− ikx� , �9�

where A0 is in general a constant, complex, number. This
suggests that we may construct a left-going directional exci-
tation by finding a function y�x� such that

y�x0� = 0, �dy

dx
�

x=x0

= 0, y�− x0� = A0 exp�ikx0� ,

�10�

�dy

dx
�

x=−x0

= − ikA0 exp�ikx0� ,

with a similar set of conditions for right-going excitations.
A number of strategies may be used to determine func-

tions y�x� which represent nonpropagating or directional ex-
citations. Perhaps the simplest is to assume that y�x� is a
polynomial with complex coefficients cn—i.e.,

y�x� = �
n=0

N

cnxn. �11�

How many polynomial terms are required to satisfy the
boundary conditions for a nonpropagating excitation? Let us
restrict ourselves to solutions which are even �n even only�
or odd �n odd only�, in which case the left and right bound-
ary conditions are redundant. With two boundary conditions,
we might try an even solution of the form

y�x� = cmxm + cm+2xm+2, �12�

which results in the following pair of complex homogeneous
equations

cmx0
m + cm+2x0

m+2 = 0, �13�

mcmx0
m−1 + �m + 2�cm+2x0

m+1 = 0. �14�

This set of equations will only have a nontrivial solution for
cm and cm+2 if the determinant of the system of equations
vanishes—i.e.,

2x0
2m+1 = 0. �15�

This condition cannot be satisfied; it is readily shown, how-
ever, that three or more polynomial terms will result in a
solvable system of equations.

With this in mind, we now consider the application of a
simple harmonic force distribution q�x� within the domain
−x0�x�x0 of an infinitely long string. Introducing the di-
mensionless unit u=kx for convenience, we consider for a
nonpropagating excitation the series solution

y�u� = 	Aum + Bu�m+2� + Cu�m+4� for u0 � u � u1,

0 otherwise,



�16�

where u0=−kx0, u1=kx0, and the coefficients A, B, and C
replace the cn’s of Eq. �11� for the sake of notational conve-
nience. Solving for the coefficients, we have B=−2Cu1

2 and
A=Cu1

4, with the condition that m�1. Examples with m
=1,2 and C=1 are shown in Fig. 1, where the wave number
k has been arbitrarily taken to be 1 /x0—i.e., u=x /x0 and
u1=−u0=1. Clearly, we see that the solutions exhibit odd or
even symmetry, depending on whether m is odd or even. The
solutions in Fig. 1 can also be shifted to any u0��u�u1�
through the appropriate translation y�u−u��, where u�

=
u0�+u1�

2 .
To construct a directional excitation, we take a slightly

different approach. We attempt to construct a directional ex-
citation propagating to the right of the string such that
y�u1�=Ceiu1. The solution we consider is

y�u�

= �0 for u � u0,

A�u − u1�m + B�u − u1��m+2� + Ceiu for u0 � u � u1,

Ceiu for u � u1,
�

�17�

with m�2 and C=A0, which is the desired amplitude of the
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propagating wave as defined in Eq. �9�. Matching the bound-
ary conditions for the unidirectional excitation at u0 and u1,
we find that the coefficients A and B �complex in this case�
are given in terms of C as

AR =
C�2�u sin u0 − �m + 2�cos u0�

2�− 2�u�m , �18a�

AI = −
C�2�u cos u0 + �m + 2�sin u0�

2�− 2�u�m , �18b�

BR =
C�m cos u0 − 2�u sin u0�

2�− 2�u��m+2� , �18c�

BI =
C�m sin u0 + 2�u cos u0�

2�− 2�u��m+2� , �18d�

where A=AR+iAI, B=BR+iBI, and �u=
u1−u0

2 �0. An ex-
ample with wave number k=4 /x0, again an arbitrary choice,
is shown in Fig. 2, where it is taken that m=2, and C=1.

B. Force construction

The amplitude construction technique provides an easy
method of constructing localized excitations, but the force
distributions generated will be smoothly varying, possibly
complex, functions of position which will be difficult to gen-
erate experimentally. We may approach the problem in re-
verse and consider the development of simple force distribu-

tions which result in complicated localized excitations.
The simplest distributions, and the ones we will consider,

are piecewise constant force distributions. Let us first define
a single step S�u� by the formula

S�u� = 	1 �u� � 1,

0 �u� � 1.

 �19�

A piecewise constant force distribution may be written in
terms of a collection of steps in the form

q�x� = �
n=1

N

anS
 �x − xn�
	n

� , �20�

where N is the total number of steps in the distribution, xn is
the center of the nth step, an is the height of the nth step, and
	n is the half-width of the nth step �Fig. 3�. The steps are
assumed to be nonoverlapping, though overlapping steps still
result in a piecewise constant distribution.

The simplest force distribution with N=1—i.e., a single
step function of half-width 	1—results in nonpropagating
excitation provided that

k	1 = m� , �21�

where m is a nonzero integer �1�. For a fixed step size, only
excitations with wave number satisfying Eq. �21� will pro-
duce nonpropagating excitations. To produce an excitation
for an arbitrary source size and wave number, we must con-
sider multiple steps.

y(x)

q(x)

0-1 1

8

-8

-0.3

0.3
0-1 1

0

0

m = 1

m = 1

m = 2

m = 2

x/x0

x/x0

FIG. 1. The displacement y�x� and force distribution q�x�, with
k=1 /x0, for the nonpropagating excitation of Eq. �16�, with m
=1,2 and C=1.
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FIG. 2. The displacement y�x� and force distribution q�x�, with
k=4 /x0, for the unidirectional excitation of Eq. �17�, with m=2 and
C=1. To illustrate the wave propagating to the right, y�x� is plotted
from −x0�x�5x0, corresponding to −4�u�20.
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We restrict our investigations of the nonpropagating exci-
tations to real-valued source distributions which are of even
symmetry, qe�x� and odd symmetry, qo�x�. Such distribu-
tions, with 2N steps, may be written in the form

qe/o�x� = �
n=1

N

an	S
 �x − xn�
	n

� 
 S
 �x + xn�
	n

�
 , �22�

where the sign is “�” or “�” for even or odd distributions,
respectively. The Fourier transforms of such distributions re-
sult in the equations

q̃e�
k�� = �
n=1

N

4an	n cos�2�k�xn�sinc�2k�	n� , �23�

q̃o�
k�� = 
 �
n=1

N

i4an	n sin�2�k�xn�sinc�2k�	n� , �24�

where sinc�x�= sin��x�
�x . Two special cases should be noted

here. First, if k�	n=m /2, the nth step satisfies Eq. �21� and is
by itself a nonpropagating excitation. In fact, one could
create a multistep nonpropagating excitation as a collection
of steps which are individually nonpropagating. Second, if
�for an even source� k�xn=m or �for an odd source� k�xn
= �2m+1� /2, the two symmetric �antisymmetric� steps of or-
der n combine by themselves to form a nonpropagating ex-
citation. This effect is a generalization of an example given
in �14�, in which an appropriately spaced pair of point
sources result in nonpropagating waves. In both of these spe-
cial cases, the nth-order steps do not contribute to the total
field emitted by the source, and we restrict ourselves to situ-
ations when neither case is satisfied. It can then be seen that
a minimum of two nonzero an terms must be used to satisfy
the nonpropagating condition; this results in a total of four
steps for the odd case or three �distinct� steps for the even
case.

The symmetry properties of the Fourier transform make
finding a nonpropagating excitation a somewhat straightfor-
ward process. For a real q�x�, q̃�K�= q̃*�−K�. Therefore, the

condition q̃�k��=0 automatically ensures that q̃�−k��=0. Let
us consider, for illustration purposes, a real even force dis-
tribution consisting of three steps,

qe�x� = �a1 for − x0 � �x� � − x0 + 2	1,

a2 for − x0 + 2	1 � �x� � 0,

0 otherwise,
� �25�

and a real odd force distribution consisting of four steps,

qo�x� = �− a1 sgn�x� for − x0 � �x� � − x0 + 2	1,

− a2 sgn�x� for − x0 + 2	1 � �x� � 0,

0 otherwise,
�

�26�

where sgn denotes the signum function and 	1�
x0

2 . Impos-
ing the condition that q̃�k��=0 and solving for a2 in terms of
a1, we find for qe�x�

a2 = a1
1 +
sin�2�k�x0�

sin�2�k��2	1 − x0��� �27�

and for qo�x�

a2 = a1
1 +
1 − cos�2�k�x0�

cos�2�k��2	1 − x0�� − 1
� . �28�

Examples for these two cases are shown in Fig. 4, with
k�x0=1.2 and a1=1. The half-width 	1 is taken to be

x0

4 and
x0

5 for the even and odd cases, respectively.
For the unidirectional propagating excitation, we require

complex coefficients Qn. More specifically, we take the real
and imaginary parts of q�x� to be even and odd, respectively,
so that q̃�K� is a sum of real even and odd functions. Let us
consider the complex force distribution

-x0 x0x

q(x)

x2

x1

x3

x4
x5

2σ1

2σ2

2σ3

2σ4

2σ5

a1

a2

a3

a4

a5

FIG. 3. An example of a force distribution q�x� of Eq. �20� with
five steps. It is taken that q�x� is a real function. The constants an’s
and 	n’s represent the height and half-width of each of the steps,
respectively. The xn’s are the midpoints for each of the steps.

(a) even (b) odd
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0

0

1.5

3

0.08

0.04

0.04

-0.04

1

qe(x)

y(x)

-1

qo(x)

y(x)

FIG. 4. The force distribution and displacement, for the non-
propagating excitation of Eq. �25� �even� and Eq. �26� �odd�, with

k�x0=1.2 and a1=1. The half-width 	1 was taken to be
x0

4 and
x0

5 for
the even and odd cases, respectively.
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q�x� = 	a1 + ia2 sgn�x� for − x0 � x � x0,

0 otherwise.

 �29�

Imposing the condition that q̃�−k��=0 �excitation propagat-
ing to the right� and solving for a2 in terms of a1, we obtain

a2 =
a1 sin�2�k�x0�

cos�2�k�x0� − 1
. �30�

An example is shown in Fig. 5 for the case k�x0=1.25 and
a1=1.

It is clear now that increasing the number of coefficients
serves to increase the flexibility in the choice of the wave
number. In fact, we will simulate nonpropagating polychro-
matic excitations through the force construction method by
employing more coefficients in the next section. Of course, a
practical force distribution will not be perfectly discontinu-
ous. Nevertheless, it is expected, from previous results �5�
and the linearity of Eq. �3�, that nonradiating force distribu-
tions that are “nearly” piecewise constant will be “nearly”
nonpropagating.

III. POLYCHROMATIC EXCITATIONS

Building upon the mathematical constructs of Sec. II, we
will now extend our discussion to polychromatic excitations.
Let us examine excitations that involve two frequencies,
�1=k1v and �2=k2v. The task is to find q�x� which will
produce nonpropagating excitation of both frequencies, uni-
directional excitation of one of the frequencies, or bidirec-
tional excitation where the two frequencies propagate in op-
posite directions. We restrict our investigations to the force
construction method. The amplitude construction method,
because of the factor k2 operating on the wave y�x� in the
Helmholtz equation, will produce different force distribu-
tions for different frequencies; such a technique, although in
principle possible, would be prohibitively difficult experi-
mentally.

Clearly, to satisfy the conditions q̃�−k1��= q̃�k1��=0 and
q̃�−k2��= q̃�k2��=0, more steps in q�x� are needed than in the
last section �cf. Eq. �25��. Let us consider the real and even
force distribution

q�x� = �
a1 for − x0 � �x� � − x0 + 2	1,

a2 for − x0 + 2	1 � �x� � − x0 + 2	1 + 2	2,

a3 for − x0 + 2	1 + 2	2 � �x� � 0,

0 otherwise,
�
�31�

with 	1+	2�
x0

2 . Solving for a1 and a2 in terms of a3, we
find

a1 = a3

�1 + ��11�2�1 − �12�1�2���21�1�
2�11
�1

� , �32a�

a2 = a3
�12�1�2 − �11�2�1

2

� , �32b�

where

�np = sin�2�kp�	n� , �33a�

�n = sin�2�kn��2	1 + 2	2 − x0�� , �33b�

�n = cos�2�kn��x0 − 	1�� , �33c�

�n = cos�2�kn��x0 − 2	1 − 	2�� , �33d�

with 
= ��12�21�2�1−�11�22�1�2� and n , p=1,2. An ex-
ample with k1�x0=1.6 and k2�x0=0.9, for 	1=x0 /4, 	2=x0 /8,
and a3=1 is shown in Fig. 6.

x/x0
-1.5 -1 -0.5 0 0.5 1 1.5

x/x0
-1.5 -1 -0.5 0 0.5 1 1.5

1

1

-1

0
x/x0

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.04

-0.04

Re [q(x)]

Im [q(x)]

y(x)
0

FIG. 5. The force distribution q�x� and displacement y�x�, for
the unidirectional propagating excitation of Eq. �29�, with k�x0

=1.25 and a1=1.
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1-2 20
x/x0

k = k1

k = k2

-1 1-2 20
x/x0

0.05

-0.01

y(x)

FIG. 6. The polychromatic force distribution q�x� and displace-
ment for the nonpropagating excitation of Eq. �31�, with k1�x0=1.6
and k2�x0=0.9, for 	1=1 /4,	2=1 /8, and a3=1.
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To achieve unidirectional propagation of one of the two
frequencies or bidirectional propagation of the two frequen-
cies, we have seen from the last section that it is necessary to
employ a complex force distribution q�x�=Re�q�x��
+iIm�q�x��. This requirement of a complex q�x� has also
been observed when we constructed a unidirectional propa-
gation with the amplitude construction method �Fig. 2�. Let
us now consider the following complex force distribution
with real and imaginary parts given, respectively, as

Re�q�x�� = �a1 for − x0 � �x� � − x0 + 2	1,

a2 for − x0 + 2	1 � �x� � 0,

0 otherwise,
� �34�

Im�q�x�� = �a3 sgn�x� for − x0 � �x� � − x0 + 2	1,

a4 sgn�x� for − x0 + 2	1 � �x� � 0,

0 otherwise.
�
�35�

For excitations involving k1=2�k1� and k2=2�k2�, we look at
the cases where �i� k1 propagates to the right, and k2 is non-
propagating; �ii� k1 propagates to the left, and k2 is nonpropa-
gating; �iii� k1 propagates to the right, and k2 propagates to
the left. In terms of the force construction method, these
three cases are specified by the conditions

q̃�− k1�� = q̃�− k2�� = q̃�k2�� = 0 �case�i�:k1 → � , �36a�

q̃�k1�� = q̃�− k2�� = q̃�k2�� = 0 �case�ii�:k1 ← � , �36b�

q̃�− k1�� = q̃�k2�� = 0 �case�iii�:k1 → ,k2 ← � . �36c�

It is noted that there is one fewer condition to satisfy for case
�iii�, compared to the other two cases. As such, we can ex-
pect that one fewer coefficient will be needed in the solutions
for this case. This situation can be easily accommodated in a
number of ways—for instance, by setting any two of the
coefficients to be equal �e.g., a3=a4� or by setting one of the
two coefficients a3 and a4 to zero. In anticipation of the
solutions to the coefficients in Eqs. �34� and �35�, we define
the terms

�n = sin 2�kn�x0, �37a�

�n = sin 2�kn��x0 − 2	1� , �37b�

�n = cos 2�kn�x0, �37c�

�n = cos 2�kn��x0 − 2	1� , �37d�

where n=1,2. For cases �i� and �ii�, we have solved for the
coefficients a1, a2, and a3 in terms of a4, which yield the
results
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FIG. 7. The polychromatic force distribution q�x� and displace-
ment for k1 propagating to the right and k2 nonpropagating. It is
taken that k1�x0=1.8, k2�x0=1.4, 	1=1 /4, and a4=1.
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FIG. 8. The polychromatic force distribution q�x� and displace-
ment for k1 propagating to the left and k2 nonpropagating. It is
taken that k1�x0=1.8, k2�x0=1.4, 	1=1 /4, and a4=1.
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FIG. 9. The polychromatic force distribution q�x� and displace-
ment for k1 propagating to the right and k2 propagating to the left. It
is taken that k1�x0=1.6, k2�x0=1.5, 	1=1 /4, a3=0, and a4=1.
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a1 = �− �a4
�2��1 − �1���2 − �2� + �1 − �2���1 − �1��

��1�2 − �1�2���2 − �2�
,

�38a�

a2 = �− �a4
��2 − �2���1 − �1���2 − �2� + �1 − �2���1 − �1��

��1�2 − �1�2���2 − �2�
,

�38b�

a3 = a4
�2 − 1

�2 − �2
, �38c�

where the minus sign in parentheses applies to case �ii�. We
show an example for cases �i� and �ii� with k1�x0=1.8, k2�x0
=1.4, 	1=1 /4, and a4=1 in Figs. 7 and 8.

For case �iii�, we have solved for the coefficients a1 and
a2 in terms of a3 and a4. The results are

a1 =
a3��1��2 − �2� + �2��1 − �1�� + a4��1��2 − 1� + �2��1 − 1��

��1�2 − �1�2�
, �39a�

a2 =
a3��2��1 − �1� + �1��2 − �2�� + a4��2��1 − 1� + �1��2 − 1��

��1�2 − �1�2�
, �39b�

with �n= ��n−�n� and n=1,2. An example with k1�x0=1.6,
k2�x0=1.5, 	1=1 /4, a3=0, and a4=1 is shown in Fig. 9.

IV. CONCLUSIONS

We have numerically constructed and demonstrated non-
propagating and unidirectional excitations in a one-
dimensional, monochromatic system, with illustrative ex-
amples of the amplitude and force construction methods.
While the amplitude construction technique provides an easy
method of constructing localized excitations, it is seen that
the resulting force distributions can be difficult to generate
experimentally. Extending our discussion to excitations in-
volving two frequencies, we employed the force distribution
technique to generate nonpropagating, unidirectional, and bi-
directional excitations. For polychromatic excitations that in-
clude more than two frequencies, the boundary conditions
can still be satisfied if more coefficients �cn’s for amplitude
construction and an’s for force construction� are used, result-
ing in more complex force distributions q�x�. It is to be noted
that these excitations are localized as a result of complete

destructive interference of the outgoing radiation.
In the study of so-called nonradiating sources in three

dimensions, it is well known that there is a close mathemati-
cal relationship between the properties of a nonradiating
source and a weakly scattering object which produces no
scattered field for a finite number of illumination directions
�2,15,16�. Within the accuracy of the first Born approxima-
tion, the scattered field is related to the Fourier transform of
the scattering potential, just as the radiation field from a pri-
mary source is related to the Fourier transform of the charge
distribution. This relationship holds for one-dimensional
source and scattering problems as well, and suggests that one
can create one-dimensional scattering potentials which are
strongly scattering for some frequencies and nonscattering
for others. Unlike the familiar Bragg grating used in fiber
optics, however, a “nonscattering” or “directional” scatterer
could be constructed for any set of frequencies, at the cost of
increasing complexity of the scatterer as the number of fre-
quencies is increased. Such a construction may be useful in
designing novel devices for one-dimensional and quasi-one-
dimensional wave systems.
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