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Momentum flow in electromagnetic wave systems has become a topic of considerable importance in recent
years with the development of optical tweezers and spanners. Although momentum conservation has been
explored for deterministic wave fields, the corresponding laws for partially coherent wave fields have yet to be
completely determined. In this paper we derive the frequency-domain representation for the Maxwell stress
tensor for partially coherent fields and sources.
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I. INTRODUCTION

It is well known that electromagnetic waves carry mo-
mentum, and it is standard for electromagnetics textbooks to
develop the corresponding momentum conservation laws
alongside energy conservation laws �Sec. 6.8 of �1��. Studies
of momentum flow in electromagnetic systems gained in-
creased significance with the discovery of “optical tweez-
ing,” in which a small dielectric particle of high refractive
index is trapped through radiation pressure �2�. Later re-
search has demonstrated the trapping of low-index particles
in the central minimum of a dark hollow beam �3�, and a
dark hollow beam has also been used to simultaneously trap
high-index and low-index particles �4�. Beams carrying spin
or orbital angular momentum have been shown to apply a
torque to absorptive microscopic particles �5,6�.

Recently, a number of authors have demonstrated that
dark hollow regions can be produced in the region of focus
by only varying the spatial coherence of the light field �7–9�;
this work has also been done in the fully electromagnetic
case �10�. It has been suggested that the ability to change the
focus from a high intensity to a low intensity region by spa-
tial coherence effects might be useful in creating “tunable”
optical tweezing systems which can be readily changed from
high-index to low-index trapping. In order to investigate
such a possibility, though, the Maxwell stress tensor for par-
tially coherent electromagnetic fields must be properly de-
fined and the momentum conservation law for said fields
must be elucidated.

In modern coherence theory, it is most convenient to work
in the space-frequency domain rather than the space-time
domain; in fact, energy conservation laws for scalar �11� and
electromagnetic fields �12� in the space-frequency domain
have been derived in recent years in the context of under-
standing correlation-induced spectral changes �13�. Momen-
tum laws for partially coherent fields have only been devel-
oped in the space-time domain �14�; possibly due to their
complexity, though, little use has been made of them.

In this paper we derive the Maxwell stress tensor and the
momentum conservation law in the space-frequency domain
for partially coherent electromagnetic fields. In Sec. II we
derive the tensor and the momentum conservation law as it
applies to fields and sources. In Sec. III we derive a few

special cases of these momentum formulas, and in Sec. IV
we present simple examples of its application. Section V
presents concluding remarks.

II. MAXWELL STRESS TENSOR AND MOMENTUM
CONSERVATION IN THE SPACE-FREQUENCY DOMAIN

We consider a region of space which contains time-
fluctuating electric and magnetic fields E�r , t� and B�r , t�.
The fields are assumed to be statistically stationary, at least
in the wide sense �Sec. 2.2 of �15��. We initially follow the
derivation by Jackson �Sec. 6.8 of �1�� for the stress tensor,
making the appropriate modifications for partially coherent
fields along the way. It is to be noted that we work exclu-
sively with the microscopic Maxwell’s equations, as the
proper definition for momentum for the macroscopic equa-
tions, if any, is still a source of controversy, usually referred
to as the Minkowski-Abraham controversy �16�. The total
change in mechanical momentum of a continuous distribu-
tion of real-valued charges ��r , t� and currents J�r , t� is given
by

dPmech

dt
�t� = �

D
���r�,t�E�r�,t� +

1

c
J�r�,t� � B�r�,t��d3r�,

�1�

where D is a closed domain containing the source. In work-
ing with partially coherent fields, however, it is more appro-
priate to use an analytic signal representation of the field
�Sec. III A of �15��, in which case all source and field quan-
tities are complex and the expression for the �real-valued�
momentum is

dPmech

dt
�t� = Re��

D
���r�,t�E��r�,t� +

1

c
J�r�,t�

� B��r�,t��d3r�	 . �2�

This quantity may be written entirely in terms of field quan-
tities by the use of Maxwell’s equations in Gaussian units,
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��r,t� =
1

4�
� · E�r,t� , �3�

J�r,t� =
c

4�
�� � B�r,t� −

1

c

�E�r,t�
�t

� . �4�

The integrand of Eq. �2� then takes on the form

�E� +
1

c
J � B��r�,t�

=
1

4�
�E��� · E� +

1

c
B� �

�E

�t
− B� � �� � B�� ,

�5�

where we have, for the moment, suppressed the functional
dependencies for brevity. By use of the product rule of de-
rivatives and Maxwell’s equations, the entire integral for mo-
mentum may be written in the form

dPtot

dt
�t� =

1

4�
Re��

D

�E��� · E� + B��� · B�

= E � �� � E�� − B� � �� � B��d3r�	 , �6�

where we have defined

dPtot

dt
�t� =

dPmech

dt
�t� +

1

4�c
Re� d

dt
�

D

E � B�d3r�	 . �7�

We have identified the total change in momentum within the
volume D as consisting of the change in mechanical momen-
tum plus the change in the momentum of the enclosed elec-
tromagnetic fields.

The quantity in the integral in Eq. �6� can be simplified
using elementary vector calculus identities; the result is

dPtot

dt
�t� = Re��

D

� · T̂�r�,t�d3r�	 , �8�

where T̂ is defined as the stress tensor of the complex ana-
lytic field, which in tensor notation appears as

T̂ij�r,t� =
1

4�
�Ei

�Ej + Bi
�Bj −

1

2
�ij�E� · E + B� · B�	 . �9�

This is a generalization of the ordinary Maxwell stress tensor
to the case where the field is represented as a complex ana-
lytic signal. By use of the divergence theorem, Eq. �8� can be
written as

dPtot

dt
�t� = Re��

S

T̂�r�,t� · nda	 , �10�

where S is a surface enclosing the volume D, da is an area
element of that surface, and n is the unit vector normal to
that surface.

So far we have introduced what amounts to a straightfor-
ward extension of the standard theory of momentum flow in
electromagnetic systems. The total net change in momentum

in the volume is equal to the flow of the stress tensor through
the surface of the volume.

To generalize to partially coherent fields, we consider an
ensemble average of the stress tensor. We define the complex
correlation tensors of the electric and magnetic fields as fol-
lows:

�ij
E�r1,r2,�� 
 �Ei

��r1,t�Ej�r2,t + ��� , �11�

�ij
B�r1,r2,�� 
 �Bi

��r1,t�Bj�r2,t + ��� , �12�

where we have assumed the fields are statistically stationary.
We may then write the stress tensor in terms of these corre-
lation functions in the form

�T̂ij�r,t�� =
1

4�
��ij

E�r,r,0� −
1

2
�ij�ll

E�r,r,0��
+

1

4�
��ij

B�r,r,0� −
1

2
�ij�ll

B�r,r,0�� , �13�

where we use the Einstein summation convention in that
repeated indices are summed. It is to be noted that the aver-
age value of the stress tensor is independent of the origin of
time, which means that the average momentum flow is the
same at all points in time. This is a simple consequence of
the stationarity of the wave fields.

It is generally more convenient to work in the space-
frequency domain instead of the space-time domain; for this
purpose, the cross-spectral density of a partially coherent
wave field can be defined as

Wij
E�r1,r2,�� =

1

2�
�

−	

	

�ij
E�r1,r2,��e−i��d� , �14�

and this Fourier expression can be inverted to write

�ij
E�r1,r2,�� = �

−	

	

Wij
E�r1,r2,��ei��d� . �15�

With this expression, the stress tensor may be written in the
form

�T̂ij�r,t�� = �
−	

	 � 1

4�
�Wij

E�r,r,�� −
1

2
�ijWll

E�r,r,���
+

1

4�
�Wij

B�r,r,�� −
1

2
�ijWll

B�r,r,���	d� .

�16�

It can be seen from this equation that the total stress tensor
may be written as the linear sum of the individual frequency
contributions. Because different frequency components of a
statistically stationary field are uncorrelated, we are justified
in writing the stress tensor in the frequency domain in the
form
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�T̂ij�r,��� =
1

4�
�Wij

E�r,r,�� −
1

2
�ijWll

E�r,r,���
+

1

4�
�Wij

B�r,r,�� −
1

2
�ijWll

B�r,r,��� . �17�

Equation �17�, together with Eq. �16�, describes how the
component of the field with frequency � contributes to the
total stress tensor of the field. For a broadband field, expres-
sion �17� can be used frequency by frequency to determine
the total momentum of a field. If the field is quasimonochro-
matic, a single component of the stress tensor at the center
frequency serves as an approximation to the total stress ten-
sor. This equation will be used to derive a number of useful
expressions relating to momentum flow in partially coherent
fields.

It is to be noted that, for the case of partially coherent
fields, the momentum conservation law �Eq. �10�� may be
written as


 dPtot

dt
� = Re��

0

	 ��
S

�T̂�r,��� · nda�d�	 . �18�

III. SPECIAL CASES OF THE MOMENTUM
FORMULAS

The general formulas for momentum flow and momentum
conservation are quite complicated; for certain special cases,
they simplify considerably. We consider two of these cases
here.

A. Momentum flow from primary polarization sources

We first consider the flow of momentum from partially
coherent primary polarization distributions. The electric field
produced by a monochromatic electric field has the well
known form �12�

Ei�r,�� = �k2 + �i� j��
D

Pj�r�,��
eikR

R
d3r�, �19�

where, in the Cartesian coordinates, � j 
� /�xj and
R
�r−r��. To find the cross-spectral density of the electric
field, we apply a result from coherence theory in the space-
frequency domain �17�, which states that the cross-spectral
density may always be written as the average of an ensemble
of monochromatic fields,

Wij
E�r1,r2,�� = �Ei

��r1,��Ej�r2,����, �20�

where the subscript � indicates that this is an average over
an ensemble of monochromatic realizations of the field. It is
to be noted that for statistically stationary fields such as those
we consider, different frequency components of the field are
uncorrelated. Mathematically, this means that one can per-
form a space-frequency average which treats the field at fre-
quency � as an ensemble of monochromatic fields. The wave
number k in this case is therefore a constant, and the wave
propagator is a deterministic function. A similar expression
may be written for the cross-spectral density of the polariza-

tion, WP. We may substitute from Eq. �19� into Eq. �20� to
write the cross-spectral density of the electric field in the
form

Wij
E�r1,r2� =� �

D

Wlm
P �r�,r���k2�il + �1i�1l�

��k2� jm + �2j�2m�
e−ikR1

R1

eikR2

R2
d3r1�d

3r2�, �21�

where Ra
�ra−ra��, with a=1,2. We have suppressed further
expression of the variable � for brevity. We may simplify
this expression by considering points in the far zone of the
source, in which case we may write

eikR

R
�

eikr

r
e−iku·r�, �22�

where u is a unit vector pointing from the origin to the point
of observation in the far zone. With some work we may write
the cross-spectral density of the electric field in the compact
form

Wij
E�r1u1,r2u2� � �2��6k4eik�r2−r1�

r1r2
W̃lm

P �− ku1,ku2���il − u1iu1l�

��� jm − u2ju2m� , �23�

where W̃P is the sixfold Fourier transform of the polarization
cross-spectral density WP, i.e.,

W̃P�K1,K2� =
1

�2��6� �
D

WP�r1�,r2��e
i�K1·r1�+K2·r2��d3r1�d

3r2�.

�24�

In a similar manner, the cross-spectral density for the mag-
netic field in the far-zone may be written in the form

Wij
B�r1u1,r2u2� � �2��6k4eik�r2−r1�

r1r2

ipq
 jrsu1pu2r

�W̃qs
P �− ku1,ku2� , �25�

where 
ijk is the Levi-Civita tensor.
On a sphere of fixed radius r centered on the origin, we

may write the momentum flow as a function of normal di-
rection u in the form

u · �T̂�r�� = −
�2��6

4�r2 uk4��lm − ulum�W̃lm
P �− ku,ku� . �26�

This result demonstrates that the momentum flow depends
not only on the distribution of polarization sources, but also

their correlation properties, as expressed in W̃ij
P.

B. Momentum flow in a general scattering formalism

More useful for potential applications in optical trapping
is the change in momentum when partially coherent light is
scattered from a microscopic particle. We now derive an ex-
pression for momentum flow as applied in a general scatter-
ing formalism.
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Let us suppose a partially coherent field with electric field
E�i��r� is incident upon a scattering object localized within a
domain D. The interaction produces a scattered electric field
E�s��r�, and the total electric field throughout space is the
sum of these two terms,

E�r� = E�i��r� + E�s��r� . �27�

By the use of Eq. �20�, we can therefore write the stress
tensor of the total electromagnetic field in the form

T̂ij�r� = T̂ij
�i��r� + T̂ij

�s��r� + Ŝij�r� , �28�

where T̂ij
�i� is the stress tensor of the incident field alone, T̂ij

�s�

is the stress tensor of the scattered field alone, and Ŝij is an
interference term which is given by

Ŝij�r� 
 �T̂ij�r,��� =
1

4�
�Wij

is,E�r,r,�� −
1

2
�ijWll

is,E�r,r,���
+

1

4�
�Wij

is,B�r,r,�� −
1

2
�ijWll

is,B�r,r,��� ,

�29�

and we define a mixed incident field/scattered field tensor by

Wij
is,E 
 �Ei

�s���r�Ej
�i��r� + Ei

�i���r�Ej
�s��r�� , �30�

with a similar expression for Wij
is,B. It is to be noted that the

mixed tensor is Hermitian, i.e., that

Wji
is,E� = Wij

is,E. �31�

The net momentum flow into the volume D can then be
determined by the use of Eq. �10�. This formula may be
simplified considerably by noting that the incident field, i.e.,
the field in the absence of any scatterer, will produce no net
momentum flow into or out of the volume D. Its contribution
vanishes and the flow reduces to two terms,

dPtot

dt
��� = Re��

S

�T̂ij
�s��r� + Ŝij�r�� · nda	 . �32�

This equation suggests that the scattered field depends not
only on the radiation pattern of the scattered field but also on
the spatial correlation between the incident and scattered
field.

IV. EXAMPLES

We now apply the results of the previous sections to a few
simple examples. We first consider momentum conservation
as it applies to certain classes of model sources.

We focus on the momentum flow from certain classes of
partially coherent primary sources. The net momentum flow
at frequency � from a spherical surface of radius r may be
defined as

dPtot

dt
��� 
 Re�T� , �33�

where T is a complex vector with components Tj specified
by

Tj 
 �
S

T̂ijuida = −
�2��6k4

4�
�

�

W̃lm
P �− ku,ku,��

���lm − ulum�ujd� �34�

and d� indicates an infinitesimal solid angle.
First, we consider the class of homogeneous and isotropic

sources. The cross-spectral density for this case can be rep-
resented by

Wij
P�r1,r2,�� = SP� r1 + r2

2
,���ij

P�r2 − r1,�� , �35�

where SP represents the spectral density of the polarization
and �ij

P represents the spectral degree of coherence of the
polarization. It is well known �Sec. 3.3 and 3.4 of �18�� that,
for an isotropic source, the spectral degree of coherence may
be written in the form

�ij
P�r,�� = �ijA�r,�� + rirjB�r,�� . �36�

The Fourier transform of such a source is readily found to be
given by the expression

W̃ij
P�− ku,ku,�� = S̃P�0,����ij�Ã�k,�� −

1

k

d

dk
B̃�k,��	

+ uiuj�1

k

d

dk
B̃�k,�� −

d2

dk2 B̃�k,��	� .

�37�

The resulting net force from the corresponding stress tensor
becomes

Tj = −
2�2��6k4

4�
�

�

S̃P�0,���Ã�k,�� −
1

k

d

dk
S̃B̃�k,���ujd�

= 0. �38�

Therefore, there is no net momentum flow for quasihomoge-
neous sources.

We can partially remove the isotropy of the source polar-
ization and consider an example of a quasihomogeneous
source with fixed polarization direction taken �arbitrarily� to
lie in the z direction. In this case the cross-spectral density
and related physical quantities can be expressed as

Wij
P�r1,r2,�� = SP� r1 + r2

2
,���0��r2 − r1�,���i3� j3,

�39�

W̃ij
P�− ku,ku,�� = S̃P�0,���̃0�k,���i3� j3, �40�

��ij − uiuj�W̃ij
P�− ku,ku,�� = �1 − u3

2�S̃P�0,���̃0�k,�� .

�41�

The corresponding net momentum flow becomes
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Tj = −
2�2��6k4

4�
S̃P�0,���

�

�1 − u3
2�uj�̃0�k,��d� . �42�

Because �̃0 is independent of direction u, it can be readily
seen that the net momentum flow also vanishes in this case.

One can readily produce examples of anisotropic momen-
tum flow by completely removing the isotropy of the corre-
lations. We now assume a cross-spectral density of the form,

Wij
P�r1,r2,�� = SP� r1 + r2

2
,���0��r2 − r1�,��e−ik0·�r2−r1��ij ,

�43�

where k0 is a nonzero vector. This source is unpolarized at
every point in the source domain. The corresponding net
force becomes

Tj = −
2�2��6k4

4�
S̃P�0,���

�

�̃0��ku − k0�,��ujd� . �44�

This expression has no symmetry with respect to u, and in
general will be nonzero. We consider the special case of the
Gaussian correlation,

�0�r,�� = exp�− r2/2
2� , �45�

and choose k0=k0ẑ. Looking only at the integral of Eq. �44�,
we find that

G 
 �
�

�̃0��ku − k0ẑ��ud�

=

3

�2��1/2e−k2
2/2e−k0
2
2/2ẑ�

0

�

e2kk0 cos �
2/2 cos � sin �d�

=

3

�2��1/2e−k2
2/2e−k0
2
2/2ẑ

2 sinh � − 2� cosh �

�2 , �46�

where

� 
 kk0
2. �47�

The behavior of the momentum is shown in Fig. 1, as a
function of the normalized correlation length k
 and as a
function of the normalized anisotropy, k0 /k. As one would

expect, it can be seen that the net momentum flow vanishes
for low anisotropy and for low correlation length and in-
creases as these parameters are increased. Beyond a certain
critical anisotropy value which depends upon the correlation
length, however, the net flow decreases again. This arises
because the oscillations of the exponential for k0�k begin to
produce primarily evanescent waves.

Even when the net momentum flow of a source is zero,
the distribution of momentum flow can depend strongly on
the degree of coherence. As a final example, we consider the
simple case of two partially coherent dipoles. Let us assume
that two statistically identical dipoles P= �0,0 , P� position at
r+= �0,0 ,a /2� and r−= �0,0 ,−a /2�, respectively. Then the
cross-spectral density at frequency � may be written in the
form

WP = 
 �
c,d=+,−

Pc
��r1�Pd�r2��

�

= �
c,d

�cdPc
��r1�Pd�r2� ,

�48�

where �cd is the degree of coherence between dipoles c and
d and

P+�r� 
 P��3��r − r+� , �49�

P−�r� 
 P��3��r − r−� . �50�

With this system of dipoles, the momentum flow through a
large sphere of radius r and in direction u may be written,
according to Eq. �26�, as
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m
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m
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ed
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FIG. 2. �Normalized� distribution of momentum flow for a pair
of partially coherent dipoles as a function of angle � from the axis
of the dipoles. �a� ka=2�. �b� ka=�.
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FIG. 1. The �normalized� net momentum flow is shown in terms
of the normalized anisotropy parameter k0 /k and the normalized
correlation length k
.
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u · �T̂�r�� = −
k4

4�r2�
c,d

�cd�P · P − �u · P���u · P��ue−iku·�rc−rd�,

�51�

where �cd has the property of �cd=�dc
� and �cc=1 for c ,d

= + ,−.
This may be simplified to the form

u · �T̂�r�� = −
k4P2

4�r2 �1 − cos2 ���2 + 2 Re��+−e−ika cos ���u .

�52�

For �+−
�0�Re, this may be further simplified to the form

Q�u� 
 u · �T̂�r�� = −
k4P2

4�r2 �1 − cos2 ��

��2 + 2�0 cos�ka cos ���u . �53�

The angular distribution of momentum flow depends not
only upon the separation of the dipoles and the wavelength
of emission but also upon the spectral degree of coherence
between them. The resulting angular distribution of the
change in the momentum can be found in Fig. 2 for various

values of �0 and two values of ka. It can be seen that in the
limit of incoherently radiating dipoles, the distribution of
momentum flow becomes independent of ka.

V. CONCLUSIONS

In this paper we have explicitly calculated the formulas
relating to momentum flow and momentum conservation for
partially coherent fields in the space-frequency representa-
tion. The general formulas were applied to the more special-
ized cases of primary radiation sources and general scatter-
ing. Examples of momentum flow for partially coherent
sources were given, and these examples demonstrated that
the momentum flow of an electromagnetic field depends sig-
nificantly upon the state of coherence of the source.

These formulas can be used to analyze the net momentum
transfer from fields to particles in problems of optical trap-
ping with partially coherent fields. Partial coherence repre-
sents an additional “degree of freedom” in the design of elec-
tromagnetic systems, and it has been suggested that fields in
unusual states of coherence can produce novel trapping de-
vices. We intend to explore the effects of partial coherence
on trapping forces in detail in future research.

�1� J. D. Jackson, Classical Electrodynamics, 2nd ed. �Wiley, New
York, 1975�.

�2� A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt.
Lett. 11, 288 �1986�.

�3� K. T. Gahagan and G. A. Swartzlander, Jr., Opt. Lett. 21, 827
�1996�.

�4� K. T. Gahagan and G. A. Swartzlander, Jr., J. Opt. Soc. Am. B
16, 533 �1999�.

�5� H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-
Dunlop, Phys. Rev. Lett. 75, 826 �1995�.

�6� N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt.
Lett. 22, 52 �1997�.

�7� G. Gbur and T. D. Visser, Opt. Lett. 28, 1627 �2003�.
�8� J. X. Pu, S. Nemoto, and X. Y. Liu, Appl. Opt. 43, 5281

�2004�.

�9� T. van Dijk, G. Gbur, and T. D. Visser, J. Opt. Soc. Am. A 25,
575 �2008�.

�10� Z. Zhang, J. Pu, and X. Wang, Opt. Lett. 33, 49 �2008�.
�11� G. S. Agarwal and E. Wolf, Phys. Rev. A 54, 4424 �1996�.
�12� G. Gbur, D. F. V. James, and E. Wolf, Phys. Rev. E 59, 4594

�1999�.
�13� E. Wolf and D. F. V. James, Rep. Prog. Phys. 59, 771 �1996�.
�14� P. Roman and E. Wolf, Nuovo Cimento 17, 477 �1960�.
�15� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, Cambridge, 1995�.
�16� R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H.

Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 �2007�.
�17� E. Wolf, J. Opt. Soc. Am. 72, 343 �1982�.
�18� G. K. Batchelor, The Theory of Homogeneous Turbulence

�Cambridge University Press, Cambridge, 1986�.

S. M. KIM AND GREG GBUR PHYSICAL REVIEW A 79, 033844 �2009�

033844-6


