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a b s t r a c t

The behavior of spatial correlation singularities suggests a possible method for measuring atmospheric
turbulence strength with a vortex beam. The refractive index structure constant C2

n can be obtained by
measuring the radius of a ring dislocation of a vortex beam which has passed through atmospheric tur-
bulence. An approximate analytic expression for the radius of a ring dislocation as a function of C2

n has
been derived, and its accuracy is verified by numerical examples.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The effects of atmospheric turbulence on the propagation of
optical beams, such as scintillation, beam wander, decrease of
coherence, and beam spreading, have been actively researched
for many years [1–3]. These effects arise from the turbulence-
induced random phase modulation of the optical field. As a result,
the performance of a long-range optical system operating in the
atmosphere strongly depends upon the turbulence characteristics.

In particular, the refractive index structure constant C2
n, which

characterizes the turbulence strength, also dictates the strength
of scintillations. Scintillation is the primary limitation in the devel-
opment of free-space optical communication systems. Techniques
for minimizing scintillation, such as using partially coherent beams
(see, for instance, [4,5]), requires knowledge of the value of C2

n,
which must be measured independently for an optimal solution.

The traditional method to measure C2
n is to use an optical scin-

tillometer [6–8]. By measuring the scintillation of a wavefield over
a short propagation distance, the path-averaged value of C2

n is ob-
tained. A recent study on the behavior of spatial correlation singu-
larities, however, suggests an alternate solution. Spatial correlation
singularities, also referred to as coherence vortices [9], are the
zeros of the cross-spectral density function at which the phase is
undefined. A ring dislocation has been shown to exist in the
cross-correlation function of a partially coherent field when passed
through a vortex mask [10,11]. In recent studies, the properties of
the ring dislocation in the presence of fluctuations and on propaga-
tion in free space were investigated [12,13]. It is demonstrated that
the radius of this ring dislocation is inversely related to coherence
length of the wavefield. As spatial coherence decreases on propa-
gation through turbulence, it is reasonable to ask whether a mea-

surement of such a ring dislocation could be used as a measure of
turbulence strength, namely C2

n.
In this paper, we show that it is feasible to measure turbulence

strength by vortex beam propagation. An approximate analytic
expression of the radius of a ring dislocation as a function of C2

n

has been derived. The condition for the accuracy of approximation
is given through numerical examples.

2. Theory

The propagation geometry is illustrated in Fig. 1. The vortex
beam is generated by passing a Gaussian beam through an ideal-
ized vortex mask at the transmitter plane. By using the extended
Huygens–Fresnel principle [14], the transmitted field at the recei-
ver plane z ¼ L (in the far-field regime) can be expressed in the
form

Uðq; LÞ ¼ � ik
2pL

exp ikLþ ikq2

2L

� �
�
Z

Uðq0;0Þ

� exp �i2p q

kL
� q0 þ w q;q0ð Þ

h i
d2q0; ð1Þ

where Uðq0;0Þ ¼ expð�q02=w2
0Þ expði/0Þ is the field at the transmitter

plane, k is the wavenumber, w0 is the beam width at the transmitter
plane, and wðq;q0Þ is the random part of the complex phase of a
spherical wave propagating in turbulence. Coherence properties of
the field at the receiver plane are characterized by the cross-spec-
tral density [15]

Wðq1;q2; LÞ ¼ hU�ðq1; LÞUðq2; LÞi

¼ A
ZZ

U�ðq01;0ÞUðq02; 0Þ

� exp i2p
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0
2Þ

� �
id2q01 d2q02; ð2Þ
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where A ¼ ð1=kLÞ2 exp½ikðq2
2 � q2

1Þ=ð2LÞ�, the asterisk indicates com-
plex conjugate, and the angular brackets denote an ensemble aver-
age over the turbulence fluctuations. When turbulence is
homogeneous, the random part of the complex phase of a spherical
wave in Eq. (2) can be approximated by [16]

hexp w�ðq1;q
0
1Þ þ wðq2; q

0
2Þ

� �
i � exp � jrj

2 þ r � r0 þ jr0j2

q2
0

 !
¼ Tðr0; rÞ;

ð3Þ

where

q0 ¼ ð0:55C2
nk2LÞ�3=5 ð4Þ

is the coherence length of a spherical wave propagating in turbu-
lence, r ¼ q2 � q1, r0 ¼ q02 � q01, and C2

n is the refractive index struc-
ture constant. In this paper, we assume that C2

n is a constant over
the propagation path. In the Appendix, we show that it can also rep-
resent the average value if C2

n is varying on propagation. Although
the quadratic approximation of the random phase structure func-
tion in Eq. (3) has certain limits [17], it gives a good approximation
of the second order statistical properties of fields in turbulence un-
der many circumstances. With this approximation, the cross-spec-
tral density at the receiver plane can be written as

Wðq1; q2; LÞ ¼ A
ZZ

U�ðq01;0ÞUðq02; 0ÞTðr0; rÞ

� exp i2p q1 � q01 � q2 � q02
kL

� �� �
d2q01 d2q02: ð5Þ

Eq. (5) may be expressed in a more suggestive form by using the
following Fourier expansions,

Tðr0; rÞ ¼
Z eT ðj; rÞ expði2pr0 � jÞd2j; ð6Þ

Uðq0j; 0Þ ¼
Z eUðjj;0Þ expði2pq0j � jjÞd2jj ðj ¼ 1;2Þ: ð7Þ

On substituting Eqs. (6) and (7) into Eq. (5) and applying standard
Fourier transform techniques, one can find that

Wðq1; q2; LÞ ¼ A
Z eU� q1

kL
� j; 0

� 	eU q2

kL
� j;0

� 	eT ðj; rÞd2j; ð8Þ

where
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In Eq. (10), h is the azimuthal angle of j, I0 and I1 are the zero and
first order modified Bessel function of the first kind respectively.
With Eqs. (9) and (10), Eq. (8) can be written as

Wðq1;q2; LÞ ¼ A exp �3jrj2

4q2
0

 !Z
U�1ðq1;jÞU1ðq2;jÞpðjÞd

2j; ð11Þ

where

pðjÞ ¼ pq2
0 expð�p2q2

0j
2Þ; ð12Þ

U1ðqj;jÞ ¼ eU qj

kL
� j;0

� 	
expðipj � qjÞ ðj ¼ 1;2Þ: ð13Þ

The direct evaluation of Eq. (11) by substituting Eqs. (10), (12),
and (13) is difficult. However, it can be simplified by using the fol-
lowing approximation for eUðj;0Þ
eUðj; 0Þ � � i

2
p5=2w3

0j expðihÞ exp �1
2
p2w2

0j
2

� �
: ð14Þ

This expression contains only the lowest nonzero term of the series
expansion of the modified Bessel functions in Eq. (10). With Eqs.
(12) and (13), one can show that the cross-spectral density at the
receiver plane (Eq. (11)) can be explained by the ‘beam wander’
model [18]. The field U1 is centered on a transverse location j.
pðjÞ, which satisfies

R
pðjÞd2j ¼ 1, is the probability distribution

function of j which limits the circular area where the field center
can wander. The radius of this area is inversely related to q0. For
a large q0, the field only wanders in a small area around the origin.
Considering the fact that the difference between Eqs. (10) and (14)
is negligible when the argument is small, the evaluation of Eq. (11)
is accurate for small jq1j and jq2j by substituting Eqs. (12)–(14). On
substitution and choosing ðq1;q2Þ to be ðq;�qÞ, the approximate
cross-spectral density at the receiver plane is

Wðq;�q; LÞ ¼ p6w6
0q2

0

4k2L2 exp � p2w2
0

k2L2 þ
3

w2
0r2
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p3w4
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c Þ
2

p3k2L2w6
0ð1þ r2

c Þ
3 q2

" #
; ð15Þ

where

rc ¼ q0=w0 ð16Þ

is the relative coherence length which is a measure of the global
spatial coherence of a beam on propagation through turbulence.
From Eq. (15), it shows that there exist spatial correlation singular-
ities at which the amplitude of the cross-spectral density Wðq;�qÞ
is zero and the phase is undefined. These spatial correlation singu-
larities form a ring dislocation whose radius is

q ¼ kL
w2

0ð1þ r2
c Þ

k2L2 þ p2w4
0ð1þ r2

c Þ
2

" #1=2

: ð17Þ

3. Examples and analysis

Eq. (17) is the central analytic result of this paper. Fig. 2 shows
the radius of a ring dislocation as a function of the turbulence
strength parameter C2

n. It can be seen that the radius of the disloca-
tion increases monotonically with a considerable dynamic range in
weak and moderate turbulence, eventually saturating for exceed-
ingly strong turbulence. The simulated radii of some different C2

n

obtained by propagating a Gaussian beam through a vortex mask
and turbulence are also shown in Fig. 2. We applied a multiple
phase screen method for the simulations [19]. They have good
agreement with the radii calculated from Eq. (17).

As the radius of a ring dislocation can be measured by a wave-
front folding interferometer [10], Eq. (17) suggests that C2

n can be

Fig. 1. Illustration of the propagation geometry. The vortex mask of order 1 is
placed at the transmitter plane z ¼ 0. It imparts a phase factor expði/0Þ to the
incident Gaussian beam U0 ¼ expð�q02=w2

0Þ. For simplicity, the waist plane of the
Gaussian beam is also at the transmitter plane.
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obtained by measuring the radius of such a ring dislocation at the
receiver plane. However, it is necessary to give the condition for its
accuracy. An example of the absolute value of the cross-spectral
density Wðq;�qÞ calculated from Eq. (15) is shown in Fig. 3. As a
comparison, the numerical result obtained by simulation is also
shown in Fig. 3. The relative coherence length rc is 7.73, which
indicates high spatial coherence. As shown by Fig. 3, the numerical
result of jWðq;�qÞj and the analytic result calculated from Eq. (15)
have good agreement in the central area around the origin. The
simulated radius of such a ring dislocation is 3 mm, while the ra-
dius calculated from Eq. (17) is 3.2 mm. Therefore, the approxi-
mate analytic expression of the radius of a ring dislocation Eq.
(17) is accurate for large relative coherence length rc . By numerical
simulation, we have found that Eq. (17) is accurate when rc > 0:9.

It is worth noting that C2
n can be obtained by measuring the ra-

dius of a ring dislocation even in the strong turbulence regime. As
illustrated by Fig. 3, it can be anticipated that the variation of the
radius of a ring dislocation is small in the strong turbulence re-
gime. Therefore C2

n may be undistinguishable due to the limited
resolution of an image system. However, considering the fact that
saturation in the strong turbulence regime corresponds to low spa-
tial coherence at the receiver plane, it can be solved by increasing
spatial coherence, namely increasing the relative coherence length
rc by decreasing either the beam width w0 or the propagation dis-
tance L. As shown in Fig. 4, for a Gaussian beam with a small beam
width, the radius of the ring dislocation still has a certain dynamic
range even in the strong turbulence regime.

4. Conclusions

In this paper, we theoretically investigated the feasibility of
atmospheric turbulence strength measurement by vortex beam
propagation. It is demonstrated that, by appropriately choosing
beam and propagation parameters, the atmospheric turbulence
strength parameter C2

n or its averaged value when C2
n is varying

on propagation can be obtained by measuring the radius of a ring
dislocation after a vortex beam passes through turbulence, even in
the saturated regime.

Although the proposed method in this paper is focused on the
measurement of atmospheric turbulence strength, in principle it
can be extended to the measurement of other weakly scattering
random media or random fields. For example, it can be used to
measure the statistical parameters of tissue [20] or the coherence
length of a Gaussian Schell-model beam. In general, it suggests a
relatively straightforward and flexible method to study the statis-
tical properties of a random medium or a random field.
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Appendix A

In this appendix, we show that when the refractive index struc-
ture constant C2

n is varying on the propagation, the average value
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Fig. 2. Illustration of the radius of a ring dislocation as a function of C2
n . The solid

curve represents analytic result calculated from Eq. (17), while the unfilled shapes
} represent numerical result. The error bars represent the spatial resolution of the
simulations. The propagation distance is taken to be L = 300 m, k ¼ 1:55 lm, and
the beam width w0 = 4 cm.
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C2
n can still be obtained by measuring the radius of a ring disloca-

tion at the receiver plane.
As illustrated by Fig. 5, atmospheric turbulence between the

transmitter plane and the receiver plane can be divided into slabs
of equal thickness. By the slow-varying assumption, C2

n in each slab
is a constant and the difference of C2

n in each two adjacent slabs is
small. We take the propagation in the first two slabs as an example.
By the extended Huygens–Fresnel principle and the quadratic
approximation of the random phase structure function, the cross-
spectral densities at the plane z ¼ L=n and z ¼ 2L=n are

where W0ðq01; q02Þ is the cross-spectral density at the transmitter
plane, q01 ¼ ð0:55C2

n1k2L=nÞ�3=5, q02 ¼ ð0:55C2
n2k2L=nÞ�3=5, r0 ¼ q02�

q01, r1 ¼ q12 � q11 and r2 ¼ q22 � q21. For convenience, we introduce
the new variables ðR0; r0Þ, ðR1; r1Þ and ðR2; r2Þ, where R0 ¼ ðq02þ
q01Þ=2, R1 ¼ ðq12 þ q11Þ=2 and R2 ¼ ðq22 þ q21Þ=2. On substituting
Eq. (A1) into Eq. (A2) and taking integral with respect to ðR1; r1Þ,
the cross-spectral density at plane z ¼ 2L=n can be written as

W2ðR2; r2Þ /
Z
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� exp �ðq
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By the assumption of small difference of C2
n in the two adjacent

slabs, we can assume that

q2
02 þ 7q2

01 � 4ðq2
01 þ q2

02Þ � 7q2
01 þ q2

02 � 8q12
2; ðA4Þ

where q12 is the average coherence length of a spherical wave in the
first two slabs. On substituting Eq. (A4), Eq. (A3) can be written as
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� �
: ðA5Þ

W2ðR2; r2Þ can also be calculated from W0ðR0; r0Þ by the extended
Huygens–Fresnel principle directly, which is

W2ðR2; r2Þ /
Z

d2R0
Z

d2r0W0ðR0; r0Þ

� exp � jr2j2 þ r2 � r0 þ jr0j2
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� �
: ðA6Þ

By comparing Eqs. (A5) and (A6), one can find that

q12
2 ¼ 1ffiffiffi

2
p q01q02: ðA7Þ

When the field is propagating into the third slab, the first two slab
can be treated as a unity whose average coherence length of a
spherical wave is q12. By the similar derivation, one can show that
the average coherence length of a spherical wave in the whole prop-
agation path L is

q0
2 ¼ 2�

1
2�2 1

2ð Þ
n

q
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2n�2

01 q
1

2n�2
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Yn

i¼3

q
1
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where

q0 ¼ ð0:55C2
nk2LÞ�3=5

q0i ¼ ð0:55C2
nik

2L=nÞ�3=5 ði ¼ 1;2 . . . nÞ:
ðA9Þ

We can readily see that the average value C2
n can be measured by

the radius of a ring dislocation when it is varying along the propa-
gation path, while C2

n is defined by Eqs. (A8) and (A9).
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