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Magnetization effect in momentum conservation in partially coherent wavefields

Greg Gbur
Department of Physics and Optical Science, University of North Carolina at Charlotte Charlotte, North Carolina 28223, USA

S. M. Kim
Department of Physics Yonsei University, Wonju, Kangwon-Do 220-710, Korea

(Received 11 July 2010; published 7 October 2010)

The law of momentum conservation and its applications for partially coherent electromagnetic fields has been
recently studied with the emphasis on the electric polarization. In this work, we provide more complete expressions
of the formalism by including magnetization. Even though polarization gives a dominant effect in momentum
flow in electromagnetic wave systems in general, magnetization can also be important in optical metamaterials.
Therefore, this more general formalism will be useful for some physical situations where magnetization can be
nonnegligible.
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I. INTRODUCTION

In 1986, researchers demonstrated that [1] microscopic
particles may be trapped in high-intensity regions of focused
optical fields, providing a very useful and popular tool for
the microscopist known as “optical tweezing.” Variations of
the technique have resulted in a number of strategies for
manipulating particles with optical fields; for instance, the
authors of [2–5] have demonstrated that particles may be
rotated by a transfer of angular momentum. Furthermore,
several researchers [6–8] have shown that the intensity dis-
tribution in the focal region may be altered by modifying the
spatial coherence of the focused wave, potentially providing
an additional degree of freedom for particle manipulation.

Discussions of optical trapping have brought renewed
attention to the momentum of light and the conservation laws
associated with it. In a recent paper [9], a law of momentum
conservation for partially coherent electromagnetic waves
in the space-frequency domain was demonstrated, along
with an associated scattering formalism. These results were
formulated for sources of electric polarization, or equivalently,
scattering objects with unit permeability. This encompasses
most ordinary sources and materials, which are nonmagnetic
at optical frequencies.

The introduction of optical metamaterials [10], however,
has raised the possibility of, if not the inevitability of,
man-made materials with nontrivial magnetic properties.
Metamaterials have been suggested for the development of
a number of counterintuitive optical devices, such as “perfect
lenses” [11] and “optical cloaks” [12]. It is therefore of interest
to investigate how the momentum properties of light change
when the source has a magnetization as well as a polarization,
and furthermore to see what influence partial coherence has
on the formalism.

In this paper we derive the Maxwell stress tensor for a
partially coherent electromagnetic wave that is generated by
a partially coherent source possessing both magnetization and
polarization. In Sec. II, we introduce the basic expressions for
partially coherent waves and sources in the space-frequency
domain, while in Sec. III we derive the Maxwell stress tensor
for such a mixed electric and magnetic source. In Sec. IV we
provide some concluding remarks.

II. PARTIALLY COHERENT ELECTROMAGNETIC
FIELDS PRODUCED BY POLARIZATION AND

MAGNETIZATION

We begin by considering the behavior of partially coherent
electromagnetic fields produced by sources consisting of
polarization and magnetization. For convenience, we work
with the space-frequency representation of electromagnetic
fields (see, for instance, [13,14]), in which a partially coherent
wave field at frequency ω can be represented as an average over
an appropriately chosen ensemble of monochromatic wave
fields [15].

We introduce a monochromatic ensemble of sources with
polarization P(r,ω) and magnetization M(r,ω), confined to a
volume V in free space, and introduce the electric and magnetic
Hertz vectors [16] πe(r,ω) and πm(r,ω), respectively, which
satisfy the equations

∇2πe(r,ω) + k2πe(r,ω) = −4πP(r,ω), (1)

∇2πm(r,ω) + k2πm(r,ω) = −4πM(r,ω), (2)

where k = ω/c, c being the speed of light. The solution to
these equations may be represented in integral form

πe(r,ω) =
∫

V

P(r′,ω)G(r − r′)d3r ′, (3)

πm(r,ω) =
∫

V

M(r′,ω)G(r − r′)d3r ′, (4)

where

G(R) = eikR

R
, (5)

is the free-space Green’s function for the Helmholtz equation.
It follows from the properties of the Hertz vectors that

the electric and magnetic fields are related to them by the
expressions

E(r,ω) = ∇ × [∇ × π e(r,ω)] + ik∇ × πm(r,ω), (6)

B(r,ω) = ∇ × [∇ × πm(r,ω)] − ik∇ × π e(r,ω). (7)
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We will find it more convenient to write these fields in a tensor
notation

Ei = ∂i∂jπ
e
j − ∂2

j πe
i + ikεijk∂jπ

m
k , (8)

Bi = ∂i∂jπ
m
j − ∂2

j πm
i − ikεijk∂jπ

e
k , (9)

where πe
k is the kth component of the Hertz vector π e, and so

forth, and ∂i = ∂/∂xi is the partial derivative with respect to
the ith Cartesian coordinate. The symbol εijk is the Levi-Civita
symbol. We further simplify these expressions by introducing
the operators

Mij ≡ ∂i∂j − ∂2
l δij , (10)

Nij ≡ ikεilj ∂l, (11)

where δij is the Kronecker delta symbol. We may then write

Ei = Milπ
e
l + Nilπ

m
l , (12)

Bi = Milπ
m
l − Nilπ

e
l . (13)

We now consider partially coherent fields. In the space-
frequency representation, we may introduce the cross-spectral
density tensor of the electric field as

WEE
ij (r1,r2,ω) = 〈E∗

i (r1,ω)Ej (r2,ω)〉ω, (14)

where the brackets 〈〉ω represent averaging over the ensemble
of space-frequency realizations. Similarly, the cross-spectral
density tensor of the magnetic field is given by

WBB
ij (r1,r2,ω) = 〈B∗

i (r1,ω)Bj (r2,ω)〉ω. (15)

On substituting from Eq. (12) into Eq. (14), we find that we
may write the latter expression as

WEE
ij = M(1)∗

il M(2)
jmWee

lm + N (1)∗
il M(2)

jmWme
lm

+M(1)∗
il N (2)

jmWem
lm + N (1)∗

il N (2)
jmWmm

lm . (16)

Here we have introduced the functions

Wee
lm(r1,r2,ω) = 〈

πe∗
l (r1,ω)πe

m(r2,ω)
〉
, (17)

Wem
lm (r1,r2,ω) = 〈

πe∗
l (r1,ω)πm

m (r2,ω)
〉
, (18)

and so forth, to represent the cross-spectral density tensors of
products of Hertz vectors; the arguments of the tensors will
be suppressed for brevity for the moment. The notation M(1)

ij

is used for an operator that acts on the first variable r1 of a
cross-spectral density tensor, with a similar definition for the
other operators.

The cross-spectral density tensor for the magnetic field may
similarly be written as

WBB
ij = M(1)∗

il M(2)
jmWmm

lm − N (1)∗
il M(2)

jmWem
lm

−M(1)∗
il N (2)

jmWme
lm + N (1)∗

il N (2)
jmWee

lm. (19)

The individual tensors Wee
lm, Wem

lm , and so forth, may be
written in terms of the cross-spectral density tensors of the
individual sources, for instance,

Wee
lm(r1,r2,ω) =

∫
V

∫
V

G∗(r1 − r′
1)G(r2 − r′

2)WPP
lm

× (r′
1,r

′
2,ω)d3r ′

1d
3r ′

2, (20)

Wem
lm (r1,r2,ω) =

∫
V

∫
V

G∗(r1 − r′
1)G(r2 − r′

2)WPM
lm

× (r′
1,r

′
2,ω)d3r ′

1d
3r ′

2, (21)

with

WPP
lm (r′

1,r
′
2,ω) ≡ 〈P ∗

l (r′
1,ω)Pm(r′

2,ω)〉, (22)

WPM
lm (r′

1,r
′
2,ω) ≡ 〈P ∗

l (r′
1,ω)Mm(r′

2,ω)〉. (23)

The correlation tensors represented by Eqs. (16) and (19)
allow us to calculate most second-order electromagnetic phe-
nomena of physical interest, namely the energy, power flow,
and momentum flow of the electromagnetic field, including the
effects from sources of both polarization and magnetization.

III. MAXWELL STRESS TENSOR ARISING FROM
POLARIZATION AND MAGNETIZATION

For monochromatic fields, the Maxwell stress tensor that
characterizes momentum flow is given by [17]

Tij (r,ω) = 1

4π

{
Ei(r,ω)Ej (r,ω) + Bi(r,ω)Bj (r,ω)

− 1

2
δij [El(r,ω)El(r,ω) + Bl(r,ω)Bl(r,ω)]

}
.

(24)

It is to be noted that we restrict ourselves to the fields
in free space, outside of dielectric and magnetic materials;
we therefore avoid the ambiguity in the definition of the
momentum of light in matter that is the center of the Abraham-
Minkowski controversy [18].

The ensemble averaged version of the stress tensor is then
given by the expression

〈Tij (r,ω)〉 = 1

4π

{
WEE

ij (r,r,ω) + WBB
ij (r,r,ω)

− 1

2
δij

[
WEE

ll (r,r,ω) + WBB
ll (r,r,ω)

]}
. (25)

From the definitions of the Hertz vector correlation tensors
[e.g., Eq. (17)] we may note the following relation between
the mixed tensors

Wem
lm (r1,r2,ω) = [

Wme
ml (r2,r1,ω)

]∗
. (26)

With this result, we may write the sum of the electric and
magnetic cross-spectral density tensors as

WEE
ij + WBB

ij = M(1)∗
il M(2)

jm

[
Wee

lm + Wmm
lm

]
+N (1)∗

il N (2)
jm

[
Wee

lm + Wmm
lm

]
+ [

M(1)∗
il N (2)

jm − N (1)∗
il M(2)

jm

]
Wem

lm

+ {[
M(1)∗

j l N (2)
im − N (1)∗

j l M(2)
im

]
Wem

lm

}∗
. (27)
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The first two terms of this expression combined represent
the sum of contributions from the polarization and magneti-
zation sources in the absence of interference; the latter two
terms of the expression represent interference terms between
the two types of sources. We may write the total stress
tensor for a source of magnetization and polarization in the
form

〈Tij (r,ω)〉 = T e
ij (r,ω) + T m

ij (r,ω) + T c
ij (r,ω), (28)

where T e
ij (r,ω) is the stress tensor derived from the elec-

tric polarization of the source alone, T m
ij (r,ω) is the

stress tensor derived from the magnetization of the source
alone, and T c

ij (r,ω) is the stress tensor derived from
the interference between the electric polarization of the
source and the magnetization of the source and can be
rewritten as

T c
ij (r,ω) = 1

4π

{
Cij (r) − 1

2
δij [Cll(r)]

}
, (29)

and

Cij (r) = [
M(1)∗

il N (2)
jm − N (1)∗

il M(2)
jm

]
Wem

lm

+ {[
M(1)∗

j l N (2)
im − N (1)∗

j l M(2)
im

]
Wem

lm

}∗
. (30)

Equation (28) is one of the main results of this paper. It
demonstrates that the total stress tensor due to electric and
magnetic sources can be expressed as the sum of the individual
stress tensors plus an interference term.

A situation of interest is the determination of the flow of
momentum in the far zone of the electromagnetic source (i.e.,
at distances such that |r| � |r′|). At such distances, we write
r = ru, and it is to be noted that

∂j

eikR

R
∼ ∂j

eikr

r
e−ikur′

. (31)

The derivatives in the operators Mij and Nij can be evaluated
directly, and the operators take the form

Mij ,M∗
ij → k2δij − k2uiuj , (32)

Nij → −k2εinjun, N ∗
ij → k2εinjun, (33)

where ui is the ith component of the unit vector u in the
direction of observation. With these definitions, we note that

Cij may be written as

Cij = −k4[(δil − uiul)εjnmun + εinlun(δjm − ujum)]Wem
lm

− k4[(δjl − ujul)εimnun + εjlnun(δim − uium)]Wem∗
lm .

(34)

With the stress tensor, the momentum flow Pj in the direction
of unit vector u is written as

Pj = uiTij . (35)

However, we can readily show that uiCij = 0 because, for
instance,

ui[δil − uiul] = ul − ul = 0, (36)

εinluiun = u × [u×] = 0. (37)

The momentum flow in the direction u also has a term of
the form uiCll ; this term can also be shown to vanish using
Eq. (37). In the far zone of a mixed electric and magnetic
source, we therefore find that

Pj ∼ P e
j + P m

j . (38)

In other words, the total momentum flow in the far zone is
simply the combined momentum of the electric and magnetic
source terms, without any interference effects playing a role.

IV. CONCLUSION

We have derived a more general expression for the Maxwell
stress tensor and the conservation of momentum for partially
coherent electromagnetic wave fields that includes both the
electric (polarization) and magnetic (magnetization) properties
of a primary radiation source. The stress tensor may, in general,
be divided into a purely electric part, a purely magnetic
part, and an interference term between them. In the far zone,
however, the interference part disappears completely and the
total momentum flow from the source is the sum of the
individual contributions from the electric and magnetic parts
separately.

Though magnetization is typically negligible for ordinary
materials at optical frequencies, the increasing emphasis
on metamaterials with nontrivial magnetic properties (for
instance, [10–12]) suggests that our results will be useful as
the field develops.
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