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The concept of pseudo-Bessel correlated beams is introduced, and their scintillation properties on propagation
through turbulence are investigated. By using the Rytov approximation, the scintillation index of pseudo-
Bessel correlated beams is formulated in weak turbulence. The study of scintillation is extended into strong
turbulence by numeric simulations. It is shown that by choosing an appropriate coherence parameter, pseudo-
Bessel correlated beams have lower scintillation than comparable fully coherent beams in both weak and
strong turbulence. In addition, the configuration of pseudo-Bessel correlated beams is modified by adding a
horizontal beamlet; the scintillation properties of these modified beams are also discussed. © 2010 Optical

Society of America
OCIS codes: 010.1300, 030.0030.

1. INTRODUCTION

It is well known that optical beams are distorted on
propagation through atmospheric turbulence, resulting in
scintillation, beam wander, beam spreading, and decrease
of spatial coherence [1]. In particular, the presence of
scintillations— intensity fluctuations arising from the
turbulence-induced random phase modulation— is espe-
cially problematic and is one of the fundamental limita-
tions in the development of free-space optical communica-
tion systems [2].

In the past several decades, a large amount of work has
been done on the scintillation properties of optical beams
in random media. It is now well appreciated that the scin-
tillation of a partially coherent beam or partially coherent
multiple beams can be lower than that of its fully coher-
ent counterpart [3-9]. On propagation through turbu-
lence, a partially coherent beam delivers its energy
through multiple incoherent spatial modes, each of which
has its own distinct propagation path and intensity pat-
tern. Because of mutual independence of these modes, the
intensity of the complete partially coherent beam is the
superposition of the individual intensity patterns, and on
average the intensity received by the detector is more uni-
form. Recently a wave optics simulation approach of par-
tially coherent beams was developed [10] and applied in
the study of their propagation in turbulence [11,12].

So far, most studies on the propagation of partially co-
herent beams in turbulence have focused on the beams
whose spatial correlation function is Gaussian. It has
been shown that the scintillation reduction by a Gaussian
correlated beam is negligible in the strong turbulence re-
gime ([1] , Chap. 16). However, other beam types have un-
usual propagation properties. Bessel beams, also referred
to as nondiffracting beams, have an invariant field distri-
bution across any plane orthogonal to the direction of
propagation [13,14]. They are also shown to be able to re-
construct their initial intensity profiles after both ampli-
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tude and phase perturbations [15,16]. The counterparts of
Bessel beams in the partially coherent regime are Bessel
correlated beams [17]. It has been demonstrated that a
Bessel correlated beam of infinite size is propagation-
invariant in free space and in ABCD systems [18,19],
while a Bessel correlated beam of Gaussian intensity pro-
file remains almost invariant up to a certain propagation
distance [20]. It is also known that Bessel correlated
beams can be used in focal spot shaping [21]. On noting
the unusual properties of Bessel correlated beams in free-
space propagation, it is natural to consider their scintilla-
tion properties when propagating in turbulence.
Although an elegant modal expansion of Bessel corre-
lated beams was described in [17], it is still relatively dif-
ficult to mathematically formulate the scintillation of
Bessel correlated beams on propagation in turbulence. In
this paper, we introduce the concept of pseudo-Bessel cor-
related beams by using a discretized form of the Bessel
correlation function. A pseudo-Bessel correlated beam is
synthesized by the incoherent superposition of a collec-
tion of beamlets whose wave vectors form a cone. When
the number of constituent beamlets approaches infinity,
the field takes on the form of a Bessel correlated beam.
The scintillation properties of pseudo-Bessel correlated
beams of Gaussian intensity profile are investigated ana-
lytically and numerically. It is shown that with the appro-
priate coherence parameter, pseudo-Bessel correlated
beams have lower scintillation than fully coherent beams
of the same initial intensity profile in both weak and
strong turbulence. It is also found that the maximum
scintillation reduction can be obtained by a pseudo-Bessel
correlated beam with a finite number of constituent
beamlets. These results suggest that beam arrays gener-
ally perform comparably to or better than continuous par-
tially coherent beams in scintillation reduction. In addi-
tion, the configuration of pseudo-Bessel correlated beams
is modified by adding a horizontal beamlet. The addi-
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tional beamlet keeps the scintillation of the modified
pseudo-Bessel correlated beams at a low level for a rela-
tively large range of the correlation length.

2. MODEL OF PSEUDO-BESSEL
CORRELATED BEAMS

The second-order coherence properties of a wavefield in
the source plane z=0 can be characterized by the cross-
spectral density [22]

W(p17p27w) = <U(p1,w)U*(P27w)>7 (1)

where p; and py are the position vectors in the source
plane, and U(p, w) is a realization of the wavefield at po-
sition p with angular frequency w. Here angle brackets
denote the average over an ensemble of monochromatic
realizations of the field. The cross-spectral density may
always be written as

——

W(p].,pZa w) = \’/S(pla 0)) \‘“’S(p2a w)/l’(pl7p27 (U) ) (2)

where S(p,w)=W(p,p,w) is the spectral density at p, and
u(p1,ps,w) is the spectral degree of coherence of the field
at p; and py, whose absolute value is restricted to the
range between 0 and 1. The extreme value zero repre-
sents spatial incoherence and the value unity represents
complete spatial coherence at frequency w. From now on
we will focus on a single frequency w and suppress its de-
piction in the function arguments. For a Bessel correlated
beam, its spectral degree of coherence takes on the form

lp1 - Pz|>

w(py,p2) =Jo( (3)

T'o
where o/ is the zeroth-order Bessel function of the first
kind, and r( is the effective correlation length.

When investigating the properties of a partially coher-
ent beam, one important issue is the synthesis of the
wavefield such that its cross-spectral density is of a given
form. For a Bessel correlated beam characterized by Eq.

(3), we note that a Bessel function satisfies the well-
known identity ([23], Chap. 11)

lp1 - Pyl 1 .
JO( = ZTJ exp[zkuL * (Pl - Pz)]d‘PuL, (4)

ro 0

where k is wavenumber, |[u,[=1/(kr), and ¢, is the azi-
muthal angle of u,. On substituting Eq. (4) into Eq. (2)
and discretizing the integral, the cross-spectral density
can be approximated by a finite number of modes as

N
Wip1,p2) = X, A (p)A, (py), (5)
n=1
where
1
A,(p)= TW\J’S(p) exp(iku,, - p), (6)

\

N is the number of modes, and u , ,=(1/kry,2nm/N) in po-
lar coordinates. It can be seen that a Bessel correlated
beam can be synthesized by the beamlets specified by Eq.
(6) when N approaches infinity. As shown by Fig. 1, the
wave vectors of these beamlets form a cone whose vertex
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Fig. 1. Configuration of a pseudo-Bessel correlated beam. k,, is
the wave vector of the nth beamlet. k,=ku,, and its direction is
specified by the unit vector u, whose projection in the source
plane is u,,. #=2 arcsin(|Ju,|) is the vertex of cone.

angle is inversely related to the correlation length rg.
When N is of finite value, we define a partially coherent
beam whose cross-spectral density is specified by Eqgs. (5)
and (6) as a pseudo-Bessel correlated beam. Figure 1 also
illustrates a potential method to generate a pseudo-Bessel
correlated beam, i.e., a bundle of fiber lasers arranged ei-
ther to directly diverge at angle 6 or first converge in a
source plane of angle 6.

It is to be noted that the scintillation of beam arrays
has been considered before [24-26]. However such arrays
consisted of beamlets spatially separated in the source
plane, namely, spatially diverse arrays. The pseudo-
Bessel correlated beams are directionally diverse beam
arrays whose beamlets propagate in different directions.

In principle the spectral density S(p) can be of arbi-
trary profile. In this paper, it is taken to be Gaussian,
which is

2p2
S(p) =9XP<— —2> (7)

Wy

where w indicates the width of the Gaussian profile. The
average intensity in the source plane L=0 is therefore a
Gaussian, regardless of state of coherence.

3. FORMULATION OF SCINTILLATION
INDEX IN WEAK TURBULENCE

We consider a pseudo-Bessel correlated beam whose con-
stituent beamlets are specified by Egs. (6) and (7) at the
source plane z=0. On propagation through weak turbu-
lence, the wavefield of the nth beamlet can be represented
by a so-called Rytov series [1],

An(p,z) =A0n(P,Z)eXp[¢n1(P,Z) + ¢n2(P,Z) + ]’ (8)

where Ay, (p,z) is the wavefield of the nth beamlet in the
absence of the turbulence, and ,1(p,z) and ¢,5(p,z) are
the complex phase perturbations of the first and the sec-
ond order associated with the nth beamlet, respectively.
With the assumption of weak turbulence, perturbation
terms of order higher than two are neglected.
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Because of the mutual independence of the constituent
beamlets, the intensity of the pseudo-Bessel correlated
beam at the receiver plane z=L is

N
I(p,L)= > 1,(p,L), (9)

n=1

where I,(p,L)=|A,(p,L)]? is the intensity of the nth
beamlet. The intensity fluctuations of the pseudo-Bessel
correlated beam at the receiver plane are characterized
by the scintillation index which is defined as

(F*(p,L))

=1, 10
I(p,L)y 1o

(p,L)

where the angle brackets stand for the average of the re-
alizations of turbulence. With Eq. (9), the scintillation in-
dex can be rewritten as

N N
> S L (p, L)L (p,L))

m=1n=1

o*(p,L) = -1 (11)

N 2
(E <In<p,L>>)
n=1

Within the framework of the Rytov approximation, the
average intensity of the nth beamlet (I,,(p,L)) and the av-
erage cross-intensity between the mth and nth beamlets
(L, (p,L)I,(p,L)) in Eq. (11) are formulated by (for the de-
tailed derivations, see Appendix A)

(L(p,L)) = |Aon(p,L)|* exp{2 Re[E7(p,L)] + E3" (p,L)},
12)

IL(p, L)1, (p,L)) = (L, (p,L)XI,,(p,L)) X exp{2 Re[E3"(p,L)]
+2 RelE3" (p,L)]}, (13)

where

oL , ikLu?® o
Ei(p,L) = — wk* exp f@anK
! 2p(L)

JL - ik 7]u2Ln
X exp| ————
0 2p(7)

—iky(m)(L - pu?,
X exp 207 dn, (14)

2p(L) 2p"(L)

Xr — ik { V(n)(L—n)} ,
ex + u
o Plaem Tt

y ik { y*(m(L—n)] 2 |y
ex m + = u,
MG ARSI e

f —i[¥(m) - ¥ (DL - n«®
X | exp o

ikLu® —ikLu®
EY™(p,L) = 27k? expl o :| expl - ]
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xexpli[Y(n) - ¥ (n)]k- p} X eXp{— i(L

) {u“" u“‘} ®, ()2 (15)
P ) @ |

) ikLu® ikLu®
E3"(p,L) = - 27k* exp exp
’ 2p(L) 2p(L)

Xf“ - ik [ V(n)(L—n)]( )
ex + u
o Plaon|” p(n)
+u?)d fex [——i(L—n) (u
-
1ln 7 P p(L) 1im

—ir (L - )i
—uﬁ}exp{w]@n(:«)d% (16)

k

where p(L)= 1+i2L/kwg, v(n)=p(n)/p(L) and P, (k) is the
power spectrum of the turbulence.

4. EXAMPLES AND ANALYSIS

In this paper, the turbulence is modeled by the von Kar-
man spectrum

exp(- k% K,Zn)

@, (1) =0.033C* ——i—,
( ) n (K2+ K(2))11/6

a7

where «,,=5.92/1,, with the inner scale /,,=1 mm and «
=1/l with the outer scale /;=10 m. The scintillation in-
dex of a pseudo-Bessel correlated beam can be numeri-
cally evaluated by substituting Eqs. (12)—(17) into Eq.
(11).

Figure 2 shows the on-axis scintillation index of a
pseudo-Bessel correlated beam as a function of the rela-
tive correlation length rq/w( in weak turbulence when the
number of constituent beamlets is two. The turbulence
strength parameter is C2=10"15 m~23, and the propaga-
tion distance is L=2 km. The on-axis scintillation index of
a fully coherent Gaussian beam with the same width w, is
shown on the plot as a horizontal line for comparison. Its
scintillation value can be also obtained by numerically
evaluating the formulas developed in Section 3 when N
=1 and u, =0. It can be seen that a minimum of the scin-
tillation for a pseudo-Bessel correlated beam occurs when
ro/wy=0.32, providing 50% reduction as compared to the
scintillation of a Gaussian beam alone. The simulated on-
axis scintillation indices of some different ro/w are also
shown in Fig. 2 for comparison. We applied a multiple
phase screen method for the simulations [27], in which
extended turbulence is modeled by a collection of phase
screens at appropriate distances and with carefully cho-
sen statistical properties, and the field undergoes free-
space propagation between them. The constituent beam-
lets given by Eq. (6) are propagated through the same
realization of the turbulence, and their intensities are
added at the receiver plane according to Eq. (9). The
simulated scintillation values are obtained by the en-
semble average of 2000 realizations. As shown by Fig. 2,
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Fig. 2. On-axis scintillation of a 2-beamlet pseudo-Bessel corre-
lated beam as a function of the relative correlation length ry/w,.
Here the wavelength is taken to be A=1.55 um, and the width of
the beam is taken to be w;=0.05 m. The turbulence strength pa-

rameter is C2=10"" m~%3 and the propagation distance is
L=2 km.

the numeric results have good agreement with the ana-
lytic results obtained by the Rytov theory.

The origin of the minimum scintillation can be under-
stood as follows. In the high-coherence regime (large rg),
the constituent beamlets propagate near the horizontal
axis and through nearly the same region of turbulence.
The scintillation of the pseudo-Bessel correlated beam is
approximately the same as the scintillation of the hori-
zontal Gaussian beam. On the decrease of coherence, the
spatial separation between the beamlets’ propagation
paths is enlarged. Their propagation through the turbu-
lence is less correlated and on average the scintillation of
the pseudo-Bessel correlated beam is reduced. However,
in the low-coherence regime (small ry), the propagation
paths of the constituent beamlets are distant from the
horizontal axis. The scintillation of the pseudo-Bessel cor-
related beam is increased because of the low intensity de-
tected by the receiver. Therefore there exists an optimal
correlation length for which the scintillation of the
pseudo-Bessel correlated beam is minimum. Beams with
different widths ranging from wy=3 c¢cm to wy=7 cm were
also studied; the qualitative features described here were
present in all cases, though the optimal correlation length
varies with beam size.

Figure 3 illustrates the dependence of the on-axis scin-
tillation index of a pseudo-Bessel correlated beam on the
number of its constituent beamlets. The relative correla-
tion length ro/wq is 0.33. As N increases, the on-axis scin-
tillation index falls and saturates rapidly. When N is
small, the propagation of the additional beamlets is still
relatively uncorrelated with the propagation of the exist-
ing beamlets, and the scintillation of the pseudo-Bessel
correlated beam is reduced. However, when N is large, the
additional beamlets propagate through very similar re-
gions of turbulence as the existing beamlets and make no
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Fig. 3. On-axis scintillation of a pseudo-Bessel correlated beam
as a function of the number of its constituent beamlets N. The
relative correlation length is taken to be ry/w,=0.33. The rest of
the parameters are the same as in Fig. 2.

contribution to the further scintillation reduction. From
Fig. 3, it can be seen that the scintillation of a Bessel cor-
related beam can be studied through the scintillation of a
pseudo-Bessel correlated beam with the finite number of
constituent beamlets. As illustrated by Fig. 4, the maxi-
mum scintillation reduction is 79% when the number of
constituent beamlets is 16. Significantly, this result sug-
gests that the most significant scintillation reduction is
achieved with a finite number of incoherent beamlets, and
that familiar classes of partially coherent beams, such as
Schell-model beams, are in a sense “wasteful.” A Schell-
model beam can be decomposed using an angular spec-
trum representation into a sum of uncorrelated plane
waves propagating in different directions [28]. Plane
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Fig. 4. On-axis scintillation of a 16-beamlet pseudo-Bessel cor-
related beam as a function of the relative correlation length
ro/wgy. The parameters are the same as in Fig. 2.
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waves propagating in very similar directions will be af-
fected by turbulence in very much the same manner, and
will not provide any significant reduction in scintillation.

The analytic formulas for scintillation of pseudo-Bessel
correlated beams obtained by the Rytov approximation in
Section 3 is valid only in weak turbulence. However the
multiple phase screen simulation method applied in Fig.
2 retains its validity for Gaussian beams in the strong
turbulence regime [29]. Now we extend the study on the
scintillation of pseudo-Bessel correlated beams into the
strong turbulence regime by numeric simulations. The
turbulence strength parameter is C2=10"1* m%3 and the
propagation distance is L=3 km. As shown in Fig. 5, the
similar behavior of on-axis scintillation index of a pseudo-
Bessel correlated beam as a function of the relative corre-
lation length ro/w is observed, and the maximum scintil-
lation reduction saturates as the increase of the number
of constituent beamlets N. When N=8, 73.2% scintillation
reduction is obtained when ry/wy=0.28. Figure 6 illus-
trates the on-axis scintillation index of an 8-beamlet
pseudo-Bessel correlated beam as a function of the Rytov
variance,

o2 =1.23C2E76L16, (18)

The beam is of the optimal correlation length obtained
from Fig. 5. It can be seen that the pseudo-Bessel corre-
lated beam significantly outperforms the Gaussian beam.

It is to be noted that Figs. 2, 4, and 5 do not extend to
ro/wg=0. In this limit, the beamlets are propagating per-
pendicular to the z axis and essentially no light intensity
is reaching the detector. In this case, the scintillations get
arbitrarily large, and we have excluded that limit from
the plots for clarity.
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Fig. 5. On-axis scintillation of a pseudo-Bessel correlated beam
as a function of the relative correlation length ry/w,. The wave-
length is also A=1.55 um and the width of the beam is w,
=0.05 m. Here the turbulence strength parameter is C2
=10""* m~?? and the propagation distance is L=3 km.
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Fig. 6. On-axis scintillation of an 8-beamlet pseudo-Bessel cor-
related beam as a function of the Rytov variance o2
=1.23C%E"SL1V6, The relative correlation length is ry/w,=0.28
and the other parameters are the same as in Fig. 5.

5. SCINTILLATION OF MODIFIED PSEUDO-
BESSEL CORRELATED BEAMS

As discussed in Section 4, the scintillation of a pseudo-
Bessel correlated beam increases rapidly if the correlation
length decreases further after reaching its optimal value.
This arises because the beamlets mostly “miss” the detec-
tor, but high variations in intensity are produced when a
beamlet occasionally wanders into its range. To correct
this, we modified the configuration of pseudo-Bessel cor-
related beams by adding an independent horizontal
beamlet

2
p

E(pz=0)=E, exp(— —2), (19)
)

where E is the amplitude. For simplicity, its beam width
is also wy.

It can be shown that the on-axis scintillation index of
the modified pseudo-Bessel correlated beam takes on the
minimum value given by

T~ (0,1)°

PV if o2, , < min[o%,07]
Pi= Pyt R =205, S
min[oﬁ bs 0,21] otherwise
(20)
when
I(0% — 0% 5)
By= | 220 o if 02, , < min[o%,07]. (21)

2 2
L5, — o 1)

In Egs. (20) and (21), ‘Tib and o‘,zl are the on-axis scintilla-
tion indices of the pseudo-Bessel correlated beam and the
horizontal beamlet, respectively. 0}2)1),11 is the on-axis cross
scintillation index between the pseudo-Bessel correlated
beam and the horizontal beamlet, which is defined as
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Fig. 7. (a) Dashed curve shows the on-axis scintillation of a 16-beamlet pseudo-Bessel correlated beam as a function of the relative
correlation length ry/w,, while the solid curve shows the minimum on-axis scintillation of the corresponding modified pseudo-Bessel
correlated beam. The optimal amplitude E is shown in (b). The parameters are the same as in Fig. 4.
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I, and I, are the on-axis intensities of the pseudo-Bessel
correlated beam and the horizontal beamlet. The factor
min[aﬁb,a',zl] takes the minimum between oﬁb and o% In
addition, with the assumption of isotropic turbulence, it

can be shown that 0'2b h-o% »» Where

LIy
ML)

is the on-axis cross scintillation index between the nth
beamlet of the pseudo-Bessel correlated beam and the
horizontal beamlet.

In weak turbulence, the minimum on-axis scintillation
index of the modified pseudo-Bessel correlated beams [Eq.

(22)

-1 (23)

Optimal amplitude E, (V/m)
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(20)] can be numerically evaluated by the formulas drived
in Section 3. It is illustrated as a function of the relative
correlation length ry/wg in Fig. 7. The corresponding op-
timal amplitude E, is also shown. The number of con-
stituent beamlets of the pseudo-Bessel correlated beam is
16. It can be seen that when coherence is relatively high,
the minimum on-axis scintillation index of the modified
pseudo-Bessel correlated beam is the on-axis scintillation
index of the pseudo-Bessel correlated beam itself because
o2y < 0%, and o2, < o7 Therefore there is no need to add
the additional horizontal beamlet in this regime. However
in the low-coherence regime, oﬁb,h<min[0'2b,o%] the ad-
ditional horizontal beamlet keeps the scintillation of the
modified pseudo-Bessel correlated beams at a low level for
a relatively large range of the correlation length r. If
further decreases, we can anticipate that the detected on-
axis intensity is dominated by the additional horizontal
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Fig. 8. (a) Dashed curve shows the on-axis scintillation of an 8-beamlet pseudo-Bessel correlated beam as a function of the relative
correlation length ry/w,, while the solid curve shows the minimum on-axis scintillation of the corresponding modified pseudo-Bessel
correlated beam. The optimal amplitude E is shown in (b). The parameters are the same as in Fig. 5.
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beamlet, and the on-axis scintillation index of the modi-
fied pseudo-Bessel correlated beam increases and ap-
proaches o eventually.

Figure 8 illustrates the minimum on-axis scintillation
index of the modified pseudo-Bessel correlated beams as
well as the optimal amplitude E, in strong turbulence;
these quantities are obtained by numeric simulations.
The number of constituent beams of the pseudo-Bessel
correlated beam is eight. A behavior similar to that of Fig.
7 is observed.

6. CONCLUSIONS

We have investigated the scintillation properties of
pseudo-Bessel correlated beams of Gaussian intensity
profile in both weak and strong turbulence. With an ap-
propriately chosen coherence parameter, it is demon-
strated that such beams have lower scintillation than
comparable fully coherent Gaussian beams.

It is noted that the scintillation rapidly decreases to an
asymptotic limit as the number of beamlets is increased.
This suggests that, in general, the optimal scintillation
reduction can always be achieved with a relatively small
and finite number of such beamlets, and that partially co-
herent fields with more complicated coherence properties
will not provide significant improvement.

We have also studied the scintillation properties of
pseudo-Bessel correlated beams combined with a central
horizontal beamlet. The additional beamlet keeps the
scintillation of the so-called modified pseudo-Bessel corre-
lated beams at a low level for a relatively wide range of
values of the correlation length ry.

Although the spectral density S(p) is chosen to be
Gaussian, the synthesis method of Bessel correlation ap-
plied in this paper can be used to study the propagation of
Bessel correlated beams of other intensity profiles
through the atmosphere. For instance, the constituent
beamlets could be taken to be of nonuniform polarization
[30], or of Bessel-Gaussian form [28,31].

APPENDIX A: DERIVATION OF E7, E}",
AND E7™
In this Appendix, we derive the expressions for E7, E5",

and E3" given above [Eqs. (14)—(16)]. They are the
second-order statistical moments, which are defined as

1
E%(p,L) = (Ya(p,L)) + 5<¢n1(p,L>>2, (A1)
E7"(p,L) = (Y1(p,L) 1 (p,L)), (A2)
EZ™(p,L) = ({1(p,L)1(p,L)). (A3)

The expressions for the average intensity (I,(p,L)) [Eq.
(12)] and the average cross-intensity (I,,(p,L)I,(p,L))
[Eq. (13)] can be obtained by the similar derivations as
shown in [1] and [24], respectively.

By the Rytov approximation, the wavefield in the tur-
bulence can be expressed by Eq. (8). For the nth beamlet
specified by Egs. (6) and (7), it can be shown that by using
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the angular spectrum theory the wavefield at the receiver
plane z=L in the absence of the turbulence is

1

Ap,(p,L) = — exp| ikL
o= (L) {

\VAVP
p? i(2ku, - p-kLu?,)
- exp .
p(L)w} 2p(L)

(A4)
The first-order complex phase perturbation term #,(p,L)

can be evaluated by the following equation [[1], Chap. 5,
Eq. (36)]

k2 L
Uai(p,L) = —f dZJ exp{ik(L—z)
217 0

ikls —pF] Ag(s,2) ni(s,2)

+ d’s. (Ab5)
2(L-2z) |Ag,(p,L) L-z

ni(p,z) is the turbulence-induced refractive index fluctua-
tion, which can be written in the following form:

nl(p,2)=ff exp(ix- p)dv(k,z), (A6)

where duv(rk,z) is the random amplitude of ni(p,z). On
substituting Eqs. (A4) and (A6) into Eq. (A5), we arrive at
[after integrating with respect to the variable s]

ikLu®
2p(L)

L —ik [ 7(2)(L—z):| \
Xf exp z+ u’, (dz
0 2p(2) p(2)

{ iy(z)(L—z)KZ]
Xff exp| - ———  |expliy(z)k - p]

Yni(p,L) = ik eXp{

2k

iY2) (L -2)

K- uLn:|dv(K9Z)5 (A7)
p(2)

X exp|:—
where again y(z)=p(z)/p(L). E5" can be obtained by sub-
stituting Eq. (A7) into Eq. (A2). With the relationship

(dv(r,z)dv"(k',2")) =F,(k,|z - 2'|) 8(k — k')d%kd?«’,
(A8)

where & is the Dirac delta function and F,(«,|z-2'|) is a
two dimensional spectral density of the turbulence, we
have, after some calculations,

L)k ikLu®,, —ikLu®
E3"(p,L) = k? exp| ——— |exp| ———
? 2p(L) 2p"(L)

JL JL ~ ik { y(z)(L—z)] ;
X exp zZ+ Ui,
0Jo (2@ P

ik yer-1,
X exp ; 2+ : u, (dzdz’'
2p (") p (")
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x J f exp{—i[y(Z)(L—Z)—y*(Z’)
(L 2]k : [L_Z
-2")]k* rexpy — ik p(L)ulm

L-2z' )
- mum exp{i[ 1(2)

-7 &)k pIF, (1|2 - 2')d’«. (A9)
Now we replace the integration variables z and z’ by %
=(z+2z")/2 and pu=z-z'. With the assumption that the tur-
bulence is delta correlated in the propagation direction,
F,(x, 1) has appreciable values only when u=~0. Thus we
can extend the integration on u from — to « without sig-
nificant error and let z=~z'~ 7. With these approxima-

tions and the relationship between F,(«, 1) and the power
spectrum of the turbulence ®,(k),

1 =
D, (k) = —J F,(re,m)d e, (A10)
2m7)_,

Eq. (A9) can reduce to the expression

) ikLu® —ikLu?®,
E3"(p,L) = 2mk* exp exp m
? 2p(L) 2p"(L)

fo ~ ik { y(n)(L—n)} )
ex + Ui,
B T KAt

5 ik { Y (L - 71)] ;
ex + u,
Pl | o K

f —i[Yn) - ¥ (DIL - p&?
X | exp o

xexp{i[Y(7) - v (n)]k- plexp) - i(L

) {uim ul"] @, (r)d? (A11)
T @ ||

which is Eq. (15) for E"". Equation (16) for E5" can be
obtained by a similar derivation, except that the following
relationship is used:

(dv(r,z)dv(k',2")) =F,(k,|z - 2']) 8(k + k')d*kd?K' .
(A12)

For E7 defined as Eq. (A1), it has been shown that it is
equivalent to the ensemble average of the second-order
normalized Born perturbation term [[1], Chap. 5, Eqgs.
(35) and (39)]. Therefore, it can be derived by using the
following equation [[1], Chap. 5, Eq. (40)]:

. ik|s - p|?
E (p,L)——f dzf exp|ik(L-2z)+ ———— 2L —2)

AOn(S 2) (¢ni(s,z)nq(s, 2)>
AOn(paL) L-z

On substituting Eqgs. (A4), (A6), and (A7) into Eq. (A13),

d’s. (A13)
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we have, after integrating with respect to the variable s,

n 2 l’kLuan lk 2’
Ei(p,L)=-Fk"exp o) J dzJ dz' exp) - 5@
Y(@E=-2') HAL-z } )
+ Uin
p*E") p*@)

Xffff (dv(k,z)dv(K',z"))

iy (z-2")K"?
X e —
exp_ 2k
[ iY(-2)
Xexp| - ————«K' -u,,
p(')
ivL—2)|k+ v K'|? iy(L-2)
Xexp| - exp| ————
i 2k p(@)

X(k+ 7y k') um}exp[iy(lﬂ Y&')-pl, (Al4)

where y=p(z)/p(L) and y' =p(z')/p(z). Equation (A14) can
be simplified by using the relationship Eq. (A12) and the
similar approximations as applied in the derivation of
E3'". Recognizing that ¢’ =1 and the integration on u is
from 0 and <, it can reduce to

ikLu?®,
E'l(p,L) = — k% exp f &, (rk)d?k
D

fL |: - lk ”uin 1

>< J—

o P T2
—iky(m)(L - pu?,

exp 2p%(n)

1(177, (A15)

which is Eq. (14).
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