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Beams that do not spread on propagation, so-called non-
diffracting beams, have attracted considerable attention
since they were discovered by Durnin et al. [1–3]. A spe-
cial type of such beams are the Airy beams described by
Berry and Balazs in the context of quantum mechanics
[4]. These beams have the remarkable property that they
“accelerate” away from the original direction of propaga-
tion. Airy beams are idealizations, because they carry an
infinite amount of energy. Siviloglou and Christodoulides
discussed how an exponentially modulated Airy function
source would produce a finite-energy beam, which would
retain its nondiffracting and accelerating behavior over
an appreciable propagation distance [5]. After the experi-
mental realization of such a beam [6], several studies
have been devoted to their properties [7–10], and a num-
ber of applications are being pursued. For instance, the
“self-healing” capacity of Airy beams [11] makes them ex-
cellent candidates for optical communication through
turbulent media [12]. Other intriguing applications are
the generation of curved plasma channels [13], and the
manipulation of particles along bends in labs-on-a-
chip [14].
Traditionally, the term Gouy phase describes how the

phase of a monochromatic, focused field differs from that
of a plane wave with the same frequency (see [15] and the
references therein). Recently, however, it has also been
used to describe the phase of a nondiffracting Bessel
beam [16]. In this Letter we study the phase behavior
of both finite-energy and infinite-energy Airy beams.
By comparing their phase to that of a suitable reference
field, their Gouy phase can be defined. A good un-
derstanding of the phase properties of Airy beams is
of importance in interferometric or remote-sensing appli-
cations employing them.
Consider a monochromatic, one-dimensional beamlike

wave field Uðx; z;ωÞ that propagates in the positive z-
direction, and can be written as

Uðx; z;ωÞ ¼ ϕðx; zÞeiðkz−ωtÞ; ð1Þ
with the envelope ϕðx; zÞ a solution of the paraxial wave
equation
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¼ 0: ð2Þ

Here k ¼ ω=c is the wavenumber associated with fre-
quency ω, c denotes the speed of light, and t the time.
A possible solution of Eq. (2) is the so-called Airy beam,
given by the expression [4]

ϕðs; ξÞ ¼ Ai
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with Ai the Airy function, s ¼ x=x0 a dimensionless trans-
verse coordinate, and ξ ¼ z=kx20 a normalized propaga-
tion distance. In the remainder the constant x0 is
taken to be positive, and the time-dependent part of the
wave field is suppressed. An example of the intensity dis-
tribution of an Airy beam is shown in Fig. 1, from which
both the diffraction-free propagation and the transverse
acceleration can be seen.

Because of its curved trajectory, we define the Gouy
phase δ of an Airy beam as the difference between its
phase ψ and that of an ideal (nondiffracted) diverging cy-
lindrical wave Ucylðx; z;ωÞ centered on the y-axis and
propagating into the half-space z > 0, i.e.,

δðx; z;ωÞ ¼ ψ ½Uðx; z;ωÞ� − ψ ½Ucylðx; z;ωÞ�; ð4Þ

with

Ucylðx; z;ωÞ ¼
iC
4
Hð1Þ

0 ðkρÞ: ð5Þ

Here C is a complex-valued constant, Hð1Þ
0 denotes a

Hankel function of the first kind of order zero, and

Fig. 1. (Color online) Normalized intensity distribution of an
Airy beam propagating in the positive ξ-direction.
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ρ ¼ ðx2 þ z2Þ1=2. The asymptotic behavior of the cylindri-
cal wave field is given by the expression

Ucylðx; z;ωÞ ∼ C

ffiffiffiffiffiffiffiffi
2

πkρ

s
eiðkρ�π=4Þ; ðkρ ≫ 1=4Þ: ð6Þ

We choose the constant C in Eq. (5) such that
ψ ½Ucylðx; z;ωÞ� ¼ kρ. For z ≫ x this may be written as

kρ ≈ kz

�
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�
2
�
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2
s2

ξ : ð7Þ

Thus, we have from Eqs. (1), (3), and (7) that

δðs; ξ;ωÞ ¼ sξ
2
−
ξ3
12

−
s2

2ξþ ψAi; ð8Þ

where ψAi is the phase of the Airy function of Eq. (3). For
real values of its argument the Airy function is real, and
hence ψAi equals 0 or π. The first zero of AiðxÞ occurs
near x ¼ −2:34. On making use of this in Eq. (3), we find
that ψAi ¼ 0 when ξ < 2ðsþ 2:34Þ1=2. We first restrict our
attention to this region of sξ-space.
It is seen from Eq. (3) that the maximum beam inten-

sity, jϕðs; ξÞj2, occurs on a quadratic trajectory. We there-
fore study the behavior of the Gouy phase on curves of
the type s ¼ αξ2, with a a positive constant. On substitut-
ing this form into Eq. (8), it immediately follows that the
Gouy phase vanishes identically along two curves, viz.

δðs; ξ;ωÞ ¼ 0; if s ¼ ð3� 31=2Þξ2=6: ð9Þ
Similarly, it is seen that the maximum Gouy phase occurs
along the curve s ¼ ξ2=2, namely

δðs; ξ;ωÞ ¼ ξ3
24

; if s ¼ ξ2=2: ð10Þ

The quadratic trajectory along which the intensity equals
Ai2ð0Þ (next to the maximum intensity, see Fig. 1), is gi-
ven by the expression s ¼ ξ2=4. On substituting this form
into Eq. (8) we find that

δðs; ξ;ωÞ ¼ ξ3
96

; if s ¼ ξ2=4: ð11Þ

We notice in passing that along the ξ-axis (i.e., the z-
direction) the Gouy phase takes on negative values, i.e.,

δð0; ξ;ωÞ ¼ −
ξ3
12

: ð12Þ

Contours of the Gouy phase are shown in Fig. 2. Super-
posed are several quadratic curves. It is seen that the two
dashed curves given by Eq. (9) indeed coincide with the
zero contours. The curve along which the Gouy phase
reaches its maximum [see Eq. (10)] is displayed as a solid
line. The dotted curve is given by Eq. (11).
We next turn our attention to the region

ξ > 2ðsþ 2:34Þ1=2. Here the Airy function can take on
the value zero. At such points its phase ψAi is singular,

as is the Gouy phase. Both phases display a discontinuity
of an amount π at these singularities. An example of this
behavior is shown in Fig. 3. The diagonal line that runs
from the left-hand bottom to the right-hand top indi-
cates the fifth zero of the Airy function, i.e., Aiðs − ξ2=4 ¼
−7:94Þ ¼ 0. It is seen from the color-coding that the Gouy
phase exhibits a π-discontinuity across this line.

The beams we discussed so far are idealizations be-
cause the Airy function is not square integrable, i.e., a
beam described by Eq. (3) carries an infinite amount
of energy. Siviloglou and Christodoulides [5] considered
an Airy beam source with an exponential envelope, i.e.,

ϕðfeÞðs; 0Þ ¼ AiðsÞeas; ð13Þ

with the decay parameter a > 0 as to ensure a finite-
energy contribution, called (fe), from the tail of the Airy
function. They showed that such a beam propagates as

Fig. 2. (Color online) Color-coded plot of the Gouy phase of
an Airy beam. Only the sξ-region in which the Airy function has
no zeros is shown. Along the two dashed curves, given by
Eq. (9), the Gouy phase equals zero. Along the solid curve, given
by Eq. (10), the Gouy phase reaches its maximum. The dotted
curve is given by Eq. (11).

Fig. 3. (Color online) Color-coded plot of the Gouy phase of
an Airy beam. A portion of the region in which the function
AiðxÞ has zeros is shown. The solid black line indicates the fifth
zero of the Airy function. The Gouy phase jumps by an amount π
across this line.
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ϕðfeÞðs; ξÞ ¼ Aiðs − ξ2=4þ iaξÞeas−aξ2=2

× e½ið−ξ3=12þa2ξ=2þsξ=2Þ�: ð14Þ

Such a finite-energy beam still shows the characteristic
acceleration and is, at least to some extent, diffrac-
tion-free. A beam of this type has been realized using
a Gaussian beam incident on a spatial light modulator
[6]. It follows from Eqs. (4) and (14) that the Gouy phase
for such beams is given by the expression

δðfeÞðs; ξ;ωÞ ¼ sξ
2
−
ξ3
12

−
s2

2ξþ
a2ξ
2

þ ψAi: ð15Þ

It is to be noted that ψAi now pertains to the Airy function
of Eq. (14), and is no longer restricted to the values 0 and
π. In the experiment reported in [6], the parameter values
were x0 ¼ 53 μm, a ¼ 0:11, and λ ¼ 488 nm. In Fig. 4, se-
lected cross sections of the corresponding beam intensity
are shown. On propagation the height of the central peak
gradually decreases and the beam remains essentially dif-
fraction-free up to ξ ≈ 5 (corresponding to a propagation
length of 18 cm), after which it rapidly spreads. However,
the result expressed in Eq. (9), namely that the Gouy
phase is zero along two quadratic curves, is still an ex-
cellent approximation under these conditions. This is
shown in Fig. 5 in which the Gouy phase δðfeÞðs; ξ;ωÞ is
plotted along the curves s ¼ ð3� 31=2Þξ2=6. It is seen that
the actual value of the phase anomaly is always less than
2. This corresponds to a deviation of less than λ=3 from
the approximate value zero after a propagation distance
of 360,000 wavelengths. Along the curves of Eqs. (10) and
(11) the difference between the analytic expressions
pertaining to the infinite-energy beam and a numerical
evaluation of Eq. (15) is even smaller.

In conclusion, the phase behavior of infinite-energy
Airy beams has been analyzed. By comparing this behav-
ior to that of an outgoing cylindrical wave, analytic ex-
pressions for their Gouy phase were derived. It was
shown numerically that these results are excellent ap-
proximations for the Gouy phase of finite-energy Airy
beams generated under typical conditions.
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Fig. 4. (Color online) Intensity of a finite-energy Airy beam in
different cross sections perpendicular to the ξ-axis: the source
plane ξ ¼ 0 (black), ξ ¼ 2 (blue), ξ ¼ 4 (red), and ξ ¼ 6 (green).
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Fig. 5. (Color online) Gouy phase of a finite-energy Airy
beam along the curves s ¼ ð3þ 31=2Þ=6�ξ2 (red), and s ¼
ð3 − 31=2Þ=6�ξ2 (blue).
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