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A three-dimensional multi-Gaussian function, being a finite sum of Gaussian functions, is adopted for modeling of a
spherically symmetric scatterer with a semisoft boundary, i.e. such that has continuous and adjustable drop in the
index of refraction. A Gaussian sphere and a hard sphere are the two limiting cases when the number of terms in
multi-Gaussian distribution is one and infinity, respectively. The effect of the boundary’s softness on the intensity
distribution of the scattered wave is revealed. The generalization of the model to random scatterers with semisoft
boundaries is also outlined. © 2011 Optical Society of America
OCIS codes: 290.5825, 290.5850.

In the potential-based scattering theory of light, the dis-
tribution of the refractive index within a spherically
shaped scatterer can be fairly arbitrary, in principle
([1], Chap. 13). However, in practice, only two models
for the refractive index distribution are routinely used:
a Gaussian (soft-edge) sphere [2] and a hard-edge sphere
[3]. The purpose of this Letter is to introduce a family of
spherically symmetric scatterers with variable rates of
change in the index of refraction at their edges, which
we will refer to as “edge softness.” Needless to say, both
the hard-edge model and the Gaussian model, while
being mathematically convenient, are only the idealiza-
tions; scatterers with semisoft edges are more realistic.
The original idea of a profile that has a flat center and

an adjustable slope at the edge belongs to Gori [4] who,
to construct a flat-topped optical beam, used a superpo-
sition of several Gaussian functions with different
heights and widths. This idea has also been used for mod-
eling of edges in disk readout systems [5]. Even though
flat profiles can be expressed via various mathematical
functions, such as Gegenbauer polynomials, Fermi–Dirac
distribution, or the much-studied super-Gaussian func-
tion [6], the model introduced in [4] has the advantage
of leading to tractable analytical results.
The other important type of a scatterer that we intro-

duce is a hollow sphere with adjustable softness of its
shell, on both the inner and outer sides. Such a model can
be employed, for instance, in problems involving scatter-
ing from bubbles. We will show how a linear combination
of three-dimensional (3D) multi-Gaussian functions can
efficiently serve this purpose, just like superposition of
two-dimensional (2D) multi-Gaussian beams has led to
an important class of dark-hollow beams [7].
In briefly reviewing the potential scattering theory we

fully rely on [2], Chap. 6. We consider a polychromatic
spatially coherent plane wave field:

U ðiÞðr;ωÞ ¼ SðiÞðωÞeiks0·r; ð1Þ
with spectral density SðiÞðωÞ, wavenumber k ¼ ω=c, c
being the velocity of light in vacuum and ω the angular
frequency, propagating in direction s0. When this wave is
incident on a scatterer occupying volume D, then the
spectral density of the scattered field U ðsÞðrs;ωÞ in the
far zone of the scatterer along direction r ¼ rs (jsj ¼ 1,

jrj ¼ r) can be expressed within the first Born
approximation as

SðsÞðrs;ωÞ ¼ 1

r2
SðiÞðωÞ~CF ½−kðs − s0Þ; kðs − s0Þ;ω�: ð2Þ

Here ~CF is the six-dimensional spatial Fourier transform:

~CF ðK1;K2;ωÞ ¼
Z
D

Z
D
CF ðr01; r02;ωÞ

× exp½−iðK1 · r01 þK2 · r02Þ�d3r01d3r02;
ð3Þ

with K ¼ kðs − s0Þ and CF being the spatial correlation
function of the scattering potential:

CF ðr1; r2;ωÞ ¼ hF�ðr1;ωÞFðr2;ωÞim: ð4Þ

Here the angular brackets with subscript m denote the
ensemble average over the realizations of the scattering
medium and � stands for the complex conjugate. The
scattering potential is related to the distribution of the
index of refraction nðr;ωÞ in domain D by the formula

Fðr;ωÞ ¼
�

k2
4π ½n2ðr;ωÞ − 1�; r ∈ D
0; otherwise

: ð5Þ

If the medium is deterministic, then the correlation
function reduces to a product, i.e.,

CFðr1; r2;ωÞ ¼ F�ðr1;ωÞFðr2;ωÞ: ð6Þ

On substituting from either Eq. (5) or Eq. (6) for deter-
ministic scatterers or from Eq. (4) for random scatterers
into Eqs. (2) and (3), one can determine the angular dis-
tribution of the far-field scattered spectral density. It is
convenient to represent the coordinates of the direction
vector s in the spherical system: sx ¼ cos θ cosϕ, sy ¼
cos θ sinϕ, sz ¼ sin θ, where θ and ϕ are the polar and
the azimuthal angles, respectively.

A spherical scatterer centered at a point with position
vector r ¼ ð0; 0; dÞ, without loss of generality, and a po-
tential that has adjustable edge softness can be modeled
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much like a multi-Gaussian beam [4] or aperture [5], i.e.,
via the sum

Fðr;ωÞ ¼ B
C0

XM
m¼1

ð−1Þm−1

M

�
M
m

�
e−m

x2þy2þðz−dÞ2
2σ2 ; ð7Þ

with

C0 ¼
XM
m¼1

ð−1Þm−1

M

�
M
m

�

being the normalization factor. Here variance σ2 can be
a constant or depend on ω. Figure 1 illustrates the soft-
edge profiles versus radial distance from the center of
the particle for several values of summation index
M . The angular distribution of the spectral density of a
plane wave scattered by a particle with the potential
in Eq. (7) can be readily found from Eq. (2) to have
the form

SðsÞðrs;ωÞ ¼ B2ð2πÞ5σ6s2z
k2r2C2

0

�XM
m¼1

ð−1Þm−1

M

�
M

m

�
ð1=mÞ3

× exp½−k2σ2ðs − s0Þ2=m�
�

2
: ð8Þ

For modeling of hollow scatterers with semisoft
boundaries (bubbles), it is sufficient to consider the
following linear combination of two multi-Gaussian
functions:

Fðr;ωÞ ¼ B
C0

XM
m¼1

ð−1Þm−1

M
×

�
e
−mx2þy2þðz−dÞ2

2σ2o − e
−mx2þy2þðz−dÞ2

2σ2p

�
;

ð9Þ

in similarity with the model for the dark-hollow beams [7]
(see Fig. 2 for illustration). On substituting from Eq. (9)
into Eq. (2), we find that the spectral density of a plane
wave scattered from a bubblelike scatterer has the form

SðsÞðrs;ωÞ ¼ B2ð2πÞ5σ6s2z
k2r2C2

0

×

�XM
m¼1

ð−1Þm−1

Mm3

�
e−

k2σ2oðs−s0Þ2
m − e−

k2σ2pðs−s0Þ2
m

��
2
:

ð10Þ
To introduce a random scatterer with semisoft edges

we can use, for the correlation function CF in Eq. (4),
either the Schell-model form [2],

CF ðr1; r2;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IF ðr1;ωÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IF ðr2;ωÞ

p
μF ðr2 − r1;ωÞ;

ð11Þ

with IFðr1;ωÞ ¼ CF ðr; r;ωÞ, or the quasi-homogeneous
form [2],

CF ðr1; r2;ωÞ ¼ IF

�
r1 þ r2

2
;ω

�
μF ðr2 − r1;ωÞ; ð12Þ

where μF is the degree of spatial correlation, which is as-
sumed to be a function varying with r2 − r1 much faster
than IF varies with r. It has been shown in [8] that, for
spherical sources and, hence, scatterers, one should be
careful with the choice of μF ; some of the frequently used
2D correlation functions might not be legitimate for the
3D spherically symmetric model. However, a 3D
Gaussian function

μðGÞF ðr2 − r1;ωÞ ¼ exp

�
−
jr1 − r2j2

2δ2
�

ð13Þ

has been shown to be applicable. On substituting from
Eqs. (12) and (13) together with either Eq. (7) or
Eq. (9) into Eqs. (2) and (3), one can readily determine
the spectral density of the field scattered from the ran-
dom scatterer with semisoft boundaries. We also note
that the multi-Gaussian model can be readily extended
to the incident random light waves [9], collections of
particles [10], and elliptically shaped scatterers.

We will now illustrate the usefulness of the models in-
troduced above by numerical calculations of the angular
distribution of the spectral density of a plane wave scat-
tered to the far field. In Fig. 3 we present the contour plot
of the far-field spectral density [see Eq. (8)], depending
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Fig. 1. (Color online) Scattering potential for solid particles
calculated from Eq. (7) for several values of M : M ¼ 1,
dashed–dotted curve; M ¼ 4, dashed curve; M ¼ 10, dotted
curve; and M ¼ 40, solid thick curve.
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Fig. 2. (Color online) Same as in Fig. 1 but calculated from
Eq. (9).
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on polar and azimuthal angles of the unit vector s for
(a) soft edge M ¼ 1 and (b) semisoft edge M ¼ 40 solid
scattering potential. The parameters used for numerical
curves are λ ¼ 632 nm, σ ¼ 1=2k, ϕ0 ¼ 0, and θ0 ¼ 0.
Figure 4 shows the far-field spectral density calculated
from Eq. (10) for (a) soft edge M ¼ 1 and (b) semisoft
edge M ¼ 40 hollow potential and demonstrates that
the effect of edge softness is very well pronounced.
In summary, we have introduced a model for a scat-

terer with a flat potential in its center and adjustable
change in the refractive index at its edge, with the help
of a 3D multi-Gaussian function. We have also shown
how a linear combination of multi-Gaussian functions
can be used to model shell-like scatterers, also with ad-
justable shell thickness. Our numerical examples illus-
trate that the softness of the boundary (thickness of
the shell) of the scattering medium can significantly af-
fect the angular distribution of the scattered field. This
model could potentially be used to assess the role of hard
boundaries on electromagnetic scattering, as it is known
that field discontinuities at such boundaries can play a
significant role [11].
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Fig. 3. Contour plot of the spectral density of the far field
calculated from Eq. (8) for M ¼ 1 (top) and M ¼ 40 (bottom).
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Fig. 4. Same as Fig. 3, but calculated from Eq. (10).
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