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A previously derived condition for the complete destructive interference of partially coherent light emerging from
a trio of pinholes in an opaque screen is generalized to the case when the coherence properties of the field are
asymmetric. It is shown by example that the interference condition is necessary, but not sufficient, and that the
existence of complete destructive interference also depends on the intensity of light emerging from the pinholes
and the system geometry; more general conditions for such interference are derived. The phase of the wave field
exhibits both phase singularities and correlation singularities, and a number of nonintuitive situations in which
complete destructive interference occurs are described and explained. © 2012 Optical Society of America
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1. INTRODUCTION

It is now well appreciated that coherent wave fields possess a
nontrivial and singular phase structure in the neighborhood of
zeros of intensity, referred to as phase singularities. The zeros
typically manifest as lines in three-dimensional space, and the
phase has a circulating or helical structure around this line,
referred to as an optical vortex. The study of these singulari-
ties, and related singularities of power flow and polarization,
are now their own subfield of optics, referred to as singular
optics [1,2].

The archetypical example of an optical vortex is a
Laguerre—Gauss beam ([3], Subsection 18.3.6) of order n = 0,
m = 1, which possesses a zero of intensity along its central
axis and a phase that increases continuously as one pro-
gresses counterclockwise about this axis—this is the “vortex.”
The intensity and phase in the waist plane of such a vortex
beam is illustrated in Fig. 1. It is to be noted that all contours
of equal phase (colors) meet at the central zero, which is
therefore a singularity of phase.

In recent years the field of singular optics has been ex-
tended to the study of singularities of partially coherent fields.
Though it has been shown [4] that zeros of intensity are not
typical, or generic, features of a partially coherent wave field;
zeros of two-point correlation functions, known as correlation
singularities, are common and possess many interesting
topological properties. Much research has been done on the
behavior of correlation singularities, both theoretical [5,6,7]
and experimental [8,9].

When one observation point is fixed, these correlation sin-
gularities are mathematically similar to optical vortices, and
they are therefore commonly referred to as correlation vor-
tices. It has been demonstrated that there is a strong physical
relationship between correlation vortices and their fully co-
herent counterparts [10], though that relationship is still not
completely understood.

Though intensity zeros of a partially coherent field are not
generic, it has been demonstrated that they can exist under
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certain conditions. For instance, a class of partially coherent
vortex beams has been theoretically proposed and experimen-
tally demonstrated [11]. Also, it has been shown that zeros can
appear in a multiple pinhole interferometer of Young’s type
when the number of pinholes is greater than 2, even when
the degree of coherence between any pair of pinholes is less
than unity [12]. These theoretical predictions have been ver-
ified both optically [13] and acoustically [14]. The existence of
such “pseudocoherent” fields provides an excellent theoreti-
cal laboratory to investigate the relationship between correla-
tion vortices and optical vortices, their interactions, and even
the meaning of phase for partially coherent fields [15].

A few years ago, it was demonstrated [16] that complete
destructive interference in an N-pinhole system can be
achieved when the pinholes are symmetrically arranged and
the mutual degree of coherence u, between the pinholes
satisfies the expression

1

Re(ug) = N-1° €Y

With the use of this condition, the simultaneous existence
of phase and correlation singularities was demonstrated,
and interactions between different types of singularities
was observed.

However, Eq. (1) is only a special case of the more general
condition described in [12], and the general condition includes
asymmetric values of the degree of coherence between
pinholes. In this paper we investigate the behavior of a three-
pinhole interferometer with more general correlation proper-
ties than previously considered. By varying the source
correlation structure, it is shown that the condition on the de-
gree of coherence described in [12] is necessary, but not suf-
ficient, for complete destructive interference and that this
interference also depends on the intensity of light emerging
from the pinholes and their geometry. The phase of the wave
field exhibits both correlation singularities and singularities

© 2012 Optical Society of America
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Fig. 1. (Color online) (a) Intensity pattern of an LG; mode in the waist plane. (b) Phase contour of the corresponding wave field in the waist plane.

Here the width of the beam is wy = 1 mm.

associated with zeros of intensity, to be called field singula-
rities. A number of nonintuitive situations in which complete
destructive interference occurs are described and explained.

2. COHERENCE AND MULTIPLE PINHOLE
INTERFEROMETERS

We consider the behavior of partially coherent light in the
space—frequency domain; the measurable second-order prop-
erties of the wave field at frequency w are characterized by the
cross-spectral density, defined as

W(rl’r27w) = <U*(r1’(0)U(r27w))7 (2)

where r; and ry are the position vectors of the two observa-
tion points and U(r, w) is the optical field at position r and
frequency . The asterisk denotes complex conjugation,
and the brackets indicate averaging over an ensemble of
monochromatic realizations of the wave field ([17],
Subsection 4.1). Polarization properties are neglected for this
study, and only scalar waves are considered.

The cross-spectral density may always be written in the
factorized form,

W(rer?w) =V I(rl,a)) \Y, I(l‘z, (U)//l(l'l, ra, (U)’

= A(ry, )A(ry, @)u(ry, ra, o). €)

In this expression, I(r, @) is the average spectral intensity of
the field at position r and frequency w, related to the cross-
spectral density by

I(r,0) = W(r,r,0), 4)

and u(ry, re, w) is the spectral degree of coherence of the field,
given by

W(rl’ Iy, Cl))

VI, 0)/I(rs, @)

The quantity A(r, w) = /I(r, w) will be referred to as the aver-
age spectral amplitude of the field.

®)

/"(rlﬁ Iy, (1)) =

The spectral degree of coherence is a measure of the
strength of spatial correlations between the fields at positions
r; and ry and can be shown to be constrained to values 0 <
[l <1 ([18], Subsection 2.4.4), 0 representing incoherence
and 1 representing complete coherence. It may be also shown
to be Hermitian and nonnegative definite, both conditions
which follow from the definitions of W(ry,ry, w), Egs. (2)
and (3).

We will focus our attention on the properties of light ema-
nating from an interferometer consisting of three pinholes in
an opaque screen, with the pinholes arranged as an equilateral
triangle. The geometry of such an interferometer is shown in
Fig. 2. The position of the nth pinhole in the screen is labeled
@,,; the position on an observation screen is labeled P. The
field that arrives at P from Q,, is of the form

ka ikR,,

2
UO (QTL’ 60)

. e
Un(P,CD) = =1 o Riﬂ,

©

where k = w/c is the wavenumber of light, ¢ being the speed
of light, a is the radius of an individual pinhole, R, is the dis-
tance from @,, to P, and U,(Q,,, ) is the field emanating from
the nth pinhole. An inclination factor was neglected, assuming
only paraxial propagation of light.

Using Eq. (2), the total intensity at the observation point P
may be written as

_—

L I

Fig. 2. Illustration of the three-pinhole geometry under considera-
tion. The distance between the pinholes is taken to be d = 1 mm.
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N N
I(P,0) = < Ui (P.w) Y U, (P, a))>. )
n=1 m=1

Introducing the cross-spectral density of the field in the
pinhole plane,

Wo (@1, @2, ®) = (U§(Q1, 0)Up (@, w)). ®)

we may write the spectral intensity at P in a straightforward
matrix form. For three pinholes (N = 3), this may be ex-
pressed as

(%)21 (P, w) = x'MXx, 9

where

Ap(Qu)e™i /R, |
x=| Ay(Q)e™™ /R |, (10
Ay(Q3)e™s /Ry |

1 pp s |
M=|ujp 1 x|, €8y
His Mz 1

with p;; = uo(Q;. @}, ®). The matrix M depends on the spectral
degree of coherence of the illuminating field at the pinholes
but not the point of observation P nor the amplitude A, of
the illuminating field. A necessary condition for the intensity
of the illuminating wave field to be zero at some point on
the observation screen, I(P) = 0, is for the determinant of
the matrix M to vanish,

L= lugal* = luosl® = luasl? + proposus + wigisprs = 0. (12)

The condition that Det(M) = 0 is equivalent to having one or
more eigenvalues of the matrix M be zero. This is only a ne-
cessary condition, however, and for the field to vanish at point
P, the vector x(P) must be equal to one of the eigenvectors
corresponding to a zero eigenvalue, i.e.,

Mx(P) = 0. (13)

Because of the presence of the various R, in the complex
phase factors in x, it is not possible to determine straightfor-
ward necessary and sufficient conditions for complete de-
structive interference. However, we may make a number of
physically reasonable assumptions that lead to a simple set
of conditions. For an observation point sufficiently far from
the pinhole screen, R; = R, = R3, and the denominators of
the components of x may all be considered approximately
equal. Also, due to the shortness of the wavelength of visible
light, the phase terms will vary rapidly and semi-indepen-
dently with a change in P, and one expects that there will
be multiple points on the observation screen at which the
phases are equal. We therefore expect to find one or more
zeros of intensity when the following equation is satisfied:

My =0, (14)
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where

Ao(Q1)
y=| Ao(@2) |- (15)
Ao(Q3)

It is to be noted that, along the axis passing through the center
of the pinholes, x is proportional to y; we therefore automa-
tically expect to find a zero along this central axis when
Eq. (14) is satisfied. This is still not the most general condition
for destructive interference but does provide a nontrivial suf-
ficiency condition.

We briefly review the special case for which py = uss =
H13 = Mo, With pp real. Then Eq. (12) takes on the simple cubic
form

1—3/4(2)+2/43=0.

Two of the roots of this equation are y, = 1, i.e., full coher-
ence, but the third root is uy = -1/2, in agreement with
Egq. (1). One can readily show that, for 4, = -1/2, the appro-
priate eigenvector is

y=4| 1| (16)
1

i.e., all of the amplitudes are equal. This case was dealt with
in detail in [16].

The existence and behavior of correlation singularities may
be determined by generalizing the formalism given here. The
field that arrives at an observation point P; from a pinhole @,
is given by

a2 o ikRyy
- Uo(@Qp, @) ——,

U, (Pjw) = =i T

17

where R; is the distance from @,, to P;. The cross-spectral den-
sity with respect to a pair of points P; and Ps is therefore

N N
W(P;, Py, w) = <Z U:(Pr.@) Y U, (Ps, a))>. (18)

n=1 m=1
In matrix form, this may be written as

2 2
WP, Py o) = (#) L IP.w) = X (POMXPy).  (19)

where M is still given by Eq. (11) and x(P;) may be written as

Ay(Q1)e™™ /Ry,
X(P)) = | Ap(Q)e™™i /Ry |. 20)
Ay (Q3)e™ R /Ry,

Field singularities are still present in this equation and are
those points P; for which Mx(P;) = 0. We also now have
the possibility of correlation singularities, defined as pairs
of points P; and Ps for which the vector x(P;) is orthogonal
to the vector Mx(P,). It is to be noted that correlation singu-
larities do not require Det(M) = 0 for existence.
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Fig. 3. Relation of the correlations between the three pinholes in
terms of y; and ps.

3. ASYMMETRIC COHERENCE
PROPERTIES OF THE THREE-PINHOLE
INTERFEROMETER: TWO VALUES EQUAL

We now consider what happens when the condition that all s,
are equal is relaxed. We take the pinholes to be arranged in an
equilateral triangle and take two of the correlations between
pinholes to be equal to y;, with the third equal to u,; this
arrangement is illustrated in Fig. 3. The existence of a zero
eigenvalue follows from Eq. (12), which for the special values
considered becomes
1 — 4§ = palz = ] + wiluz = 1] = 0. 21

Given values of y; and u, satisfying this equation, the pinhole
amplitudes required for zeros of intensity can be determined
from Eq. (14).

Equation (21) is a quadratic equation for yy, which can be
readily solved. The two solutions are
(22)

e =1 =243 -1

As noted earlier, real-valued y; is itself bounded to -1 < y; < 1,
which automatically constrains uy to the same range.

We consider the eigenvector for the solution us; = 1 first.
Introducing a, = A,/A; and a3 = Az/A;, we find, provided
u1 = 1, that as = -1, as = 0. The condition a3 = 0 implies that
no light is emerging from the third pinhole at all and that the
system is a fully coherent Young’s two-pinhole interferometer.
Since a3 = 0, the quantity u; may take on any value. The con-
dition a; = -1 is equivalent to having ay = 1 and uy = -1 and
implies that the fields of the pinholes 1 and 2 must be antic-
orrelated to have a zero of intensity along the central axis.
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Fig. 4. Tllustration of u,; as a function of y;.

However, in the special case y; = 1, the three equations
derived from the eigenvector formula are degenerate, and
Ay, Ay, and Az need only satisfy the condition
This suggests that at least one of the pinholes must be out of
phase with the other two to give complete destructive inter-
ference on the central axis.

The other solution for u; in Eq. (22) is plotted in Fig. 4. The
corresponding eigenvector is

1
—2u,

For u; = 1, we get uy = 1, and this case reduces to a special
case of that described by Eq. (23). Other cases are not so tri-
vial, and we find that there is a range of values of |y;| and |us|
less than unity for which there is complete destructive inter-
ference on axis and nonzero intensities at the three pinholes.

A typical example is shown in Fig. 5, for u; = -1/3,
us = -7/9. Here A; = 1, A, = 1, and A3 = 2/3. The intensity

@9

Fig. 5. (Color online) (a) Intensity pattern on the observation plane (2 = 2 m), for 4; = -1/3. (b) Phase contour of the cross-spectral density on
the observation plane when the reference point is at (x;,y;) = (1 mm, 1 mm). (c) Phase contour of the cross-spectral density on the observation
plane when the reference point is at (x;,y;) = (1 mm, 0.8 mm). For all cases, y; = -1/3, and py = -7/9.



414 J. Opt. Soc. Am. A/ Vol. 29, No. 4 / April 2012

2
9
8
7
6
g 5
=
4
3
2
1
0
-2 -1 0 1 2
x (mm)
(a)

y (mm)

Rosenbury et al.

LSS}

x (mm)

(b)

Fig. 6. (Color online) (a) Intensity pattern on the observation plane (2 = 2 m). (b) Phase contour of the cross-spectral density on the observation
plane. Here y; = 0, us = -1, and the reference point is at (x;,%;) = (1 mm, 1 mm).

of light on the observation screen, shown in Fig. 5(a), exhibits
clear dark spots both at the center of the pattern and in a
hexagonal arrangement around it. Figure 5(b) shows the
phase of W(r;,ry, ) for a fixed observation point (x;,y;) =
(1 mm, 1 mm); it can be seen that there are phase singularities
associated with each dark spot, indicating that they are true
field singularities.

Furthermore, there also exist phase singularities that are
located at points where the intensity is nonzero. These are sin-
gularities of the two-point cross-spectral density function, i.e.,
correlation singularities. An examination of Fig. 5(b) suggests
that, for every field singularity, there exists a correlation sin-
gularity of opposite handedness; this can be seen by following
the deep red phase contour from any field singularity to
another. This does not imply that any pair of singularities
are uniquely “linked” to each other, however, as equiphase
contours of different colors exist that can connect different
singularities.

The existence of two types of singularities, correlation
and field, raises the question of how we can uniquely distin-
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x (mm)
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guish them. It is to be noted that correlation singularities
are defined by W(r;,ry,w) = 0, and their location depends
on the choice of both r; and ry, while field singularities are
defined by W(ry,rs,w) =0 and are independent of the
choice of r;. In Fig. 5(c), the reference point is moved to
(1,71) = (1 mm, 0.8 mm); it can be seen that the field singu-
larities remain “pinned” to the zeros of intensity, while the po-
sition of the correlation singularities change with the choice of
reference. This test can be used to determine the nature of an
observed singularity and has been used in all the examples to
follow.

A number of special values of p; are worth special
discussion.

A. M1 =09”2 =-1

This is a case equivalent to the us = 1 solution described
above, with a3 = 0. The intensity of the field on the observa-
tion screen and the phase of the cross-spectral density are
shown in Fig. 6, and it can be seen that we have a traditional
Young’s two-pinhole result. The phase of the cross-spectral

2
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g
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z
1
)
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(b)

Fig. 7. (Color online) (a) Intensity pattern on the observation plane (2 = 2 m). (b) Phase contour of the cross-spectral density on the observation
plane. Here y; = -1/+/2, uy = 0, and the reference point is at (x;,%;) = (1 mm, 1 mm).
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Fig. 8. (Color online) Illustration of the values of u;, that give com-
plete destructive interference, as a function of ;3 and pog.

density jumps by a factor of 7 as one crosses the diagonally
oriented lines of zero intensity. These singularities, which are
lines in a two-dimensional observation plane or planes in
three-dimensional space, are nongeneric.

B. P = _1/"/5!”2 =0
This case is at first glance seemingly paradoxical: the light
from pinholes 1 and 2 is completely uncorrelated, and these
two pinholes are partially correlated with pinhole 3. Here we
have nonzero field amplitudes at all the pinholes (4; = 1,
Ay =1, and A3 = —/2), yet we still have zeros of intensity
on the observation screen. This is illustrated in Fig. 7. The field
and correlation singularities are located very close to one an-
other, as can be seen in the vicinity of the central axis.
How can we explain the presence of complete destructive
interference even when p; = 0? Though the light from pin-
holes 1 and 2 is uncorrelated, it can be shown that the
sum of fields from pinholes 1 and 2 is perfectly correlated with

2
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o
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pinhole 3. To demonstrate this, we evaluate the cross-spectral
density between the sum of fields 1 and 2 and the field 3,

Wizz = ((Uy + U)*Us) = (U1Us) + (U3 Us). (25)

The spectral degree of coherence for this field may be
written as

Hiz3 = —WIZ’S
' VIpJT;'

where Iy = (|U; + U|?) = A? + A2 and I3 = A%. Further-
more, we may write

(UiUs) = AjAspy = -1, (26)

(UsU3) = ApAguy = -1, @0

using the given values of y; and A;. Putting all of this to-
gether, we find that u;,5 = -1; i.e., the sum of U; and U,
is fully (anti-)correlated with Us.

4. ASYMMETRIC COHERENCE PROPERTIES
OF THE THREE-PINHOLE
INTERFEROMETER: ALL VALUES
DIFFERENT

We may generalize the search for complete destructive inter-
ference further by returning to Eq. (12) and looking for real
values of uqs, pss3, and uy3 that satisfy it. The solutions to the
equation are plotted in Fig. 8. It can be seen that the two pos-
sible solutions to the quadratic equation form a pillowlike
structure that includes, as limits, the fully coherent cases.

It is more difficult to find simple solutions for the required
amplitudes for complete destructive interference but is read-
ily done numerically. An example is shown in Fig. 9, with
iz = 2/3, uss = —-1/4, and u;5 = 0.5550. Again one can see
examples of both field singularities and correlation singulari-
ties, and the nature of these singularities can be established by
varying the location of the reference point.

(b)

Fig. 9. (Color online) (a) Intensity pattern and (b) phase contour of the cross-spectral density, with 3 = 2/3, uss = —1/4, and p15 = 0.5550. The
corresponding field amplitudes are A; = —0.6550, A; = 0.5042, and A3 = 0.5627. The reference point is at (x;,y;) = (1 mm, 1 mm).
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(Color online) (a) Intensity pattern and (b) phase contour of the cross-spectral density, with p;5 = —1/2, ys3 = +/3/2, and py3 = 0. The

corresponding field amplitudes are A; = -0.3536, A, = -0.7071, and A; = 0.6124. The reference point is at (x;,y;) = (1 mm, 1 mm).

The special case described in Subsection 3.B may also be
generalized. If we look for solutions under the condition that
w13 = 0, we readily find that Eq. (12) simplifies to the form

ﬂ%z + /433 =1 (28)
i.e., that the values lie on the unit circle. In Fig. 10, we show
the intensity and phase on the observation plane for the values

t12 = —1/2, g3 = +/3/2. Again, the presence of both correla-
tion singularities and field singularities is confirmed.

5. CONCLUSIONS

It has been known for some time that intensity zeros are rare
(i.e., nongeneric) in partially coherent wave fields. In this pa-
per we have demonstrated that there are nevertheless a wide
variety of conditions in which a three-pinhole interferometer
can produce perfect zeros of intensity, with their associated
field singularities. Contrary to the more restrictive cases stu-
died in previous work, it is found that this interference in-
volves the intensity of light emanating from the pinholes as
well as its state of coherence.

These conditions can in principle be generalized further.
Only real values of the spectral degree of coherence were con-
sidered here, whereas in general this quantity can be complex.
Also, the general conditions were made analytically tractable
by requiring a zero on the central axis of the interferometer;
clearly it is possible to create conditions for complete destruc-
tive interference in which there is no on-axis zero.

Finally, one can consider the presence of destructive inter-
ference in an interferometer with N > 3 pinholes. Similar be-
havior is expected, except that the determination of the
solutions becomes increasingly complicated with increasing
N, involving the determinant of an N x N matrix.

These results illustrate the depth of the relationship be-
tween field singularities and correlation singularities and
furthermore provide a more general setting to study their con-
nections.
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