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Angular momentum conservation in partially coherent wave fields
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Angular momentum in electromagnetic wave systems is an important yet difficult subject to deal with,
both classically and quantum mechanically. We investigate the angular momentum of partially coherent
electromagnetic wave fields and establish the general formalism for angular momentum conservation, based on the
Maxwell stress tensor for partially coherent sources and fields in the space-frequency domain. This formalism is
applied to study the angular momentum properties of several classes of partially coherent electromagnetic beams
possessing circulation.
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I. INTRODUCTION

Energy, momentum, and angular momentum are arguably
the most fundamental properties in physics, and these basic
physical properties are as important in electromagnetism and
optics as they are in mechanics. It is now been known for some
time that electromagnetic waves carry angular momentum
in addition to momentum and energy: In the 1930s, it
was demonstrated experimentally by Beth that a beam of
circularly polarized light can produce a measurable torque
in a macroscopic system [1]. Even earlier than this, Poynting
provided a theoretical description of the angular momentum
of circularly polarized light [2].

More recently, much attention has been paid to the orbital
angular momentum of light, associated with the spatial phase
distribution of the electromagnetic wave. This interest seems
to have been sparked by a pair of theoretical papers that
appeared in 1992, by Allen et al. [3] and by van Enk and
Nienhuis [4]. Since then, a large body of research, both
theoretical and experimental, has been dedicated to the study
of optical angular momentum (see, for instance, Ref. [5]).
This research has recently taken on greater importance with
the development of optical tweezers and spanners in which
microscopic particles are trapped, manipulated, and rotated
by tightly focused beams of light. Beams carrying spin or
orbital angular momentum have been shown to apply a torque
to absorptive microscopic particles [6,7], and such torque
has been applied to the development of devices such as
“microoptomechanical pumps” [8].

The studies to date, however, have primarily been concerned
with the angular momentum properties of spatially coherent
beams of light. Though partially coherent beams have been
extensively studied and conservation laws for energy [9–11]
and momentum [12–14] have been formulated, the laws
relating to the angular momentum of such beams have not been
given similar attention. The exception is a pair of intriguing
papers that appeared in the past decade, addressing the angular
momentum of light using coherence theory in the space-time
domain [15,16]. Perhaps due to the complexity of the results,
however, it seems that little use has been made of them.

In this article we establish the formalism for the angular
momentum of partially coherent fields in the space-frequency

domain, and adapt this formalism to study the angular
momentum properties of some model partially coherent fields.
This research is justified in large part by the observation that
partially coherent fields are often preferable in optical appli-
cations to their fully coherent counterparts (see, for instance,
Ref. [17]). In Sec. II, we determine the definition of angular
momentum of a partially coherent electromagnetic field in the
space-frequency domain and derive the formulas relating to the
conservation of angular momentum for such fields. In Sec. III,
we consider the implications of these results for angular
momentum in paraxial partially coherent beams. In Sec. IV, we
investigate the angular momentum properties of several classes
of partially coherent beams known to possess circulation, and
demonstrate that these classes possess fundamentally different
angular momentum properties. Section V presents concluding
remarks.

The angular momentum of light has led to a number
of conceptual difficulties, both in classical and quantum
physics. These difficulties arise in part from the lack of a
gauge-invariant definition of angular momentum of light when
both spin and orbital angular momentum are considered [18],
as well as from the the dual intrinsic and extrinsic nature
of orbital angular momentum [19], among others. We will
attempt to be clear as to where these difficulties lie within
our own calculations, and propose solutions or explanations
whenever possible.

II. CONSERVATION OF ANGULAR MOMENTUM

We consider a region of space that contains time-fluctuating
electric and magnetic fields E(r,t) and B(r,t). The fields are
assumed to be statistically stationary, at least in the wide sense
(Sec. 2.2 of Ref. [20]). We begin by following the derivation
by Jackson (Sec. 6.8 of Ref. [21]) for the Maxwell stress tensor
of deterministic electromagnetic fields and the appropriately
modified stress tensor for partially coherent fields considered
in Ref. [13].

The mechanical torque Tmech applied to a single charged
particle with respect to the origin of the coordinate system
can be expressed in Gaussian units via the Lorentz force
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as

Tmech = dLmech

dt
= r × F = r ×

[
qE + q

v
c

× B
]
. (1)

In this formula r represents the position vector, q represents
the charge and v the velocity of the particle, and c is the speed
of light in vacuum.

If we consider a continuous distribution of charges and
currents, we can replace the charge q by the charge density
ρ(r,t) and the quantity qv by the current density J(r,t).
Integrating over a volume V , bounded by a surface S,
containing the charges and currents gives the total mechanical
torque about the origin of the coordinate system as

Tmech =
∫

r′ ×
{
ρ(r′,t)E(r′,t) + 1

c
[J(r′,t) × B(r′,t)]

}
d3r ′.

(2)

It is worth noting at this point that we will restrict our
discussion exclusively to the microscopic set of Maxwell’s
equations. The proper form of the momentum formulas in the
macroscopic set (employing D and H) has been debated for
many years in what is known as the Abraham-Minkowski con-
troversy [22]. In short, there is a question of the proper manner
in which one separates the momentum of the medium from
the momentum of the electromagnetic field; new solutions to
this controversy are still being proposed [23]. By restricting
our discussion to microscopic fields and sources, we avoid
the controversy without losing generality; however, the results
then require additional assumptions to apply them to dynamic
problems in material media.

Continuing on, Eq. (2) may be written entirely in terms of
field quantities by the use of Maxwell’s equations:

ρ(r,t) = 1

4π
∇ · E(r,t), (3)

J(r,t) = c

4π

[
∇ × B(r,t) − 1

c

∂E(r,t)
∂t

]
. (4)

The bracketed part of the integrand of Eq. (2) can be
manipulated to the form

ρE + 1

c
J × B = 1

4π

[
E(∇ · E) +

(
∇ × B − 1

c

∂E
∂t

)
× B

]

= 1

4π
[E(∇ · E) + B(∇ · B) − E × (∇ × E)

− B × (∇ × B)] − 1

4π

∂

∂t
(E × B). (5)

where we have, for the moment, suppressed the functional
dependencies for brevity.

The mechanical torque then becomes

Tmech =
∫

r′ ×
{

Q − ∂

∂t

(
1

4πc
E × B

)}
d3r ′, (6)

where

Q = 1

4π
[E(∇ · E) + B(∇ · B) − E × (∇ × E) − B × (∇ × B)].

(7)

It will be convenient for our discussion of partial coherence
to restrict our attention momentarily to monochromatic fields
and sources, e.g., J(r,t) ≡ J(r,ω)e−iωt ; we may then write the
cycle-averaged mechanical torque as

Tmech = Re

[ ∫
r′ ×

{
Q − ∂

∂t

(
1

8πc
E × B∗

)}
d3r ′

]
, (8)

with Q now given as

Q = 1

8π
[E∗(∇ · E) + B(∇ · B∗) − E × (∇ × E∗)

− B∗ × (∇ × B)]. (9)

At this point, our calculation is exact and has suffered from
no approximations. We now follow the standard approach
and note that the second term in the integrand of Eq. (8)
naturally appears to represent the time derivative of the angular
momentum due to the fields, which we define as

Lf = 1

8πc
Re

{∫
r′ × (E × B∗)d3r ′

}
. (10)

Therefore the total rate of change of angular momentum of the
combined system of fields and charges within the volume of
integration can be written as

Ttot = ∂

∂t
[Lf + Lmech] = Re

{∫
[r′ × Q(r′)]d3r ′

}
. (11)

It is perhaps worth noting that it is somewhat inaccurate to call
this quantity the total “torque,” since this term is typically used
to describe forces on matter, whereas Ttot also includes the rate
of change of the angular momentum of the fields. To keep the
notation simple, we will still refer to this quantity as the “total
torque” and use the symbol Ttot, with the understanding that
we are referring to the “total rate of change of the angular
momentum.”

To express Q more clearly, we will employ a tensor notation,
i.e.,

[E∗(∇ · E) − E × (∇ × E∗)]i = ∂j

(
E∗

i Ej − 1
2δij E∗ · E

)
,

(12)

with ∂i ≡ ∂/∂xi , so that we have

{r × [E∗(∇ · E) − E × (∇ × E∗)]}i
= εijkrj ∂l

(
E∗

kEl − 1
2δklE∗ · E

)
,

{r × [B(∇ · B∗) − B∗ × (∇ × B)]}i
= εijkrj ∂l

(
BkB

∗
l − 1

2δklB∗ · B
)
.

Throughout the remainder of this article we will use the
Einstein summation convention unless specified otherwise.

With these relations, we have

[Ttot]i = Re

[ ∫
εijkr

′
j ∂

′
l

{
1

8π

[
E∗

kEl + BkB
∗
l

− 1

2
(E∗ · E + B∗ · B)δkl]

}
d3r ′

]

= Re

{∫
εijkr

′
j ∂

′
lNkld

3r ′
}
, (13)
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where Nkl is defined as

Nkl ≡ 1

8π

[
E∗

kEl + BkB
∗
l − 1

2
(E∗ · E + B∗ · B)δkl

]
. (14)

Due to the antisymmetry of the Levi-Civita tensor εijk and
the symmetry of Nkl , we may write

Re{r ′
j ∂

′
l (εijkNkl)} = Re{∂ ′

l (εijkr
′
jNkl)}. (15)

Returning to a vector formalism, we may then write

Ttot = Re

{∫
∇′ · (r′ × N)d3r ′

}
(16)

which may be converted to a surface integral using the
divergence theorem,

Ttot = Re

[ ∮
S

r′ × N · n̂da′
]
, (17)

with n̂ being the normal to the closed surface S.
Equation (17) is conventionally interpreted as a conserva-

tion law for angular momentum; a change of the total angular
momentum in a closed volume is directly connected to a net
flow of angular momentum through the surface bounding the
volume. The tensor

M(r′) ≡ r′ × N(r′) (18)

is known as the angular momentum flux density of the field,
whereas the quantity

lf(r′) ≡ 1

8πc
r′ × [E∗(r′) × B(r′)]

is known as the angular momentum density of the field. These
two quantities will be discussed in more detail in the next
section.

These quantities are, as written, applicable to a system
of monochromatic fields and sources. However, they can be
straightforwardly converted to expressions for statistically
stationary partially coherent fields by using the theory of
optical coherence in the space-frequency domain.

Traditionally, the coherence properties of an electromag-
netic field have been described using the complex correlation
tensors of the electric and magnetic fields of the form

�E
ij (r1,r2,τ ) ≡ 〈E∗

i (r1,t)Ej (r2,t + τ )〉, (19)

�B
ij (r1,r2,τ ) ≡ 〈B∗

i (r1,t)Bj (r2,t + τ )〉, (20)

where the angle brackets denote time or ensemble averaging.
These quantities, however, satisfy hyperbolic differential
equations and can be difficult to interpret and derive. Modern

coherence theory typically involves studying the frequency-
domain counterparts to these correlation functions, known as
the cross-spectral density tensors.

The complex correlation tensors are related to the cross-
spectral density tensors in the frequency domain by a Fourier
transform, i.e.,

WE
ij (r1,r2,ω) = 1

2π

∫ ∞

−∞
�E

ij (r1,r2,τ )e−iωτ dτ. (21)

However, it has been shown that one can also derive the mathe-
matical form of the cross-spectral density tensor directly from
an average over an ensemble of monochromatic realizations
of the wave field (Sec. 4.1 of Ref. [24]), so that

WE
ij (r1,r2,ω) = 〈E∗

i (r1,ω)Ej (r2,ω)〉ω,

where 〈· · ·〉ω represents an average over said realizations. It
follows from Eq. (21) that the cross-spectral density tensor
has dimensions of [electric field]2/[frequency], and the torque
derived from it will therefore be the average torque per unit
frequency, to be labeled τ tot.

We may readily take the ensemble average of Eq. (17) to
find this average torque per unit frequency,

〈τ tot(ω)〉 = Re

[ ∮
S

〈M〉 · n̂da′
]
, (22)

where the angular momentum flux density may be written in
the form

〈Miq(r,ω)〉 = 1

8π
εijkrj

{[
WE

kq(r,r,ω) + WB
kq(r,r,ω)

]
− 1

2
δkq

[
WE

pp(r,r,ω) + WB
pp(r,r,ω)

]}
. (23)

Furthermore, the angular momentum density λf of the field
per unit frequency may be written as

〈λf (r,ω)〉 = 1

8πc
r × 〈E∗(r,ω) × B(r,ω)〉. (24)

To clarify these formulas, we use the monochromatic form
of Faraday’s law to write all magnetic fields as electric fields,
i.e.,

∇ × E = i
ω

c
B.

We may then express the angular momentum density as

〈λf (r,ω)〉i = − i

8πω

[
εijkrl∂

′
jW

E
lk (r,r′,ω)

− εljkrl∂
′
jW

E
ik (r,r′,ω)

]
r′=r. (25)

Furthermore, the angular momentum flux density may be
written as

〈Miq(r,ω)〉 = 1

8π
εijkrj

{
WE

kq(r,r′,ω) + 1

k2
εklmεqrt

∂

∂xl

∂

∂x ′
r

WE
mt (r,r

′,ω)

− 1

2
δkq

[
WE

pp(r,r′,ω) + 1

k2
εprsεpuv

∂

∂xr

∂

∂x ′
u

WE
sv(r,r′,ω)

]}
r=r′

. (26)

This expression can be simplified, albeit not shortened, using a standard identity for the product of Levi-Civita tensors:

εijkεklm = δilδjm − δimδjl . (27)
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The angular momentum flux density then takes on the form

〈Miq(r,ω)〉 = 1

8π

{
rj

[
εijkW

E
kq − 1

2
εijqW

E
pp

]

+ 1

k2
rmεqrt

[
∂i∂

′
rW

E
mt − ∂m∂ ′

rW
E
it

]
+ 1

2k2
rj εijq

[
∂v∂

′
uW

E
uv − ∂u∂

′
uW

E
vv

]}
r′=r

, (28)

where we have again suppressed the arguments of the functions
for brevity.

The expressions for angular momentum density and flux
density, on substitution back into Eq. (22), may be used to
determine the rate of change of angular momentum within
a volume of partially coherent fields and charges at a given
frequency ω. The total torque on the volume can be readily
determined by a straightforward integration of Eq. (22) over
all frequencies, i.e.,

〈Ttot〉 =
∫ ∞

0
〈τ tot(ω)〉dω. (29)

For problems involving quasimonochromatic fields and
sources of bandwidth 
ω, it will usually be sufficient to
evaluate 〈τ tot(ω)〉 at the center frequency of oscillation.
Multiplied by the bandwidth, this quantity will be a good
approximation to the total rate of change of angular momentum
of the system.

Equations (26) and (29) already lead to an important
conclusion relating to the angular momentum of partially
coherent fields. Because the flux density and density depend
on the derivatives of WE

ij (r,r′,ω), it follows that they depend
on the spatial correlations of the wave field as well as the
intensity. In general, one would expect that changes to the state
of coherence will result in changes to the angular momentum,
and we will in fact see that this is the case.

III. ANGULAR MOMENTUM OF PARAXIAL
ELECTROMAGNETIC PARTIALLY

COHERENT BEAMS

One of the most natural uses of the previous formalism is its
application to the study of the angular momentum of paraxial
partially coherent beams. It was shown some time ago [25]
that the angular momentum flux density of such a beam is
the proper quantity for characterizing the angular momentum
of a beam, and that the spin and orbital components can be
decoupled in both the paraxial and nonparaxial regimes. In
this section we derive the angular momentum flux density
for paraxial partially coherent beams entirely in terms of the
electric cross-spectral density tensor.

We will consider the z component of the angular momentum
flowing across a surface of constant z, i.e., the quantity
〈Mzz(r,ω)〉. Using the properties of the Levi-Civita tensor,
we may readily simplify Eq. (28) to the form

〈Mzz(r,ω)〉 = 1

8π

{
rj εzjkW

E
kz + 1

k2
rmεzrt

× [
∂z∂

′
rW

E
mt − ∂m∂ ′

rW
E
zt

]}
r′=r

, (30)

where arguments on the right of the equation have been
suppressed for brevity. In the paraxial limit, we may assume
that the z component of the field is negligible, which results in
further simplification:

〈Mzz(r,ω)〉 = 1

8πk2
rmεzrt ∂z∂

′
rW

E
mt

∣∣
r′=r. (31)

Furthermore, the z behavior of the electric field in the paraxial
limit is approximately of the form exp[ikz], which implies
that the z derivative in the above expression may be mapped
to ∂z → −ik. We are then left with

〈Mzz(r,ω)〉 = − i

8πk
rmεzrt ∂

′
rW

E
mt

∣∣
r′=r. (32)

We are left with sums over m, r , and t , which can only take on
values x and y; these summations leave us with

〈Mzz(r,ω)〉 = − i

8πk

{
x ′∂ ′

xW
E
xy − y ′∂ ′

yW
E
yx

+ y ′∂ ′
xW

E
yy − x ′∂ ′

yW
E
xx

}
r′=r. (33)

Recalling that the primed derivatives are over the second
argument of the tensor components, the first two terms may
be rewritten by use of a generalization of the product rule of
calculus. For example,

x∂x

(
WE

xy

) = x ′∂ ′
xW

E
xy + x∂xW

E
xy. (34)

(It is to be remembered that r′ = r in the end of the calculation.)
Our expression for the flux density takes on the form

〈Mzz(r,ω)〉 = − i

8πk

{
x∂x

(
WE

xy

) − y∂y

(
WE

yx

) + y∂ ′
xW

E
yy

− x∂ ′
yW

E
xx − x∂xW

E
xy + y∂yW

E
yx

}
r′=r. (35)

It is to be noted that the flux density appears in Eq. (22) in a
surface integral over an infinite plane of constant z. Assuming
the electromagnetic field is finite in extent, we may perform
an integration by parts on the first two terms of Eq. (35); the
flux density may then be interpreted to have the form

〈Mzz(r,ω)〉 = − i

8πk

{ −WE
xy + WE

yx + y∂ ′
xW

E
yy − x∂ ′

yW
E
xx

− x∂xW
E
xy + y∂yW

E
yx

}
r′=r. (36)

We now have the makings of a spin-orbit separation of angular
momentum. The first two terms do not depend on the phase
structure of the field and likely represent the spin contribution
to the angular momentum. Noting that only the real part of
Mzz appears in the conservation law, we may write

Mspin = 1

8πk
Im

[
WE

yx − WE
xy

]
. (37)

The latter four terms, with their derivatives, appear to represent
the orbital part of the angular momentum:

Morbit = 1

8πk
Im

[
y∂ ′

xW
E
yy − x∂ ′

yW
E
xx − x∂xW

E
xy + y∂yW

E
yx

]
.

(38)

We can make this association more explicit by a final
application of the paraxial approximation. Gauss’ law in the
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paraxial limit takes on the form

∂xEx + ∂yEy = 0. (39)

With this, we may rewrite the orbital component of the angular
momentum as

Morbit = 1

8πk
Im

[
y∂ ′

xW
E
yy − x∂ ′

yW
E
xx + x∂yW

E
yy − y∂xW

E
xx

]
.

(40)

Converting this expression to polar coordinates, we find that

Morbit = 1

8πk
Im

[
∂

∂φ
WE

yy + ∂

∂φ
WE

xx

]
. (41)

Equations (37) and (41) represent the separation of the angular
momentum flux density of a paraxial partially coherent field
into a spin and an orbital contribution. We can verify this
interpretation by following the reasoning given in Ref. [25].
First, if we pass the beam through a waveplate that transforms
Ex → Exe

iψx and Ey → Eye
iψy , with ψx and ψy constant

phases, the spin contribution will be altered but the orbital
part will not. Second, if we pass the beam through a spiral
phase plate that maps Ex → Exe

iφ and Ey → Eye
iφ , the spin

contribution will be unaffected but the orbital part will change.

IV. EXAMPLES

We now use the formalism developed in the previous section
to investigate the angular momentum properties of a pair
of model partially coherent fields that are known to possess
circulation.

We begin by considering paraxial, uniformly unpolarized
wave fields propagating in the z direction; such fields have,
on average, no spin angular momentum. We may write the
electric cross-spectral density tensor for such fields in dyadic
form as

WE(r1,r2,ω) = x̂x̂W (r1,r2,ω) + ŷŷW (r1,r2,ω), (42)

where W (r1,r2,ω) is a scalar cross-spectral density.
From Eq. (40), the angular momentum flux density of the

beam is of the form

8πkMzz(r,ω) = Im
{
y∂ ′

xW
E
yy(r,r′,ω) − x∂ ′

yW
E
xx(r,r′,ω)

+ x∂yW
E
yy(r,r′,ω) − y∂xW

E
xx(r,r′,ω)

}
r′=r.

(43)

There are two simple analytic classes of partially coherent
beams that are known to possess “circulation” about the z axis.
The first of these are so-called “twisted” Gaussian Schell-
model beams [26], with cross-spectral density in the plane
z = 0 of the form

Wtwist(r1,r2,ω) = I0

πσ 2
s

e−(r2
1 +r2

2 )/2σ 2
s e−(r1−r2)2/2σ 2

g e−iv(x1y2−y1x2).

(44)

Here σs is the overall width of the beam, while σg is the
transverse correlation length of the beam. The parameter v

is a “twist” parameter that represents the strength of beam
circulation.

The second class of beams to be considered are partially
coherent vortex beams derived by using a “beam wander”
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FIG. 1. (Color online) The angular momentum flux density of
(a) an unpolarized twisted Gaussian Schell-model beam and (b) an
unpolarized random vortex beam, with σs = 1 mm, σg = 1 mm, and
v = 1 mm−2.

model [27], of the form

Wvortex(r1,r2,ω) = I0

2πσ 4
s [1 + γ 4]/2

e−(r2
1 +r2

2 )/2σ 2
S e−(r1−r2)2/2σ 2

g

× {
[γ 2(x1 + iy1) + (x1 − x2) + i(y1 − y2)]

× [γ 2(x2 − iy2) − (x1 − x2) + i(y1 − y2)]

+ 2σ 2
s

}
, (45)

where γ = σs/σg . This cross-spectral density was derived by
assuming that the central axis of a pure Laguerre-Gauss LG1

0
laser mode wanders randomly in the transverse x-y plane;
the spatial coherence of the beam decreases as the amount of
wander increases. We have introduced the effective correlation
length σg and the effective beam width σs to replace the
parameters used to define the beam in earlier publications.
This form of partially coherent vortex was demonstrated to be
the generic form that appears in a linear optical system [28].

Examples of the angular momentum flux density for each
class of circulating beam are shown in Fig. 1. The two figures
can be seen to be almost identical, with the density increasing
rapidly from the origin to a maximum on a circle, then
decreasing rapidly beyond. However, the angular momentum
flux density depends on the intensity of the wave field as well
as its circulation; to remove intensity-dependent effects, we
normalize the angular momentum flux by the field intensity,
and evaluate the normalized density:

mz(r,ω) = 8πk〈Mzz(r,ω)〉
W (r,r,ω)

. (46)

The quantity mz is plotted for a cross section of the field in
Fig. 2. We can now see that the twisted Gaussian beam has a
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FIG. 2. Cross section of the normalized angular momentum flux
density mz of (a) an unpolarized twisted Gaussian Schell-model beam
and (b) an unpolarized random vortex beam, with σs = 1 mm, σg =
1 mm, and v = 1 mm−2.
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FIG. 3. Cross section of the normalized angular momentum flux
density mz of (a) an unpolarized twisted Gaussian Schell-model beam
and (b) an unpolarized random vortex beam, with σs = 1 mm, σg =
0.5 mm, and v = 1 mm−2.

quadratically increasing mz, while the vortex beam apparently
has mz initially quadratic but leveling off at larger x. To shed
light on this behavior, mz is plotted for the two beam classes
at a lower state of coherence in Fig. 3. Now we can clearly see
two different behaviors of the normalized flux density mz for
the vortex beam, a rapidly increasing quadratic region near the
center of the beam and a constant region at distances far from
the axis. In the limit σg → 0, the quadratic region disappears
entirely and the density becomes constant over all radii.

This behavior is consistent with the observation that
partially coherent vortex beams behave like Rankine vortices
[29], with a region of rigid body rotation near the center and a
fluid-like rotation in the outer regions; this can be readily seen
by simple arguments. A rigid body rotates with a constant
angular frequency ωr , and its velocity is related to its radial
position from the center of rotation by v = ωrr . The flux
density at any point will be then be proportional to rv = ωrr

2,
and this r2 dependence is what is seen in the interior of the
partially coherent vortex beam. A fluid will have a circulation
velocity that depends inversely upon the radial distance, i.e.,
v = α/r , and therefore will have a flux density independent
of position, rv = α. This is seen in the outer region of the
partially coherent vortex beam.

It is interesting to note that the twisted Gaussian beam has
a fundamentally different behavior than the partially coherent
vortex beam. The flux density for the twisted beam possesses
an r2 dependence for all radial positions, indicating that it has
a “pure” rigid body rotational behavior. This result indicates
that the properties of circulating partially coherent beams are
richer than previously thought.

We may also consider the angular momentum of beams
which are uniformly partially polarized. In matrix form, such
beams have a cross-spectral density tensor of the form

WE(r1,r2,ω) = (1 − P )

[
1 0

0 1

]
W (r1,r2,ω)

+ 2P

[
|a|2 a∗b

b∗a |b|2
]

W (r1,r2,ω), (47)

where P represents the degree of polarization of the beam,
with 0 representing unpolarized, and 1 representing complete
polarization. The first term of the tensor is the unpolarized
part of the field, while the second term represents the polarized
part. Here we have adopted a form of the cross-spectral density
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FIG. 4. Cross section of the normalized angular momentum
flux density mz of (a) a right-hand circularly polarized twisted
Gaussian Schell-model beam and (b) a left-hand circularly polar-
ized random vortex beam, with σs = 1 mm, σg = 0.5 mm, P = 1
and v = 1 mm−2.

density used in a number of studies; see, for instance, [30].
We take a = 1

√
2, b = ±i/

√
2, the positive and negative

signs representing right and left-hand circular polarizations,
respectively.

Examples of the normalized angular momentum flux
density for such beams are shown in Fig. 4. With right-hand
circularly polarized light, the spin and orbit contributions are
the same sign, and the spin contributes a uniform positive
offset to the density. With left-hand circularly polarized light,
the spin contribution is in opposition to the orbit, and the
result is a region of negative angular momentum flux density
in the center of the beam. Any offset between −1 and 1 can
be achieved with an appropriate choice of P , the degree of
polarization.

V. CONCLUSIONS

In this paper we have explicitly calculated the formulas
relating to angular momentum and its conservation for partially
coherent fields in the space-frequency representation. These
formulas were applied to investigate the angular momentum
flux density of partially coherent beams known to possess
circulation. It was demonstrated that the partially coherent
vortex beam possesses a Rankine vortex behavior in its angular
momentum flux density, while the twisted Gaussian beam has
a pure rigid body rotational behavior.

These results suggest that the angular momentum properties
of partially coherent beams are richer than previously imag-
ined, and that at least two distinct classes of partially coherent
circulating beams exist. The general formalism introduced
here may be applied to problems of optical trapping and
spanning of microscopic particles, and variations in the partial
coherence of the field may be used as an extra degree of
freedom in the development of new trapping systems.
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