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ABSTRACT

Optical coherence theory traditionally deals with the properties of randomly fluctuating fields over long time
averages. For certain applications (such as optical communications) and special beam classes (such as vortex
beams), however, the averaging process can obscure important physical aspects of the field behavior. We demon-
strate a new method of simulating partially coherent fields of nearly arbitrary spatial and temporal coherence.
Over sufficiently long time intervals, these simulations produce the expected average properties. The results are
used to gain insight into the propagation properties of partially coherent fields through atmospheric turbulence.
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1. INTRODUCTION

Optical coherence theory is a well-established discipline in optical science which focuses on characterizing the
statistical properties and behaviors of randomly fluctuating wavefields. Numerous books have been written on
the general theory and applications.1, 2 However, in some significant circumstances the averaging process can
mask important aspects of the field behavior. For instance, there is now a wide body of literature which suggests
that partially coherent fields are less susceptible to turbulence degradation than their fully coherent counterparts
(see, for instance, Refs. [3–9]). This has lead to the possibility of using partially coherent sources for free-space
optical communications. The origin of the improvement, however, is still unclear, which implies that systematic
optimization of the effect is not yet possible. Furthermore, there are at least three time scales in the problem:
the optical period, the coherence time, and the data communication rate. Coherence theory calculations involve
a long time average over all three time scales and obscure issues that might arise over finite time intervals. An
example of one such issue is beam wander in turbulence.10

Other significant field properties can be ‘hidden’ by the averaging process. For instance, in recent years
there has been much interest in beams possessing orbital angular momentum, so-called vortex beams.11 Optical
vortices are characterized by an intensity null at their center and a helical phase front, and they are stable under
amplitude and phase perturbations of the field. When the vortex field itself is partially coherent, or its coherence
is reduced on propagation through a random medium, the vortex position fluctuates and no point in space will,
on average, possess an intensity null, even though the vortex is present at all times in the field. Averaging could
be said to be a rather blunt tool for studying vortex behavior; similar statements have been made concerning
the use of averaging in the study of laser speckle fields.12

The reasons above suggest it would be advantageous in some circumstances to study specific, non-averaged
realizations of partially coherent fields with specified average properties. The problem is non-trivial, and most
studies of random processes work in the other direction, deriving the average properties from a specified random
process (though some exceptions exist13). In this article we present a method of generating numerical realizations
of a partially coherent field of nearly arbitrary spatial and temporal coherence. The average spectral properties,
spatial coherence properties, and intensity profile of the field can be freely and independently chosen. The
method is an extension and reimagining of a technique used to study the invariance properties of random fields
in dispersive media14; it may also be considered an extension of techniques used for studying random electrical
noise.15
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In section 2 of the article the field generator is introduced, and results relating to Schell-model sources are
developed. In section 3 a modification of the generator is introduced which allows the simulation of fields which
consist of a finite number of mutually incoherent modes. In section 4 several examples of partially coherent fields
are described, and simulations of their propagation through atmospheric turbulence are presented. Section 5
presents concluding remarks.

2. THE PARTIALLY COHERENT FIELD GENERATOR

The partially coherent field generator is introduced as a generalization of the technique used in Ref. 14 to
study the propagation of partially coherent fields in dispersive media; in that reference, only one-dimensional
wave propagation was considered, and only temporal coherence was considered. As the goal of this article is to
generate a realization of a field with specified spatial and temporal coherence properties, we first introduce a
model of a partially coherent field which can be implemented numerically; we then determine how the parameters
of this model are related to the average properties of the partially coherent field.

We consider a source of partially coherent radiation in the plane z = 0, which emits optical pulses of fixed
spatial and temporal shape at random times. We initially restrict ourselves to a time interval t ∈ [−T/2, T/2].
Assuming that the pulses are emitted independently of one another, the probability p(N) that N are emitted in
this interval is dictated by Poissonian statistics, i.e.

p(N) =
N

N

N !
exp[−N ]. (1)

Let us assume that N pulses are emitted in this interval. The field of these N pulses is then given by

VN (r, t) =
N∑

j=1

Λ(r, t − tj) exp[−iKj · r], (2)

where Λ(r, t) is the field amplitude of a single pulse in the plane z = 0 at transverse position r = (x, y), aside
from a linear phase term, tj is the time of emission of the jth pulse and Kj is the angle of inclination of the jth
pulse. The time of arrival is assumed to be a random variable uniformly distributed throughout the interval,
and the angle of inclination is a random variable whose probability distribution P (K) is for now unspecified.
This representation of the field is very similar to that used in Ref.14; however, the introduction of the angle of
inclination Kj and its probability distribution allows us to control the spatial coherence properties of the field
as well as the temporal properties.

Once the pulse shape Λ(r, t), the average number of pulses N and the probability distribution P (K) are
specified, realizations of the field can be generated. We now consider how these quantities are related to the
average properties of the field, such as the mutual coherence function.

The mutual coherence function of a statistically stationary field V (r, t) is defined as

Γ(r1, r2, τ) ≡ 〈V ∗(r1, t1)V (r2, t2)〉, (3)

where τ ≡ t2− t1 and the angle brackets denote ensemble averaging. It is to be noted that this ensemble average
is equivalent to three independent averages: the average over the arrival times tj of the pulses, the average over
the inclination factors Kj , and the average over the number of pulses per interval N . The instantaneous form of
this function for our field of N pulses is

V ∗
N (r1, t1)VN (r2, t2) =

N∑
i,j=1

Λ∗(r1, t1 − ti) exp[iKi · r1]Λ(r2, t2 − tj) exp[−iKj · r2]. (4)

We first wish to evaluate the functional form of this quantity when we average over the arrival times ti. To do
so, we express Λ(r, t) in terms of its temporal Fourier transform, i.e.

Λ(r, t) =
∫ ∞

0

Λ̃(r, ω)e−iωtdω. (5)



Our expression (4) may then be written in the form

V ∗
N (r1, t1)VN (r2, t2)=

N∑
i,j=1

∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′) exp[iKi · r1] exp[−iKj · r2]

× exp[iω(t1 − ti)] exp[−iω′(t2 − tj)]dωdω′. (6)

The time average of a function of ti and tj over the interval can be written as

〈F (ti, tj)〉 =
1

T 2

∫ T/2

−T/2

∫ T/2

−T/2

F (ti, tj)dtidtj . (7)

We may therefore write

〈exp[−i(ωti − ω′tj)]〉 =
{

sinc[(ω − ω′)T/2] ≡ f(ω − ω′), i = j,
sinc[ωT/2]sinc[ω′T/2] ≡ g(ω)g(ω′), i �= j,

(8)

〈exp[−iωti]〉 = sinc[ωT/2] ≡ g(ω), (9)

where sinc[x] ≡ sin[x]/x. We may separate our expression (6) into two distinct sums: one for which i = j and
one for which i �= j. We may then write

〈V ∗
N (r1, t1)VN (r2, t2)〉=

N∑
i=1

∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)〈exp[iKi · (r1 − r2)]〉

× exp[i(ωt1 − ω′t2)]f(ω − ω′)dωdω′

+
N∑

i�=j

∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)〈exp[i(Ki · r1 − Kj · r2)]〉

× exp[i(ωt1 − ω′t2)]g(ω)g(ω′)dωdω′. (10)

At this point, the angle brackets on the exponentials refer only to averaging over the inclination factors Kj . We
now use our probability density function to evaluate this average. We have

〈exp[iKi · (r1 − r2)]〉=
∫

P (Ki) exp[iKi · (r1 − r2)]d2Ki = (2π)2P̃ (r2 − r1),

(11)
〈exp[i(Ki · r1 − Kj · r2)]〉=(2π)4P̃ ∗(r1)P̃ (r2), (12)

where P̃ (r) represents the two-dimensional Fourier transform of the probability density function, defined by

P̃ (r) =
1

(2π)2

∫
P (K) exp[−iK · r]d2K. (13)

The sums may then be evaluated, and we find that

ΓN (r1, r2, τ) = 〈V ∗
N (r1, t1)VN (r2, t2)〉

= (2π)2N
∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)P̃ (r2 − r1)

× exp[i(ωt1 − ω′t2)]f(ω − ω′)dωdω′

+ (2π)4N(N − 1)
∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)P̃ ∗(r1)P̃ (r2)

× exp[i(ωt1 − ω′t2)]g(ω)g(ω′)dωdω′. (14)



At this point the integrals are completely independent of the individual realizations of pulses, i.e. the particular
values of tj and Kj for each pulse, and the only random variable remaining is the number of pulses in the interval.
We may average over this quantity as well, to get the mutual coherence function as

Γ(r1, r2, τ) =
∞∑

N=0

p(N)ΓN (r1, r2, τ), (15)

where p(N) is the Poisson distribution. We need the well-established results

∞∑
N=0

p(N)N = N, (16)

∞∑
N=0

p(N)N(N − 1) = N
2
. (17)

The mutual coherence function may then be written as

Γ(r1, r2, τ) = (2π)2N
∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)P̃ (r2 − r1)

× exp[i(ωt1 − ω′t2)]f(ω − ω′)dωdω′

+ (2π)4N
2
∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)P̃ ∗(r1)P̃ (r2)

× exp[i(ωt1 − ω′t2)]g(ω)g(ω′)dωdω′. (18)

Defining the average rate of pulse emission as η = N/T , we may rewrite Eq. (18) in the form

Γ(r1, r2, τ) = (2π)2η
∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)P̃ (r2 − r1)

× exp[i(ωt1 − ω′t2)]f(ω − ω′)Tdωdω′

+ (2π)4η2

∫ ∞

0

∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω
′)P̃ ∗(r1)P̃ (r2)

× exp[i(ωt1 − ω′t2)]g(ω)Tg(ω′)Tdωdω′. (19)

Letting the measurement interval T → ∞, the functions f(ω)T and g(ω)T reduce to

f(ω − ω′)T → 2πδ(ω − ω′), (20)
g(ω) → 4πδ(e)(ω), (21)

where δ(ω) is the Dirac delta function and δ(e) is the even half-delta function, defined such that∫ ε

0

δ(e)(ω)dω =
1
2
. (22)

By use of these results, the mutual coherence function becomes

Γ(r1, r2, τ) = (2π)3η
∫ ∞

0

Λ̃∗(r1, ω)Λ̃(r2, ω)P̃ (r2 − r1) exp[−iωτ ]dω

+ (2π)6η2Λ̃∗(r1, 0)Λ̃(r2, 0)P̃ ∗(r1)P̃ (r2). (23)

The latter term is the DC-contribution to the field. If we are considering sufficiently narrowband optical signals,
it may be safely neglected.

One more simplification will be convenient. We assume that the spatial and temporal parts of the field
factorize, i.e. that

Λ(r, t) = Θ(r)Φ(t), (24)



so that
Λ̃(r, ω) = Θ(r)Φ̃(ω). (25)

We may then write

Γ(r1, r2, τ) = η(2π)3Θ∗(r1)Θ(r2)P̃ (r2 − r1)
∫ ∞

0

|Φ̃(ω)|2 exp[−iωτ ]dω. (26)

If we consider this field in the space-frequency domain, and consider instead the cross-spectral density W (r1, r2, ω)
of the field, we have

W (r1, r2, ω) = η(2π)3|Φ̃(ω)|2Θ∗(r1)Θ(r2)P̃ (r2 − r1), (27)

where
W (r1, r2, ω) =

1
2π

∫ ∞

−∞
Γ(r1, r2, τ) exp[iωτ ]dτ. (28)

Equation (27) is the main result of this article. It demonstrates that the cross-spectral density of our realization of
pulses will have a spectrum |Φ̃(ω)|2, an average field profile Θ∗(r1) and a spectral degree of coherence P̃ (r2−r1).
These three functions can be chosen independently of one another, and we may therefore construct a realization
of a partially coherent field which has quite general spatial and temporal coherence.

It is to be noted that our results are not completely general, i.e. there exist partially coherent fields which
cannot be realized by this random pulse technique. In particular, there exist fields whose spatial and temporal
coherence properties are not factorizable, and there also exist fields whose spectral degree of coherence is frequency
dependent. Nevertheless, our method provides an excellent tool for creating realizations of quite arbitrary spatial
and temporal coherence.

3. MODIFYING THE GENERATOR FOR MODAL EXPANSIONS

It is often convenient to express the cross-spectral density of a partially coherent field in a modal expansion of
the form

W (r1, r2, ω) =
N∑

n=1

λn(ω)φ∗
n(r1, ω)φn(r2, ω). (29)

In this formula, λn(ω) > 0 and the functions φn(r, ω) are the modes of the field. The index n may represent
multiple indices and there may be an infinite number of modes. If, in the source plane z = 0, these modes are
mutually orthonormal, i.e. ∫∫ ∞

−∞
φ∗

n(r′, ω)φm(r′, ω)d2r′ = δmnλn(ω), (30)

where δmn is the Kroenecker delta, the modal expansion is referred to as a coherent mode expansion16 and can
be shown to be unique. The modes can be seen to be mutually incoherent by considering the spectral density of
the field,

S(r, ω) = W (r, r, ω) =
N∑

n=1

λn(ω)|φn(r, ω)|2.

Simple partially coherent sources can be created by combining a finite number of modes into a single beam. It
was recently shown17 that an appreciable reduction of scintillation can be achieved by the use of two independent
Gaussian beams with different wavelengths.

Such modal fields, however, are not in general Schell-model, and the analysis of the previous section cannot
be applied to them without some modification. In this section we demonstrate how this can be done.

We consider a field of the form

VN,M (r, t) =
N∑

i=1

Λ1(r, t − ti) +
M∑

α=1

Λ2(r, t − tα), (31)



where Λk, k = 1, 2 are different field amplitudes. The instantaneous form of the mutual coherence function can
be written as

V ∗
N,M (r1, t1)VN,M (r2, t2) =

[
N∑

i=1

Λ1(r, t − ti) +
M∑

α=1

Λ2(r, t − tα)

]∗ ⎡
⎣ N∑

j=1

Λ1(r, t − tj) +
M∑

β=1

Λ2(r, t − tβ)

⎤
⎦ . (32)

The time average over the interval [−T/2, T/2] can be carried out as in the previous section by Fourier expanding
the temporal pulse envelopes and using Eqs. (8) and (9), noting that the times labelled by Roman and Greek
subscripts are independent. Furthermore, we assume that the number of pulses of type 1 and type 2 are each
dictated by their own Poisson distribution, with average rates η1 and η2. Averaging over pulse number and
letting the measurement interval T → ∞, we readily find that

Γ(r1, r2, τ) = (2π)η1

∫ ∞

0

Λ̃∗
1(r1, ω)Λ̃1(r2, ω) exp[−iωτ ]dω + (2π)η2

∫ ∞

0

Λ̃∗
2(r1, ω)Λ̃2(r2, ω) exp[−iωτ ]dω

+ DC-terms. (33)

If we again assume that the spatial and temporal parts of each pulse factorize, i.e.

Λi(r, t) = Θi(r)Φi(t), (34)

and neglect the DC-components, we may write the cross-spectral density of the field as

W (r1, r2, ω) = (2π)η1|Φ̃1(ω)|2Θ∗
1(r1)Θ1(r2) + (2π)η2|Φ̃2(ω)|2Θ∗

2(r1)Θ2(r2). (35)

This cross-spectral density has the form of a field with two modes, as a special case of Eq. (29). By adding
additional independent pulse shapes to the simulation (i.e. Λ3, Λ4, etc.), we may generate realizations of partially
coherent fields with an arbitrary finite number of modes.

4. EXAMPLES

We now demonstrate the use of the field generator by numerical examples.

4.1. Gaussian Schell-model fields

We consider fields of Gaussian intensity profile and Gaussian spatial correlation, known as Gaussian Schell-model
fields (Ref. [2], Sec. 5.2.2.). The mutual coherence function of such fields may be written as

Γ(r1, r2, τ) = γ(τ)
√

I(r1)
√

I(r2)μ(r2 − r1), (36)

where I(r) is the average field intensity,
I(r) = exp[−r2/2σ2

I ], (37)

σI being the beam width, μ(r2 − r1) is the spatial correlation function (equivalent to the spectral degree of
coherence in the frequency domain),

μ(r2 − r1) = exp[−(r2 − r1)2/2σ2
g ], (38)

σg being the correlation length, and γ(τ) is the temporal coherence function, to be taken as Lorentzian or
Gaussian. On comparison with Eq. (27), it can be seen that our field generator should generate a Gaussian
Schell-model field if we take

√
I(r) =

√
η(2π)3Θ(r), P̃ (r) = μ(r), and take |Φ̃(ω)|2 to be the temporal Fourier

transform of γ(τ). Figure 1 illustrates the intensity of the field generated by our simulation method for several
realizations, with σI = 2 cm, σg = 1 cm, and Gaussian spectrum of center frequency 1 × 1015 Hz and 1%
bandwidth. The average pulse rate is taken to be 5 pulses/cycle. The pictures show the gradual evolution of the
field in time; the frames are each separated by 5 periods at the center frequency.

To be a valid technique for generating realizations, the field must possess the proper prescribed average
properties. Figure 2 illustrates the average intensity of the field, taken over 50 instantaneous values of the field



Figure 1. Illustrating several realizations of the intensity of the field generated by the method with σI = 2 cm, σg = 1 cm,
and Gaussian spectrum of center frequency 1 × 1015 Hz and 1% bandwidth. The pictures show the gradual evolution of
the field in time; the frames are each separated by 5 periods at the center frequency. The window size is 10 cm on a side.
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Figure 2. Illustrating the average intensity of the field (a) in the source plane and (b) through a cross-section of the
source plane. The dots indicate the numerically calculated result; the solid line indicates the expected result of Eq. (36).
The average is taken over 50 instantaneous values of the field, each separated by 20 periods at the center frequency. All
other parameters are as in Fig. 1.

each separated by 20 periods at the center frequency. Part (a) shows the cross-section of the beam, while (b)
shows the cross-section of the beam along the line y = 0. The ideal Gaussian is shown as a dashed line, and it
can be seen that there is excellent agreement. Convergence could be further improved by extending the duration
of the time average.

The spatial correlation properties can also be numerically calculated to test the technique. Figure 3 shows
the average spatial correlation properties, taken over 50 instantaneous values of the field each separated by 20
periods at the center frequency. The spatial correlation properties were calculated at points +x, −x along the
line y = 0. The circles represent the results generated from our realization, while the dashed line represents the
ideal Gaussian Schell-model case. Again it can be seen that there is excellent agreement.

The average temporal correlation properties of the field can also be numerically calculated. Figure 4 shows
the complex degree of coherence γ(τ) calculated at the center of a coherent Gaussian beam, for a Gaussian and
Lorentian lineshape. Again there is excellent agreement between the results of the simulation and the expected
average behavior.

4.2. Modal fields in atmospheric turbulence

We now consider the propagation of a two-mode field through atmospheric turbulence. The modes are taken to
be asymmetric Gaussian beams of the form

I(r) = exp[−x2/2σ2
x] exp[−y2/2σ2

y].
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Figure 3. Illustrating the spectral degree of coherence of the field as calculated using 50 instantaneous values of the field,
each separated by 20 periods at the center frequency. For (a), σg = 1 cm, while for (b), σg = 2 cm. The dashed lines
indicate the expected result of Eq. (36).
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Figure 4. Illustrating the temporal coherence function calculated by time averaging. The solid lines indicate the analytic
prediction. For (a), the function is Gaussian, while for (b), the function is Lorentzian.

For mode 1, we use ω1 = 1.00 × 1015 Hz and 1% bandwidth, with σx = 2 cm and σy = 3 cm, while for mode
2, ω2 = 1.01 × 1015 Hz and 1% bandwidth, with σx = 3 cm and σy = 2 cm. The partially coherent field is
propagated through turbulence with a von Karman spectrum10 with C2

n = 10−15 m−2/3, inner scale l0 = 1 mm
and outer scale L0 = 1 m, and the turbulence is simulated numerically by the use of multiple phase screens.18

Figure 5(a) illustrates a number of images at a detector plane situated 3 km from the source, each separated
by 5 cycles of the field at frequency ω1. Although on average we expect the fields to be independent of one
another, instantaneously one mode or the other may be dominant, or some complicated interference pattern
may arise from their interaction. Only on average (shown in Fig. 5(b)) do we get a somewhat regular, circular
spot. These figures illustrate that the behavior of the field will be appreciably different on short time scales, and
this will ultimately effect the maximum data communication rate possible for partially coherent laser fields in
turbulence.

The modal picture of partially coherent field propagation in turbulence suggests the following picture for
the improved propagation characteristics of partially coherent fields in turbulence, as illustrated in Fig. 6. A
coherent laser essentially propagates its energy through a single coherent mode, which is subject to distortion on
propagation through the inhomogeneous medium. The signal may or may not arrive fully at the detector, and
will have suffered degradation due to diffraction. The partially coherent beam sends its energy through multiple
(independent) modes, each of which propagates differently in the turbulent medium. Although any individual
mode may not arrive cleanly at the detector, it is likely that at least one will make the journey.

5. CONCLUSIONS

We have derived a new method of generating realizations of partially coherent fields of nearly arbitrary spatial
and temporal coherence. The method was derived for both Schell-model fields of different degrees of spatial
and temporal coherence as well as for modal fields of a finite number of modes. The numerically calculated
average properties agree well with the predicted analytical results. The method was also used to gain some



(a) (b)

Figure 5. (a) Snapshots of the field intensity at the detector, at intervals separated by 5 cycles of the center frequency
ω1. The plots are 50 cm on a side. (b) The average field intensity at the detector, calculated over 25 snapshots.

coherent

partially
coherent

Figure 6. A qualitative explanation of the behavior of partially coherent beams in turbulence. A coherent laser essen-
tially propagates its energy through a single coherent mode, which is subject to distortion on propagation through the
inhomogeneous medium. The partially coherent beam sends its energy through multiple (independent) modes, each of
which propagates differently in the turbulent medium.



insight into the propagation of partially coherent beams through atmospheric turbulence. It is expected that
the ability to study the behavior of fluctuating fields on many time scales (center frequency, bandwidth, rate
of turbulence fluctuations, detector response) will provide useful insight into the behaviors of many coherence-
related phenomena.
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