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1. INTRODUCTION
Since the invention of the laser, the possibility of using visible
light instead of radio for free-space electromagnetic commu-
nications has intrigued researchers. The extreme directional-
ity of lasers allows a great degree of security, while optical
frequencies permit a high rate of data transfer. The short
wavelength of visible light also gives excellent resolution in
applications such as imaging and laser radar. However, atmos-
pheric turbulence, manifesting as random variations of the re-
fractive index of the atmosphere, degrades the quality of an
optical beam, resulting in excessive beam spreading of the
beam, deviations of the beam direction (beam wander), and
intensity fluctuations of the beam at the detector (scintilla-
tions). With sufficiently strong turbulence fluctuations, these
effects can cause unacceptable data transmission errors over
distances of less than a kilometer, severely limiting visible
light for practical free-space applications.

However, it has long been known that partially coherent
beams—beams that are partially randomized in time and/or
space—often prove to be more resistant to the degrading ef-
fects of turbulence than their fully coherent counterparts. The
earliest work can be dated to soon after birth of the laser and,
not coincidentally, to the development of modern optical co-
herence theory. At the start of the 21st century, renewed in-
terest in free-space optical communications, combined with
the discovery of exotic beam classes and new types of parti-
ally coherent fields, has spurred much research into the
behavior of randomized beams in turbulence.

In this article we review the progress on partially coherent
(PC) beam propagation in atmospheric turbulence. In Sec-
tion 2, we look at the progress in the field from the 1960s
to the end of the 20th century, and give a simple description
of how PC beams can “resist” turbulence. In Section 3, we dis-
cuss the most commonly used analytic model for studying the
propagation of light through the atmosphere, and apply it to
PC beams. Due to the complexity of turbulence, however, ana-
lytic models are often intractable, except in special cases; in
Section 4, we describe the multiple phase screen model often
used to computationally solve for beam evolution. In Section 5,

we review turbulence effects related to the second order
(field–field) coherence properties of the field, and in Section 6,
we consider effects related to the fourth order (scintillation)
properties of the field.

2. HISTORICAL OVERVIEW
The earliest articles discussing the coherence of light in tur-
bulence attempted to build on the classic texts of Tatarski [1]
and Chernov [2] to construct robust and accurate propagation
models for coherence functions in random media. Hufnagel
and Stanley [3] estimated the modulation transfer function
for an imaging system seeing through the atmosphere; several
propagation models, including a geometric one, were used to
estimate the spatial coherence of light at the input aperture.
Beran [4] introduced an approximate solution for the mutual
coherence function in random media by dividing the medium
into a series of longitudinal slices. A slightly more general ex-
pression for the mutual coherence function was given by Tay-
lor [5], giving results in accordance with geometrical optics.

These early formulations were all limited to very short
propagation distances or, equivalently, a single-scattering
approximation. Furthermore, the calculations were done only
for exceedingly simple fields, namely, spherical waves, plane
waves, or very wide Gaussian beams. In 1971, Lutomirski and
Yura [6] introduced a new technique, now known as the
extended Huygens–Fresnel (eHF) principle (to be discussed
in Section 3), that can be used to derive propagation results
over a broader range of circumstances and for more general
fields. Yura [7] applied this method to derive an analytic ex-
pression for the mutual coherence function of a finite beam. It
was later realized that essentially the same method had been
independently derived in 1967 by Feizulin and Kravtsov [8].

The next round of published articles studied the general
propagation characteristics of PC beams in turbulence. Kon
and Tatarskii [9] evaluated the mutual coherence function
of a Gaussian beam propagating in turbulence under the quad-
ratic approximation; later, Belen’kii et al. [10] applied these
results to turbulence-induced spreading of an optical image.
In 1978, Leader [11] built upon the eHF principle to study
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in detail the dependence of beam propagation on source
coherence. Fante [12] derived the evolution in turbulence
of a more general mutual coherence function with two
frequencies.

About the same time, researchers’ attention began to
shift toward the more difficult problem of evaluating the in-
tensity fluctuations of beams with partial spatial coherence
in turbulence. Leader [13] investigated such fluctuations in
the context of imaging random rough surfaces, using the
“Huygens–Kirchhoff method” (essentially the eHF principle
again). Fante [14], Banach et al. [15], and Banakh and
Buldakov [16] studied the fluctuations of intensity over differ-
ent receiver response times, noting dramatic differences
between a “fast” and a “slow” detector. Fante [17] also consid-
ered the effect of temporal coherence on scintillation, at least
for weak turbulence.

Through the 1990s, the study of atmospheric propagation
of PC beams seems to have been largely ignored, with the
exception of articles by Wu [18] and Wu and Boardman [19];
the former considers the propagation properties of model
PC beams, while the latter considers the spatial coherence
properties of the beams.

At the start of the 21st century, interest in the reduction of
turbulence distortion by partial coherence grew dramatically.
Gbur and Wolf [20] theoretically evaluated the spreading of
PC beams in random media, noting that PC beams are in a
sense less sensitive to turbulence; this result was demon-
strated experimentally by Dogariu and Amarande [21]. Similar
theoretical results were achieved by others using different
methods: Ponomarenko et al. [22] used a Hilbert-space
method, and Shirai et al. [23] applied a modal analysis. The
average transmittance of PC beams in turbulence was ana-
lyzed by Baykal [24].

The promise of scintillation reduction by partial coherence
has led an increasing number of researchers to study PC
beams specifically for optical communications. The first in
a new wave of studies were performed by Ricklin and David-
son [25,26], and Korotkova et al. [27].

Since this time there has been a vast amount of research
on both the propagation and scintillation of PC beams in
turbulence. It is to be noted that optimizing such beams for
applications is a nontrivial problem: PC beams tend to
have less scintillation on propagation, but also have a
larger angular spread, resulting in less energy received
at the detector. An appropriate balance of these seemingly
exclusive traits will depend on the desired system specifi-
cations. Optimization is in principle possible; Schulz [28,29]
has used variational and iterative methods to find the op-
timal mode structure of PC beams with either minimum
scintillations or minimum spreading in turbulence. How-
ever, it is not clear how to produce these optimal beams
in practice, and so research continues to find realizable
sources with good propagation characteristics. Some of
this research will be summarized in the final sections of
this review.

3. ANALYTIC PROPAGATION MODELS
The atmosphere is, in a sense, an ideal medium to study using
the traditional tools of scattering theory. The small variations
of refractive index in atmospheric turbulence induce small
phase fluctuations on a beam of light, and these fluctuations

only become significant after appreciable propagation distan-
ces. Early researchers applied the Born and Rytov approxima-
tions to study atmospheric propagation; description of these
methods can be found in [30], Chapter 13.

In recent years, however, the preferred strategy for study-
ing propagation in turbulence is the eHF method noted pre-
viously. It was shown quite early that the eHF method is in
good agreement with experimental data in weak and strong
turbulence [31], even under simplifying phase approximations
[32]. The method includes atmospheric turbulence as a phase
distortion of the spherical wave in the standard Huygens–
Fresnel integral, so that the field U�r; L;ω� after propagation
a distance z � L is given by

U�r; L;ω� � −

ik
2πL

exp�ikL�

×
ZZ

U0�ρ;ω� exp
�
ikjρ − rj2

2L
� ψ�r; ρ; L�

�
d2ρ; (1)

where U0�ρ;ω� is the field in the source plane at z � 0, ρ and r
are the transverse coordinates in the source and observation
planes, respectively, and ψ�r; ρ; L� is the phase distortion
of the Huygens wavelet due to turbulence. The geometry is
illustrated in Fig. 1. The field is taken for the moment to be
monochromatic at frequency ω and with wavenumber k.
In what follows, we will closely follow the notation of
Andrews and Phillips [33]; we will also suppress the frequency
dependence momentarily for brevity.

Of primary interest here are the second- and fourth-order
average field moments, defined as

W2�r1; r2; L� � hU�r1; L�U��r2; L�i

�
ZZZZ

U0�ρ1�U�
0�ρ2�G0�ρ1; r1�G�

0�ρ2; r2�

×M2�fri; ρig; L�d2ρ1d2ρ2 (2)

and

W4�r1; r2; r3; r4; L� � hU�r1; L�U��r2; L�U�r3; L�U��r4; L�i

�
ZZZZ ZZZZ

U0�ρ1�U�
0�ρ2�U0�ρ3�U�

0�ρ4�

× G0�ρ1; r1�G�
0�ρ2; r2�G0�ρ3; r3�G�

0�ρ4; r4�
×M4�fri; ρig; L�d2ρ1d2ρ2d2ρ3d2ρ4; (3)

zρ

z = 0

r

z = L
Fig. 1. Illustration of the geometry of beam propagation through the
atmosphere.
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where we have defined

M2�fri; ρig; L� � hexp�ψ�r1; ρ1; L� � ψ��r2; ρ2; L��i; (4)

M4�fri; ρig; L� � hexp�ψ�r1; ρ1; L� � ψ��r2; ρ2; L�
� ψ�r3; ρ3; L� � ψ��r4; ρ4; L��i; (5)

where fri; ρig represents the set of relevant arguments, and

G0�ρ; r� � −

ik
2πL

exp�ikL� exp
�
ikjρ − rj2

2L

�
(6)

is the free-space Green’s function in the Fresnel approxima-
tion. The angle brackets hi represent an ensemble average
over a large number of realizations of the turbulence; from
these moments we can derive properties such as the average
beam width and the average variance of the intensity. It
should be noted, however, that specific realizations of these
field moments can look very different from the averages.

The average phase terms can be calculated using the
method of cumulants (see, for instance, [34], Section 15.10).
To second order, we may write

hexp�Ψ�r; L��i � exp
�
K1 �

1
2
K2

�
; (7)

where

K1 � hΨ�r; L�i; (8)

K2 � hΨ2�r; L�i − hΨ�r; L�i2: (9)

From these results, it follows that the moments of the phase
can be written as

M2�fri; ρig; L� � exp�2E1�0; 0; 0; 0� � E2�r1; r2; ρ1; ρ2��; (10)

M4�fri; ρig; L� � exp�4E1�0; 0; 0; 0� � E2�r1; r2; ρ1; ρ2�
� E2�r1; r4; ρ1; ρ4� � E2�r3; r2; ρ3; ρ2�
� E2�r2; r4; ρ2; ρ4� � E3�r1; r3; ρ1; ρ3�
� E�

3�r2; r4; ρ2; ρ4��; (11)

where we have introduced

E1�0; 0; 0; 0� � −2π2k2L
Z

∞

0
κΦn�κ�dκ; (12)

E2�r1; r2; ρ1; ρ2� � 4π2k2L
Z

1

0

Z
∞

0
κΦn�κ�J0�κj�1 − ξ�Δr

� ξΔρj�dκdξ; (13)

E3�r1; r2; ρ1; ρ2� � −4π2k2L
Z

1

0

Z
∞

0
κΦn�κ�J0�κj�1 − ξ�Δr

� ξΔρj� exp�−iLκ2ξ�1 − ξ�∕k�dκdξ: (14)

We have now introduced Δr ≡ r1 − r2 and Δρ ≡ ρ1 − ρ2, as well
as the power spectral density of refractive index fluctua-
tions Φn�κ�.

To apply these formulas, we must have a model of the
atmosphere from which a formula for Φn�κ� can be deduced.
The simplest model with some predictive power is illustrated
in Fig. 2, and shows the energy cascade theory of turbulence.
When wind speeds exceed the critical threshold for turbu-
lence to form, large turbulent eddies of roughly constant re-
fractive index are created with a large characteristic scale L0,
called the outer scale. These large eddies undergo a process in
which they break up continually into smaller and smaller
sizes, eventually reaching a critical minimum size l0, called
the inner scale, at which their energy is dissipated completely.
The outer scale can range widely from meters to tens of
meters, while the inner scale is typically of the order of
millimeters.

Starting from a dimensional argument, Kolmogorov noted
that this process could be represented by the simple power
spectral density

Φn�κ� � 0.033C2
nκ

−11∕3; 1∕L0 ≪ κ ≪ 1∕l0: (15)

Here C2
n is called the structure parameter and is a measure of

the overall turbulence strength. Its values range from
10−17 m−2∕3 for weak turbulence to as high as 10−13 m−2∕3

for strong turbulence.
The Kolmogorov spectrum is an exceedingly simple expres-

sion, but does not treat the inner and outer limits in a satis-
factory manner. A more sophisticated model is the Tatarskii
spectrum:

Φn�κ� � 0.033C2
nκ

−11∕3 exp�−κ2∕κ2m�; 1∕L0 ≪ κ; (16)

with κm � 5.92∕l0, which accounts for the inner scale (high
spatial frequencies). A yet more detailed spectrum is the
von Karman spectrum:

Φn�κ� � 0.033C2
n
exp�−κ2∕κ2m�
�κ2 � κ20�11∕6

; (17)

with κ0 � 1∕L0, which takes into account both inner and outer
scales. Nevertheless, even this analytic model for the spec-
trum misses important physical details; more advanced ones
can be found in [33].

We can now include partial coherence into the equations
for the field moments. Considering first the second-order

ed
dy

 s
iz

e

L
0

l
0

wavenumber κ
1/L

0 1/l
0

energy input

dissipation

energy cascade

Fig. 2. Simple illustration of a model for atmospheric turbulence.
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moment, we may average the moment over a set of monochro-
matic field realizations using the space–frequency representa-
tion of the source cross-spectral density W0�r1; r2;ω�, i.e.,

W0�ρ1; ρ2;ω� � hU0�ρ1;ω�U�
0�ρ2;ω�iω; (18)

where the subscript “ω” represents an average over a specially
constructed set of monochromatic field realizations; see [35],
Chapter 4 for more details. The resulting second-order mo-
ment W2�r1; r2; z;ω� is the cross-spectral density of the field
after propagating a distance z through the atmosphere.

It is to be noted that the time scales of fluctuations are
extremely important in performing averages in the simple
manner described. Because the fluctuations of turbulence
are typically slow (of the order of milliseconds) compared
to the fluctuations of the optical source, the medium may
be treated as effectively “frozen” for the time of field averag-
ing, and the averages may be taken independently.

The cross-spectral density may be expanded in the form
of a coherent mode representation, as first demonstrated
by Wolf [36]. This representation may be written as

W�r1; r2;ω� �
X
n

λn�ω�ϕn�r1;ω�ϕ�
n�r2;ω�; (19)

where n is a (possibly multiple) sum over a set of so-called
coherent modes that are mutually orthogonal when integrated
over the domain of interest (in this case, the source plane
z � 0) that satisfy

ZZ
W�r1; r2;ω�ϕn�r2;ω�d2r2 � λn�ω�ϕn�r1;ω�; (20)

and λn�ω� > 0.
The coherent mode representation provides a nice physical

picture for the mechanism by which PC beams are more
resistant to turbulence; this is illustrated in Fig. 3. A coherent
single mode laser will send all of its energy through a single
path in the turbulence; this mode will interfere with itself, pro-
ducing laser speckle and, therefore, intensity fluctuations, if it
even hits the detector at all. A PC beam will send energy via
multiple modes that travel through different channels toward
the detector. Multiple modes will likely hit the detector and,
because of their mutual incoherence, their individual speckle
patterns will wash out, producing a more regular intensity at
the detector and less scintillation.

The scintillation of an optical beam is typically character-
ized by the scintillation index, defined as

σ2I �
hI2i
hIi2 − 1; (21)

where I is the intensity of the field at a single point,
I�r� � jU�r�j2. The denominator of Eq. (21) can be derived
from the second-order field moment and the numerator from
the fourth-order field moment. For a plane wave in weak tur-
bulence, the scintillation index takes on the specific form

σ21 � 1.23C2
nk7∕6z11∕6; (22)

and is known as the Rytov variance. The Rytov variance is
often used as a loose measure of the strength of atmospheric
turbulence, with σ21 ≪ 1 implying weak turbulence and strong
turbulence otherwise.

As was noted in [14–16], the response time τd of the detec-
tor is an important factor in the scintillation measured. If the
detector response is much longer than the coherence time τc
of the light, i.e., τd ≫ τc, the inherent fluctuations in the source
intensity will be averaged out, and we may write

hU0�ρ1�U�
0�ρ2�U0�ρ3�U�

0�ρ4�i � W0�ρ1; ρ2�W0�ρ3; ρ4�; (23)

i.e., all the intensity fluctuations come from the turbulence,
and none from the source.

If τd ≪ τc, then the detector will be sensitive to source
fluctuations, as well. Most methods of creating PC sources
result in fields with Gaussian statistics (see [35], Chapter 7),
for which we may write

hU0�ρ1�U�
0�ρ2�U0�ρ3�U�

0�ρ4�i � W0�ρ1; ρ2�W0�ρ3; ρ4�
�W0�ρ1; ρ4�W0�ρ3; ρ2�: (24)

These intensity fluctuations will result in a scintillation that is
higher than that of a fully coherent beam.

These observations suggest that any application of PC
fields to scintillation reduction must take careful considera-
tion of the time scales involved. To the times already consid-
ered we can add the duration of an optical bit in a
communications signal, τb, which must be longer than both
the coherence time and the detector response. If we also con-
sider the characteristic time of turbulence fluctuations τt, we
require the following set of inequalities to be satisfied to have
effective scintillation reduction in optical communications:

τc ≪ τd ≪ τb ≪ τt: (25)

These inequalities also imply that a scintillation-reducing
source must have a spectral bandwidth significantly larger
than the communications bandwidth.

Though the eHF principle has been shown to agree well
with experimental data, there are a number of limitations
worth noting. First, the simplest formulas given above, and
they are by no means simple, involve light propagating in
uniform, homogeneous turbulence throughout the entire
source-to-detector path. This excludes situations such as
ground-to-air or ground-to-satellite links, which can be
accounted for, albeit with additional complexity.

coherent

partially
coherent

Fig. 3. Simple illustration of the turbulence resistance of PC beams.
A PC beam will simultaneously “sample” multiple paths through the
turbulence, and the mutually incoherent beams will not produce in-
terference speckle at the detector. Figure adapted from [37].

G. Gbur Vol. 31, No. 9 / September 2014 / J. Opt. Soc. Am. A 2041



Even for the simplest Kolmogorov model of turbulence,
however, the field integrals are generally intractable. In many
cases, the integrals are evaluated by making use of a quadratic
approximation for the turbulence phase moments, though it
has long been known that this approximation leaves out im-
portant features of the turbulence [38]. Furthermore, the com-
plexity of the models often leads to their misuse, as was
discussed recently [39].

The expressions can be evaluated by numerical integration,
but this can be extremely time consuming: the fourth-order
field moment requires an eightfold integral that must be evalu-
ated for each set of observation points ri. If analytic insight
into the problem is not required, it is much more efficient
to use computational methods to propagate the field, as
described in the next section.

4. COMPUTATIONAL PROPAGATION
MODELS
The standard method for numerically simulating the propaga-
tion of waves in atmospheric turbulence is a multiple phase
screen method, in which the extended random medium is
described by a collection of thin random phase screens
with the appropriate turbulence statistics. We briefly review
this method, following the clear discussion of Martin and
Flatté [40].

A monochromatic scalar wave propagating in an inhomo-
geneous medium will satisfy the Helmholtz equation:

�∇2 � n2�r�k2�U�r� � 0; (26)

where n�r� is the refractive index of the medium and k � ω∕c
is the free-space wavenumber. If we restrict ourselves to
paraxial fields of the form

U�r� � V�r�eikz; (27)

where V�r� is a slowly varying function in z, we get the
simplified equation

2ik∂zV � ∇2
⊥V � k2�n2

− 1�V � 0; (28)

where∇2
⊥ � ∂2x � ∂2y. The refractive index of the atmosphere is

quite close to unity; we write n � 1� Δn, where Δn ≪ 1, and
then to a good approximation we may write

2ik∂zV � ∇2
⊥V � 2 k2ΔnV � 0: (29)

This is the parabolic approximation to the wave equation.
The small variations of the refractive index, and the ab-

sence of absorption, suggest that the effect of the medium
can be described by phase approximations. Because these
changes build slowly, it can be argued that the entire extended
medium can be well modeled by a finite number of phase
screens, equally spaced by δz, with appropriate statistics. It
is shown in [40] that the relationship between the power spec-
trum Φn�κ� of the turbulence and the spectrum Φθ�κ� of the
phase screens may be related by

Φθ�κ� � 2πk2δzΦn�κ�: (30)

The screens themselves may be calculated by creating an
N × N field of random complex numbers (with real and

imaginary components between 0 and 1), multiplying this field
at spatial frequencies �jΔk; nΔk� by Δ−1

κ

�����������������������������
Φθ�jΔk; nΔk�

p
, and

then taking the two-dimensional discrete inverse Fourier
transform to get a complex random phase array θ1 � iθ2, with
Δκ � 2π∕NΔ, and Δ is the spatial sampling interval of the
array. The arrays θ1 and θ2 are both random phase screens
with the appropriate statistics. More details of this technique
can be found in [41].

The propagation of a wavefield through turbulence is there-
fore accomplished by free-space propagation of the field from
screen to screen; this can be achieved by Fourier transform
techniques as follows:

1. Field passing through screen acquires phase,
V�ρ; z� → V�ρ; z� exp�iθ�ρ��.

2. Discrete Fourier transform of field, V�ρ; z� → ~V�κ; z�.
3. Fresnel propagation to next screen, ~V�κ; z� →

~V�κ; z� exp�−iκ2δz∕2k� � ~V�κ; z� δz�.
4. Inverse discrete Fourier transform, ~V�κ; z� δz� →

V�ρ; z� δz�.
The sampling of the screens must be chosen such that

their spatial frequencies include the relevant turbulence
ranges, notably the inner and outer scale frequencies. The
spacing of the screens must also satisfy a pair of additional
conditions. They should be spaced such that the real extended
medium scintillation is weak over the interscreen distance,
i.e., σ2I �δz� < 0.1. Also, one should require that less than
10% of the total scintillation take place over the interscreen
distance, i.e., σ2I �δz� < 0.1σ2I �L�.

At this point the argument may seem rather circular: in
order to calculate the scintillation of a beam, we need to know
the scintillation of the beam! However, the Rytov variance,
given by Eq. (22), can usually be used as an estimate of the
scintillation for use in the inequalities above.

The simple method discussed here suffers from a signifi-
cant limitation: the absence of low spatial frequencies. Due
to the nature of discrete Fourier transforms, the lowest spatial
frequency included in the simulation is roughly equal to the
inverse of the width of the simulation domain; any spatial
frequencies lower than this are not represented. However,
the lowest spatial frequencies are exactly those which result
in the wander of the centroid of the beam. These effects be-
come especially important over long propagation distances
and strong turbulence. To incorporate them, a variety of
so-called subharmonic methods have been introduced, which
put the low frequencies back into the simulation “by hand.”
Worthwhile discussions can be found in [42–44].

To incorporate partial coherence into the simulations,
a PC beam can be treated as an incoherent superposition
of coherent beams, each of which are propagated through
the same realization of turbulence. The coherent mode repre-
sentation of the beam, formally given in Eq. (19), is one such
way to decompose the cross-spectral density. Alternatively,
if the beam is Schell-model (see [35], Section 5.3), i.e., the
degree of coherence μ�r1; r2� is independent of the origin of
position,

W�r1; r2� �
�����������
I�r1�

p �����������
I�r2�

p
μ�r2 − r1�; (31)

then the degree of coherence can be written in terms of its
Fourier representation:
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μ�r2 − r1� �
ZZ

~μ�K� exp�−iK · r2� exp�iK · r1�d2K: (32)

On substitution into Eq. (31), it is clear that the cross-spectral
density may be expressed as an incoherent sum of beams with
different inclination phases.

This method produces a source that has no inherent inten-
sity fluctuations, meaning that it is in agreement with the
inequalities of Eq. (25). This is the regime of effective scintil-
lation reduction, which makes this formulation appropriate
for most practical applications.

5. BEAM PROPAGATION IN TURBULENCE
Despite the fact that the general spreading and propagation
characteristics of PC beams have been known for some time,
research nevertheless continues. It is spurred by the relatively
recent introduction of “special” classes of coherent and PC
beams with unusual propagation characteristics, such as
Bessel and Airy beams. Furthermore, in seeming contradic-
tion to conventional wisdom, appropriately prepared electro-
magnetic beams can have unusual polarization changes in
turbulence. Finally, the propagation and polarization of light
can be used to measure the turbulence itself. In this section,
we highlight some of these possibilities.

Extending beyond ordinary Gaussian beams, Cai and He
studied the propagation of elliptical Gaussian beams [45]
and dark hollow beams [46] in the atmosphere, finding that
in both cases the beams will eventually become circular. More
exotic possibilities involve the use of so-called Bessel beams
[47], which can be nondiffracting over large propagation
distances, and Airy beams [48], which can exhibit transverse
acceleration. Chen and Pu [49] have investigated Bessel
beams in turbulence, while Chu [50] has studied Airy beams.
Perhaps unsurprisingly, the turbulence always “wins” over
sufficiently long distances, erasing the special features of
the beam and reducing it to a Gaussian profile. However,
Çil et al. [51] have noted that the beam wander of Bessel–
Gaussian beams can be less than a standard Gaussian.

Similar results arise for PC beam propagation. Chen et al.

[52] studied the degradation of a PC Bessel–Gaussian beam in
turbulence, finding its reduction to a Gaussian profile. The
spreading and directionality of PC Hermite–Gauss beams
were investigated by Ji et al. [53]. In recent years, a new ana-
lytic class of non-Schell-model PC beams was introduced by
Gori and Santarsiero [54]; the propagation characteristics of
such beams were then studied by Tong and Korotkova [55].

Though it has long been appreciated that the polarization of
a uniformly polarized beam is unchanged on propagation, due
to the weak scattering of turbulence, the same is not true
for beams with a nonuniform state or degree of polarization.
Such nonuniformly polarized beams can be considered a co-
herent or incoherent superposition of different orthogonally
polarized modes, each of which propagates through the
atmosphere via a different channel. Early research by Salem
et al. [56] illustrated that the degree of polarization changes
dramatically on propagation; however, unlike in free space,
it surprisingly returns to its original value after an appreciable
distance. Not long after this work, Korotkova et al. [57]
showed that the state of polarization also in general changes
on propagation. Similar results apply to the propagation of
light through tissue, as was shown by Gao [58] and Gao

and Korotkova [59]. Several studies have also looked at the
propagation characteristics of coherent radial and azimuthally
polarized light; see, for instance, [60,61].

A number of new tools have been introduced to model the
propagation of PC beams in the atmosphere. Among them is a
reformulation of the eHF method in the angular spectrum re-
gime, both in the scalar [62] and electromagnetic [63] cases.

The relationship between partial coherence and a random
medium can be exploited to probe the structure of the
medium itself. Ponomarenko and Wolf [64] introduced a tech-
nique to fully measure the correlation function of turbulence
from the correlations of scattered light. McKinney et al. [65]
tested a strategy for measuring the scattering parameter of an
optically diffusive medium using PC light. More recently, a
technique called variable coherence tomography was intro-
duced in [66,67] to use variable coherence states to deduce
the structure of a random media; this method was adapted
to include polarization effects by Tyo and Turner [68]. It
has also been shown by Gu and Gbur [69] that the evolution
of correlation singularities in turbulence can be used as a
crude measure of turbulence strength.

6. SCINTILLATION EFFECTS IN
TURBULENCE
A broad research effort has been dedicated to studying the
scintillation of a variety of special beam classes over the past
decade; from this work has come a number of surprises. In
this section, we consider some of the highlights.

A number of coherent beams of special form have been
found to have less scintillation than a comparable Gaussian.
Strömqvist Vetelino and Andrews [70] studied an annular
Gaussian beam and found it to have superior scintillation
characteristics; Baykal [71] considered higher-order annular
beams. The scintillation of elliptical Gaussian beams were in-
vestigated by Cai et al. [72], and also found to have reduced
scintillation under certain circumstances. In weak turbulence,
Eyyuboğlu et al. [73] demonstrated that Bessel–Gauss beams
can also have somewhat reduced scintillation, as can modified
Bessel–Gauss beams [74]. Flat-topped Gaussian beams have
also shown some advantages [75].

Partial coherence can provide further scintillation reduc-
tion. Berman et al. [76] introduced a design for a communica-
tion system based on partial coherence, and suggested
suppression by “orders of magnitude.” Baykal et al. [77] ob-
served scintillation reduction as a function of decoherence
for a beam consisting of multiple incoherent Gaussians.
Beams appropriately tailored with nonuniform correlations,
of the Gori type mentioned in Section 5, have also been shown
to provide scintillation reduction over simpler types of PC
beams [78]. In the temporal domain, Kiasaleh [79] noted scin-
tillation reduction in a multiwavelength Gaussian beam.

In a study of Bessel-correlated beams, Gu and Gbur [80]
made the surprising observation that a small array of incoher-
ent beamlets can provide scintillation nearly indistinguishable
from a more general PC beam. This suggests that such arrays
may be good enough for any scintillation reduction based on
partial coherence. An unusual example of such an array was
provided by Gu and Gbur [81], who used an incoherent col-
lection of Airy beams to achieve reduction.

Experimental tests have confirmed the theoretical improve-
ments. Voelz and Fitzhenry [82] introduced a pseudo PC beam
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for laser communication and laboratory tested its effective-
ness. Researchers at the University of Arizona calculated
the scintillation reduction characteristics of two- [83] and
multi-Gaussian [84] beam arrays, and verified their results ex-
perimentally [85].

Beams with nontrivial polarization can also achieve surpris-
ing reductions. Korotkova [86] noted that even simple unpo-
larized beams will typically have less scintillation than
comparable polarized beams. The polarization properties of
light were considered in a pair of studies [87,88] on the use
of PC beams for laser radar. An electromagnetic “cosine-
Gaussian Schell-model beam” has also been investigated [89].

Curiously, even fully coherent but nonuniformly polarized
beams can achieve scintillation reduction. The orthogonal
modes of a nonuniformly polarized beam propagate differ-
ently through turbulence and do not produce an interference
pattern at the detector, acting as an effective two-mode PC
source. Scintillation reduction was demonstrated by Gu et al.

[90], using a beam that would later be recognized as a Poin-
caré beam [91]. It was later shown by Gu and Gbur [92] that
the benefits of nonuniform polarization even extend to an in-
coherent array of such beamlets.

As can be seen, many options exist for scintillation reduc-
tion. Optimizing the effect, which involves a trade-off in beam
spreading and scintillation, will no doubt depend on the
desired characteristics of the system it is applied to.
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