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An understanding of phase singularities of correlation functions is important in optical coherence theory and
imaging science, but to date such singularities have only been theoretically studied in a single transverse plane,
at most. In this Letter we evaluate the complete structure of a correlation singularity of a partially coherent
Laguerre–Gauss beam, describing it in both the transverse and the propagation directions. These results agree with
previously found solutions, and introduce new aspects of correlation singularities. © 2014 Optical Society of
America
OCIS codes: (030.1640) Coherence; (260.6042) Singular optics.
http://dx.doi.org/10.1364/OL.39.005985

In recent years, the study of singular optics has been of
increasing interest to scientists both as an unexplored
area of classical electromagnetic theory as well as a
possible source for new technologies. Singular optics
traditionally focuses on the study of coherent wavefields
which have regions of zero amplitude and therefore
undefined phase [1,2]; such regions are known as phase
singularities and typically manifest as lines in three-
dimensional space, around which the phase exhibits a
circulating or helical structure. Because of this, these
structures are referred to as optical vortices.
Besides being of purely topological interest, singular

optics presents a new way to look at wavefields and
has led to a number of applications. These include using
optical vortices as optical tweezers and spanners [3], in
spatial and temporal coherence filtering [4], in optical
vortex coronagraphy [5], in phase contrast microscopy
[6], and as information carriers in free-space optical
communications [7].
There are advantages to using partially coherent light

in a number of these applications; for example, it has
been demonstrated that partially coherent beams are
more resistant to atmospheric turbulence degradation
than their fully coherent counterparts [8], making them
ideal for free-space communications. However, there
are conceptual challenges to extending the study of sin-
gular optics to partially coherent fields; among them is
the lack of a well-defined phase in fields that are not
spatially coherent [9]. For some time now, researchers
have been investigating phase singularities in correlation
functions of wavefields both theoretically [10–12] and
experimentally [13–15], and have demonstrated the exist-
ence of singularities of the spatial correlation function,
known as correlation singularities.
Notably, it has been shown that there is a connection

between the optical vortices created by a linear optical
system and the correlation singularities produced by
the same system [16]. A good physical understanding
of this connection is still lacking, however, due at least
in part to the complicated nature of correlation singular-
ities. Because the correlation function is a measure of
the statistical correlations between two arbitrary points
in a field, a complete description of correlations in

three-dimensional space requires the specification of
the correlation function in six variables. Most previous
work on correlation singularities has focused on simple
two variable projections of the function, with the excep-
tion of one recent article that studied the complete struc-
ture of a correlation singularity in four variables in the
waist plane of a partially coherent beam [17]. The evolu-
tion of this singular structure on propagation has not
been addressed.

In this Letter, we undertake such a description, using
an analytic model of a correlation singularity. This model
has been previously shown [16] to be representative of
the generic form of screw dislocations in partially coher-
ent waves. It is shown that the geometric structure of the
singularity undergoes nontrivial changes on propagation,
depending strongly on the size of the beam and the state
of coherence. We describe the geometric form of corre-
lation singularities in the full six-variable correlation
space, and look at selected projections of these correla-
tion singularities. Finally, we offer some thoughts on the
significance of these results.

In the time domain, the mutual coherence function
Γ�r1; r2; τ� of a statistically stationary, fluctuating wave-
field U�r; t� can be written in the form [18, Section 4.3]

Γ�r1; r2; τ� � hU��r1; t�U�r2; t� τ�i; (1)

where the angle brackets represent a time average or,
equivalently, an ensemble average.

For present purposes, it is simpler to work with the
temporal Fourier transform of the mutual coherence
function, known as the cross-spectral density [18,
Section 4.3.2], defined as

W�r1; r2;ω� �
1
2π

Z
∞

−∞
Γ�r1; r2; τ� exp�iωτ�dτ: (2)

The cross-spectral density characterizes both the inten-
sity and the spatial coherence properties of the field
as a function of frequency ω, and contains all the infor-
mation of the mutual coherence function. For a quasi-
monochromatic field of frequency ω0, the complete
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coherence properties of the field are well approximated
by the value of the cross-spectral density at ω0.
It has been shown that the cross-spectral density of an

arbitrary partially coherent field at frequency ω may
always be expressed as the average of an ensemble of
monochromatic realizations of the field [19], i.e.,

W�r1; r2;ω� � hU��r1;ω�U�r2;ω�iω; (3)

where the subscript ω denotes averaging with respect to
this particular ensemble. The advantage of this method is
that it allows for the construction of partially coherent
field models in the frequency domain without first having
to find the more complicated mutual coherence function.
We use this representation to construct a model of a
quasi-monochromatic, partially coherent field.
In the absence of sources, the cross-spectral density

satisfies a pair of Helmholtz wave equations:

�∇2
j � k2�W�r1; r2;ω� � 0; j � 1; 2; (4)

where ∇j represents the gradient with respect to the var-
iable rj. From this it follows that, with one observation
point fixed, the cross-spectral density behaves exactly
like a monochromatic wave field and can possess vorti-
ces with the same topological and phase properties as
such fields. These vortices are known as correlation vor-
tices, also referred to in some earlier work as coherence
vortices. Such singularities are distinct from optical vor-
tices in both their behavior and their interpretation.
While optical vortices are phase singularities of a one-
point monochromatic wave field, coherence vortices
are singularities in a two-point correlation function of
the field. This means, among other things, that the loca-
tion of any correlation vortices is dependent on the
choice of reference point.
In principle, the formalism described above is exact;

correlation singularities can exist independently at each
frequency of a partially coherent wave field. For the re-
mainder of this Letter, we will restrict ourselves to a
quasi-monochromatic wave field of center frequency
ω, and will thus suppress the expression of this frequency
for notational brevity. Furthermore, we will use the vec-
tor r to denote the three-dimensional position vector,
where r � �x; y; z� � �ρ; z�, thus allowing the exploration
of vortices not just in the source plane, but at any point in
the propagation of the beam.
We consider the simple model for a coherence vortex

first described in Ref. [20]. We take a Laguerre–Gauss
beam of order n � 0 and topological charge m � 	1,
whose central vortex core is a random function of posi-
tion. A field with m � �1 is a right-handed vortex, while
m � −1 is a left-handed vortex. This model may be
expressed as

W�r1;r2� �
Z

f �ρ0�U�
	�ρ1 − ρ0; z1�U	�ρ2 − ρ0;z2�d2ρ0; (5)

where

U	�x; y; z� �
���
4
π

r
x	 iy

w2�z� exp
�
−�x2 � y2�

w2�z�

�

× exp
�
−ik�x2 � y2�

2R�z�

�
exp�−2iξ�z��: (6)

Here, ξ�z� represents the Gouy phase, and w�z� and R�z�
are the propagation-dependent width and wavefront
curvature of the beam, respectively,

w�z� � w0

��������������������������
1� �z∕zR�2

q
; (7)

R�z� � z� z2R
z
; (8)

with zR � πw2
0∕λ indicating the Rayleigh range and w0

the width of the beam in the waist plane. The function
f �ρ0� is the probability density for the position ρ0 of
the vortex core, taken to be a Gaussian function,

f �ρ0� �
1

πδ2
exp

�
−ρ20∕δ

2

�
: (9)

The parameter δ represents average wander of the vortex
core. In the limit δ → 0, the beam does not wander at all
and is therefore fully coherent. Increasing δ represents
decreasing spatial coherence.

The integral above in Eq. (5) can be evaluated
analytically and results in the expression

W�ρ1;ρ2; z1; z2� � Q
��

1

α22

�
x1∓iy1

�
−
1

σ22
�x2∓iy2�

�

×
�
1

α2�1
�x2 	 iy2� −

1

σ2�1
�x1 	 iy1�

�
� 1

β22

�
;

(10)
where

1

σ2n
� 1

w2
n
−

ik
2Rn

; n � 1; 2; (11)

1

α2n
� 1

δ2
� 1

σ2n
; n � 1; 2; (12)

1

β22
� 1

δ2
� 1

σ2�1
� 1

σ22
; (13)

and Q is a complex position-dependent factor that plays
no role in the location of zeros, to be suppressed from
now on. With these equations, where wn ≡w�zn�, Rn ≡
R�zn� and so forth, it can be shown that the cross-spectral
density only equals zero when z1 � z2 ≡ z. To study the
singularities of the correlation function we therefore
need only consider this case for which

1

α21
� 1

α22
� 1

α2
; (14)

1

σ21
� 1

σ22
� 1

σ2
: (15)

The cross-spectral density is in general a complex quan-
tity; singularities of the cross-spectral density therefore
only exist in locations where the real and imaginary parts
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ofW�ρ1; ρ2; z; z� are simultaneously zero. It can be readily
demonstrated that the topology of the zeros is exceed-
ingly complex when expressed in terms of ρ1 and ρ2.
However, it reduces to a simple form by changing the
coordinate system to the sum and difference variables,

ρ� ≡
ρ1 � ρ2

2
; ρ− ≡ ρ2 − ρ1; (16)

and then introducing the coefficients

η � 1

α2σ�2
; (17)

2χ �
�

1
jαj4 �

1
jσj4

�
; (18)

2Z �
�

1
jαj4 −

1
jσj4

�
: (19)

With these choices, the real and imaginary parts of the
cross spectral density may be written as

Re�W� � −2Re�η�
�
x2� � y2� � x2− � y2−

4

�

� 2χ
�
x2� � y2� −

x2− � y2−
4

�
� 1

β22
; (20)

Im�W� � 2i Im�η��x�x− � y�y−� 	 i2Z�x�y− � y�x−�:
(21)

By making a further transformation into polar coordi-
nates, ρ� � �ρ�;ϕ��, and an appropriate use of trigono-
metric identities, it can be shown that the imaginary
portion of the cross-spectral density only vanishes when

tan Φ � ∓
Im�η�
Z

; (22)

where Φ ≡ ϕ� − ϕ−. It should be noted that these trans-
formations give us an imaginary part of W that depends
solely on the angle between ρ� and ρ−. Similarly, the real
part becomes

�−2Re�η� � 2χ�ρ2� � 1
2
�−Re�η� − χ�ρ2− �

1

β22
� 0; (23)

which depends solely on ρ�, ρ−, without any angular
dependence.

Equations (22) and (23) form the main results of this
Letter. They indicate that the singularity has a well-
defined structure in terms of the transverse sum and
difference vectors ρ� and ρ−. Equation (23) can be shown
to represent the equation of a hyperbola for all propaga-
tion distances, though the shape of the hyperbola evolves
on propagation. An example of this is illustrated in
Fig. 1(a). The hyperbolas are plotted at distances
z � 10 m, z � 100 m, and z � 1 km, for the case of
w0 � 1 mm, δ � 2 mm. For this value of δ, the beam
has little wander and is relatively coherent.

As the beam propagates, the hyperbolas angle away
from the ρ� axis and asymptotically approach the lines
ρ− � 	2ρ�. This is noteworthy, as a fully coherent beam
would have zeros only when either ρ1 � 0 or ρ2 � 0,
which can be seen from Eq. (16) to be the same condi-
tion. This is in agreement with the classic van Cittert–
Zernike theorem [18, Section 4.4.4] that indicates
that a field will become more coherent on propagation.
Remarkably, this suggests that a vortex, even in a ran-
domized beam, will in a sense reconstitute itself after
a sufficient propagation distance.

A second example, with δ � 8 mm, is shown in
Fig. 1(b). With this value of δ, the beam wanders greatly
and can be considered significantly incoherent. At short
propagation distances, the hyperbola very nearly meet at
the ρ− � 0 line; this indicates that, for incoherent vortex
beams, correlation singularities can be found at any ra-
dial distance from the center of the beam, provided
ρ1 ≈ ρ2. As the field propagates, again the hyperbolas an-
gle away and asymptotically approach the coherent limit.
However, it can be readily shown from Eq. (23) that the
upper and lower branches of the hyperbola will remain
separated by a distance Δρ− � 2δ for large values of z.
This implies that, for a large value of observation point
ρ1, the field will appear to have a coherent vortex at
the origin in ρ2. When ρ1 is close to the origin, however,
the zero hyperbolas deviate significantly from the
straight line coherent case. It could be said that, after
propagation, a correlation vortex will look coherent only
when one observation point is away from the origin.

The angular positions of these singularities undergo
a striking behavior on propagation, as illustrated in
Fig. 1(c). As the field propagates, the angle between
the vectors ρ� and ρ− quickly diverges from Φ � 0
and, for highly incoherent initial beams, approaches
∓π∕2, corresponding to a vortex charge ofm � 	1. This
“kink” in the location of the correlation singularities
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Fig. 1. Zero manifolds of a partially coherent vortex beam on propagation. (a) Radial positions on propagation for δ � 2 mm,
(b) radial positions on propagation for δ � 8 mm, and (c) angular positions on propagation. In all figures, w0 � 1 mm, λ � 500 nm.
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eventually returns toΦ � 0 over long propagation distan-
ces, though for highly incoherent fields it may never do
so for any practical distance (for δ � 20 mm, we still
have Φ � 0.1 even at z � 50 km).
The origin of this kink in the angle is a result of what

may loosely be called an interaction between the phase
due to the wavefront curvature R�z� and the phase of the
original vortex beam. At large distances, the wavefront of
the beam becomes locally flat, i.e., the surface of a large
sphere, and the phase is approximately planar near the
z axis. At intermediate propagation distances, however,
the two phases mix to produce a charge-dependent
change in the structure of the singularity. It is noted that
this angular shift may provide a noninterferometric
method for measuring the topological charge of a parti-
ally coherent vortex beam, as the charge can be deter-
mined from the location of the zeros, rather than the
phase structure of the beam.
These results represent the first theoretical treatment

of the full propagation characteristics of a partially
coherent vortex beam. We have found that the beam
evolves some features of a coherent vortex beam on suf-
ficient propagation, and that there exists a nontrivial
phase kink on propagation that is directly dependent
on the beam’s topological charge.

This research is supported by the U.S. Air Force Office
of Scientific Research (USAFOSR) under Grant FA9550-
13-1-0009.
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