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Designs of cloaking devices and more general invisible objects have primarily applied the techniques of transforma-
tion optics and scattering cancellation to derivematerial structures that achieve the desired effects. In this Letter, we
note that it is also possible to construct a broader class of invisible objects directly from the defining wave equation.
The technique is demonstrated in a scalar formalismwith illustrative examples. © 2015Optical Society of America
OCIS codes: (290.5839) Scattering, invisibility; (290.3200) Inverse scattering.
http://dx.doi.org/10.1364/OL.40.000986

Since the groundbreaking theoretical research on optical
cloaking devices published in 2006 [1,2], there has been
significant activity devoted to studying such devices and
investigating their implications beyond concealment [3].
Because of the complexity of the original designs and
the extreme optical properties in their construction,
much work has focused on finding alternatives to ideal
three-dimensional cloaks, usually sacrificing perfor-
mance for simplicity. For instance, so-called “carpet
cloaks” function with relatively small variations in refrac-
tive index by shielding an object on a surface from obser-
vation from above [4]. More recently, it has been shown
[5,6] that directional cloaks, which hide an object from
only a single direction of illumination, can be constructed
with low anisotropy and no magnetic materials.
The design of cloaking devices has primarily been done

with two broad techniques. The most prominent of these
is transformation optics [7], in which a mathematical
warping of space is reinterpreted as an optical material.
Also popular is scattering cancellation [8], in which two
or more layers or structures of a device are tuned to pro-
duce opposing scattered fields. Though effective, both of
these techniques are complicated anddonot represent the
complete set of possible cloaked structures.
In this Letter, we show that a wide variety of direction-

ally invisible objects, including directional cloaks, can be
constructed directly and without approximation from the
governing wave equation itself, subject to a number of
boundary conditions. We apply this technique to the con-
struction of invisible objects for scalar monochromatic
waves, and demonstrate their validity using computa-
tional wave calculations. The implications of this method
for cloak design, and its extension to vector electromag-
netic fields and other types of devices, are discussed.
We begin by considering a system in which a localized

inhomogeneous object of refractive index n�r� is illumi-
nated by a scalar monochromatic plane wave Ui�r� �
U0 exp�ikŝ0 · r� propagating in the direction ŝ0, as illus-
trated in Fig. 1. The total field U�r� satisfies the Helm-
holtz equation with an inhomogeneous wavenumber,

�∇2 � n2�r�k2�U�r� � 0; (1)

where k � ω∕c, ω being the frequency and c the vacuum
speed of light. As is typically done in scattering theory
([9], Section 13.1), we may introduce a scattering
potential, defined as

F�r� � k2

4π
�n2�r� − 1�; (2)

and with this rewrite the Helmholtz equation in the
inhomogeneous form,

�∇2 � k2�U�r� � −4πF�r�U�r�: (3)

To simplify this problem, we express the total field as a
sum of the incident field Ui�r� and the scattered field
Us�r�. The incident field satisfies the homogeneous
Helmholtz equation,

�∇2 � k2�Ui�r� � 0; (4)

which immediately leads us to the standard wave
equation for the scattered field,

�∇2 � k2�Us�r� � −4πF�r�U�r�: (5)

This differential equation is in general difficult to solve
because of the presence of the scattered field on both
sides. It is, however, quite convenient to apply in the
design of invisible objects.

We look in particular for objects that are invisible with
respect to the particular direction of illumination ŝ0. We
first note that Eq. (5) is structurally similar to the wave
equation for the field V�r� produced by a scalar primary
radiation source q�r�,

�∇2 � k2�V�r� � −4πq�r�: (6)
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Fig. 1. Illustrating the notation related to scalar scattering.
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We can therefore take advantage of techniques used
to construct so-called nonradiating sources, time-
harmonic primary sources that produce no field outside
their domain of excitation [10], to design an object that
produces no external scattered field. It has been shown
[11,12] that a necessary and sufficient condition for a
scalar field V�r�, localized to a domain D bounded by
a surface S, to represent a nonradiating distribution is
for V�r� and ∇V�r� to be continuous throughout the
domain and for

V�r�jS � 0;
∂V�r�
∂n

����
S
� 0; (7)

where ∂∕∂n represents the derivative normal to the sur-
face. In other words, the field and its normal derivative
must go smoothly to zero at the boundary of the domain
D. If any distribution satisfying these conditions is found,
the source q�r� producing the radiationless field can be
derived from Eq. (6).
We can apply the same reasoning to derive the exact

scattering potential of a nonscattering scatterer. Let us
express the scattered field as

Us�r� � Ui�r�U loc�r�; (8)

where U loc�r� is a field constructed to satisfy both of
Eqs. (7). By analogy with Eq. (6), this implies that the
scattered field will be localized and the scattering object
will be invisible. With our choice of Us, the total field in
the scattering case may be written as

U�r� � �1� U loc�r��Ui�r�; (9)

and on substitution into Eq. (5) we may directly solve for
the scattering potential,

F�r� � −

1
4π

∇2U loc�r� � 2ikŝ0 · ∇U loc�r�
1� U loc�r�

: (10)

This expression, together with Eq. (7) applied to Us, is
the main result of this Letter. It demonstrates that we can
design a scalar scattering potential that produces a local-
ized scattered field for a given direction of incidence ŝ0;
the object is invisible to illumination from that direction.
The scattering potential will be finite provided that
U loc�r� ≠ −1 anywhere within the domain D, a condition
easily avoided.
A few observations can be made about this method

before providing examples. First, it is to be noted that,
because Eqs. (7) are necessary and sufficient conditions
for a localized field, all possible invisible objects for the
scalar wave equation are encompassed by the method,
including any that are nonscattering for multiple direc-
tions of incidence. However, how easy it is to find the
corresponding field U loc remains an open question.
It is also important to note that the field and potential

relationship defined by Eq. (10) is exact, and does not use
any approximation such as the Born approximation. It
should also be noted that the separation given in
Eq. (8) is not essential, but is convenient to avoid

constructing potentials with rapid variations on the scale
of a wavelength.

Finally, we note that equation (10) will generally result
in a complex potential, and the potential will therefore
typically have regions with both positive and negative
real and imaginary parts. This suggests that the most gen-
eral directional cloaks for the scalar wave equation will
incorporate both gain and loss, and will also have regions
where the refractive index, related to the potential by
Eq. (10), is less than unity. The presence of gain and loss
in invisible structures is strikingly similar to the direc-
tional invisibility observed recently in PT-symmetric
structures [13,14] and, in fact, gain-loss structures have
been studied in recent years both with transformation
optics [15] and with scattering cancellation [16].

Gain and loss add significant complexity to the struc-
ture of an invisible object, and it is desirable to reduce or
eliminate them entirely. If we consider a complex field
U loc�r� in Eq. (10), we can readily derive a differential
condition for the imaginary part of F�r� and, hence
n�r�, to vanish. Assuming s0 � x̂, we have

��1� UR�∇2UI − UI∇2UR � 2k�UI∂xUI

� �1� UR�∂xUR� � 0; (11)

where we have written U loc � UR � iUI and ∂x ≡ ∂∕∂x.
This equation is nontrivial, and it is not immediately
obvious that it even has a solution. However, it provides
a clear and general condition for the existence of real
refractive index invisibility objects.

We now consider a pair of examples, one a simple
directional invisible object and the second a directional
cloak. For simplicity, we take the wavelength λ � 1 and
work with two-dimensional fields and scatterers, with
r � �x; y�. We design the scatterers to be nonscattering
for an incident field in the x-direction, so that Us�r� �
U loc�r� exp�ikx�, and choose rotationally symmetric
U loc for simplicity. It is to be noted that a rotationally
symmetric U loc cannot satisfy Eq. (11) because of the
presence of the x-derivative.

For the first example, we construct a scatterer local-
ized to a circle of radius r � 1, and choose

U loc�r� �
�
−

1
2
� r2 −

1
2
r4
�
� i

�
−

1
2
� r2 −

1
2
r4
�
: (12)

This particular field has been tailored to reduce the
imaginary part of F�r�, with −0.6 ≤ ImfFg ≤ 0.3, and
the field can readily be shown to satisfy Eqs. (7).

The scattered field is calculated numerically using a
Green’s function technique, analogous to ones used in
electromagnetic theory [17]. Figure 2(a) shows the field
illuminated by a plane wave propagating in the x-direc-
tion, while Fig. 2(b) shows the field illuminated by a
plane wave propagating 45° to the x-axis. It can be seen
that the object is nonscattering in the former case, and
significantly scattering in the latter.

We can go further and design a directional cloaking
device by implementing an additional boundary condi-
tion. If we require the scattered field on the boundary
of a centralized cloaking region to satisfy the constraint
Us � −Ui, the scattered field within will completely

March 15, 2015 / Vol. 40, No. 6 / OPTICS LETTERS 987



cancel the incident field. It is to be noted that this
condition results in the scattering potential becoming sin-
gular on this boundary, as discussed earlier, analogous to
the singular behavior that appears in the original three-
dimensional electromagnetic cloaks [2]. We consider an
object with inner cloaked region r < 1∕2 and an outer
boundary r � 1, and use the following as our localized
field:

U loc�r� � −

16
27

−

32
9
r2 � 80

9
r4 −

128
27

r6: (13)

ThisU loc satisfies Eqs. (7) at r � 1, as well as the afore-
mentioned cloaking constraint at r � 1∕2.
The fields for a pair of plane waves are shown in Fig. 3,

again calculated with a Green’s function technique. It can
be seen that the device is, in fact, acting as a directional
cloak, completely excluding fields (within numerical
accuracy) from the cloaked region for the appropriate
direction of illumination.
It is to be noted that this technique can be easily modi-

fied to study “nearly perfect” cloaks which possess no
singular behavior. For example, a “95% perfect” cloak
could be constructed by changing the inner boundary
condition to Us � −0.95Ui.
These simple examples illustrate that directionally

invisible objects can be readily constructed for scalar
wavefields directly from the governing wave equation.
An analogous method can be used to construct direc-
tional electromagnetic cloaks, starting instead with the
electromagnetic wave equation,

∇ × �∇ × Es� − k2Es � 4πF · E; (14)

where F is the scattering dyadic, defined as

F � k2

4π
�ϵ∕ϵ0 − I�; (15)

ϵ is the (generally anisotropic) permittivity, and I is the
identity dyadic. The equation is derived from the
monochromatic forms of Faraday’s law and the Maxwell-
Ampére law,

∇ × E � iωB; (16)

∇ × B � −iωμ0ϵ · E; (17)

assuming that μ � μ0 for the scatterer. Following argu-
ments similar to the scalar case and requiring all compo-
nents of the electric field to vanish smoothly at the
boundary of the scatterer, we can construct an expres-
sion for the scattering potential; this potential must in
general be anisotropic because the double curl of
Eq. (14) mixes the electric field components.

For example, if the illuminating field is a plane wave
propagating in the z-direction with polarization in the
x-direction and the scattered field is assumed to have
only an x-component as well, three elements of the scat-
tering dyadic are determined from the wave equation,
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Fig. 2. Total field produced on scattering from the object defined by the field of Eq. (12), for an incident wave propagating (a) in the
x-direction, and (b) along the diagonal between x and y.

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

x x

yy

(a) (b)

Fig. 3. Total field produced on scattering from the object defined by the field of Eq. (13), for an incident wave propagating (a) in the
x-direction, and (b) along the diagonal between x and y.

988 OPTICS LETTERS / Vol. 40, No. 6 / March 15, 2015



Fxx � �∂2x − ∇2
− k2�Es

x

4π�Ei
x � Es

x�
; (18)

Fyx � ∂x∂yEs
x

4π�Ei
x � Es

x�
; (19)

Fzx � ∂x∂zEs
x

4π�Ei
x � Es

x�
; (20)

where Ei
x and Es

x are the incident and scattered electric
fields, respectively. The other elements of F are only con-
strained by the physical properties of the scattering
dyadic.
The potential power in deriving invisible objects di-

rectly from wave equations comes from the freedom
of choice in designing the localized field. In additional
to designing single directional fields, it should be possible
to make scatterers that are nonscattering for N multiple
directions of incidence by tailoring the resulting scatterer
to be N -fold symmetric. Such objects would be more
general versions of the “nonscattering scatterers,” intro-
duced some time ago in the context of weak scattering
[18]. In the electromagnetic case, an appropriate tailoring
of all three localized field components could potentially
be used to construct an isotropic directional scatterer, or
to reproduce the original anisotropic all-directions cloak.
Though finding the appropriate symmetries of the local-
ized fields might be challenging, determining the
potential from these fields involves a straightforward
derivative relation.

As all invisible objects must satisfy the governing wave
equations, the discovery of new invisible and cloaking
structures is limited only by the ingenuity of the designer.
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