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1. INTRODUCTION

There has been increased recognition in recent years that sin-
gular optics [1,2], as a relatively unexplored area of classical
electromagnetism, holds great potential for new and innovative
technologies. This research area largely focuses on structures
known as optical vortices, which manifest as lines of zero am-
plitude in 3D space on which the phase of the field is undefined
(or singular) and around which the phase circulates. Besides
being of physical interest, fields with vortices have properties
that have been considered for a variety of practical techniques.
They have now been employed in multiple applications includ-
ing optical trapping [3], coronagraphy [4], spatial and temporal
coherence filtering [5], phase contrast microscopy [6], and
free-space optical communication [7].

While much of the present work has explored the properties
of fully coherent light, there are several practical considerations
that encourage the use of partially coherent light. For example,
partially coherent light has been shown to be more resistant to
degradation on propagation through a turbulent medium than
its fully coherent counterpart [8], making it of interest for free-
space optical communication. When used in imaging, partially
coherent light leads to less speckle [9].

However, there are a number of conceptual challenges that
arise when dealing with vortices in partially coherent light that
are not present in the fully coherent case, among them the lack
of a definite phase for fields that are not spatially coherent [10].
Researchers have instead investigated phase singularities in the
two-point correlation functions of partially coherent fields to
better understand the relation between coherence and vortices.
Such singularities have been studied theoretically [11–13] and
experimentally [14–17]; these structures are now called corre-
lation singularities, which are analogous to and related to coher-
ent optical vortices [18]. Beams with correlation singularities
may be particularly useful for the aforementioned free-space
optical communications, where the stability of this class of

vortices is of great interest, as a major hurdle for such technol-
ogies has been the loss of information in free-space transfer.

At present, while it has been shown that optical and corre-
lation singularities produced by a system are related, the under-
standing of that relationship remains limited, in no small part
due to the complicated nature of correlation singularities.
Because correlation functions characterize the field fluctuations
between two points in space, twice the number of variables is
required per spatial dimension considered. A 2D description
requires four variables and a 3D description requires six. There
has been a large body of work exploring PCVBs with a first
order vortex in a 2D transverse plane [19–21], and we have
previously published the full solution for a propagating first
order PCVB in six variables [22]. The only other recent work
on partially coherent Laguerre–Gauss beams as a class used an
elaborate modal construction and did not explore their vortex
structures or correlation singularities [23].

In this paper, we determine a generalized solution for par-
tially coherent Laguerre–Gauss beams of radial order zero. The
result is a new infinite set of partially coherent vortex beams
whose propagation and statistical properties can be described
analytically. By considering the case where the radial order
n � 0 and the azimuthal order m ∈ Z, we are able to gain
new insight into the behavior of such partially coherent
Laguerre–Gauss beams, including a description of their orbital
angular momentum characteristics, and can better evaluate
their suitability for a variety of applications.

2. CALCULATION

When working with partially coherent beams, it is mathemati-
cally convenient to work in the frequency domain with the
cross-spectral density function W �r1; r2;ω�, which can be
expressed as [24]

W �r1; r2;ω� � hŨ �r1;ω�U �r2;ω�iω; (1)
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where h� � �iω represents an average over an ensemble of mono-
chromatic fields. We use a tilde to represent the complex con-
jugate for notational convenience throughout the paper. As the
complete spatial coherence properties of a quasimonochromatic
field centered at ω0 are well-approximated by the value of the
cross-spectral density at ω0, we will suppress ω for brevity, and
assume a quasimonochromatic field.

We begin with the equation for a monochromatic Laguerre–
Gauss beam of radial order 0, azimuthal order�m, withm ≥ 0.
Such a wave field can be written as

U �x; y; z� � C�x � iy�m exp

�
−
1

σ2
�x2 � y2�

�
exp�−iωt	;

(2)

where

C ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πw2
z jmj!

s � ffiffiffi
2

p

wz

�jmj
exp�−iΦ�z�	: (3)

In these expressions, Φ�z� represents the Gouy phase shift,
while σ is defined as

1

σ2
� 1

w2
z
� ik

2Rz
: (4)

The quantity wz is the beam width at propagation distance
z, defined by

wz � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
z
zR

�
2

s
; (5)

with w0 the width of the beam in the waist plane z � 0. The
quantity Rz is the radius of curvature

Rz � z
�
1�

�
zR
z

�
2
�
: (6)

Finally, we note that k � ω∕c � 2π∕λ is the wavenumber
of the light wave, and zR � πw2

0∕λ is the Rayleigh range of
the beam.

In discussing correlation singularities, we restrict ourselves
to the case where both r1 and r2 reside in the same transverse
z plane, i.e., z1 � z2 ≡ z, since it was shown in [22] that sin-
gularities only appear in this case. We can use Eq. (2) to gen-
erate mth-order partially coherent beams from a so-called beam
wander model [20], which describes a partially coherent beam
as a Laguerre–Gauss beam propagating in the z direction with a
central axis which is a random function of transverse position.
This model may be realized with a cross-spectral density of the
form

W �r1; r2� �
Z

Ũ �r1 − r0�U �r2 − r0�f �r0�d2r0; (7)

where r0 is the transverse position of the axis. We assume the
axis position is randomly distributed as a Gaussian:

f �r0� �
1

πδ2
exp

�
−�x20 � y20�

δ2

�
; with r20 � x20 � y20: (8)

As f �r0� is a probability density, it has been normalized
such that the integral over the entire transverse plane is equal
to unity. Here δ is a coherence parameter indicating the RMS
wander of the axis; a large value of δ corresponds to more

wander and consequently lower spatial coherence. Thus we
may write the cross-spectral density integral as

W �r1; r2� �
jC j2
πδ2

Z
��x1 − x0� 
 i� y1 − y0�	m

× ��x2 − x0� � i� y2 − y0�	m

× exp
�
−
1

σ̃2
��x1 − x0�2 � � y1 − y0�2	

�

× exp
�
−
1

σ2
��x2 − x0�2 � � y2 − y0�2	

�

× exp
�
−
x20 � y20

δ2

�
dx0dy0: (9)

This integral can be solved analytically by judicious use of
the binomial theorem, which allows us to reduce it to a sum of
integrals of Gaussian form with known solutions. Those not
interested in the lengthy derivation can skip directly to the
result [Eq. (27)].

We begin by completing the square with respect to x0 and y0
in the exponents, with the introduction of the quantities

A ≡
1

σ̃2
� 1

σ2
� 1

δ2
� 2

w2
z
� 1

δ2
; (10)

Bx ≡
�
x1
σ̃2

� x2
σ2

�
; (11)

By ≡
�
y1
σ̃2

� y2
σ2

�
: (12)

The result puts the cross-spectral density into the form

W �r1;r2��
jC j2
πδ2

exp�B2
x∕A	exp�B2

y∕A	

× exp
�
−
1

σ̃2
�x21� y21	

�
exp

�
−
1

σ2
�x22� y22	

�

×
Z

��x1 −x0�
 i� y1 − y0�	m��x2 −x0�� i� y2 − y0�	m

× exp�−A�x0 −Bx∕A�2	exp�−A� y0 −By∕A�2	dx0dy0:
(13)

The exponential factors outside of the integral do not sig-
nificantly affect the phase structure of the field; for brevity, we
combine them into a new function:

D�r1; r2� ≡
jC j2
πδ2

exp

�
−
1

σ̃2
ρ21

�
exp

�
−
1

σ2
ρ22

�
× exp�B2

x∕A	 exp�B2
y∕A	; (14)

with ρ21 � x21 � y21, and a similar expression for ρ22. We now
make the coordinate transformation,

X ≡ x0 −
Bx

A
; (15)

Y ≡ y0 −
By

A
; (16)

and introduce the notation
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H�
j ≡ xj � iyj −

�
Bx

A
� i

By

A

�
; j � 1; 2: (17)

Our integral for the cross-spectral density then takes on the
relatively simple form

W �r1; r2� � D�r1; r2�
Z

�H

1 − �X 
 iY �	m exp�−AX 2	

× �H�
2 − �X � iY �	m exp�−AY 2	dX dY : (18)

This integral is still too difficult to directly evaluate. We may
now, however, apply the binomial expansion twice to the
integrand, such that

�H

1 − �X 
 iY �	m �

Xm
k�0

�
m
k

�
�−H


1 �m−k�X 
 iY �k; (19)

�H�
2 − �X � iY �	m �

Xm
l�0

�
m
l

�
�−H�

2 �m−l �X � iY �l : (20)

We then have

W �r1; r2� � D�r1; r2�
Xm
k�0

Xm
l�0

�
m

k

��
m

l

�

×
Z

�−H

1 �m−k�X 
 iY �k exp�−A�X 2 � Y 2�	

× �−H�
2 �m−l �X � iY �ldX dY : (21)

We now note that the integrand has rotational symmetry
about the �X ; Y � origin. By moving into polar coordinates such
that

X � iY ≡ ρeiϕ; (22)
we can further simplify the integral to the form

W �r1;r2� �D�r1;r2�
Xm
k�0

Xm
l�0

�
m

k

��
m

l

�

× �−H

1 �m−k�−H�

2 �m−l

×
Z

ρk�l exp�−Aρ2	 exp��i�l − k�ϕ	ρdρdϕ: (23)

The integral over ϕ results in a Kronecker delta, 2πδlk.
Summing over l then reduces the double sum to a single
sum, with l � k. The cross-spectral density then appears as

W �r1; r2� � 2πD�r1; r2�
Xm
l�0

�
m

l

�
2

�−H

1 �m−l �−H�

2 �m−l

×
Z

∞

0

ρ2l�1 exp�−Aρ2	dρ: (24)

The remaining integral can be directly related to the
Gamma function, so that

W �r1; r2� � 2πD�r1; r2�
Xm
l�0

�
m

l

�
2

�H

1 �m−l �H�

2 �m−l

×
Γ�l � 1�
2Al�1

; (25)

where Γ�l � 1� is the Gamma function.
In this form, it is difficult to see the functional dependence,

as H�
j also depends on the position vectors r1 and r2. It is

readily found, however, that we may write

H�
2 �

�
1 −

1

σ2A

�
�x2 � iy2� −

1

σ̃2A
�x1 � iy1�; (26)

with a similar expression for H

1 . We may finally write a

complete expression for the cross-spectral density of a PCVB
of any azimuthal order as

W �r1; r2� � πD�r1; r2�
(Xm−1

l�0

�
m

l

�
2 Γ�l � 1�
A2m−l�1

×
�
1

α̃2
�x2 � iy2� −

1

σ̃2
�x1 � iy1�

�
m−l

×
�
1

α2
�x1 
 iy1� −

1

σ2
�x2 
 iy2�

�
m−l

� Γ�m� 1�
Am�1

)
; (27)

where

1

α2
≡
�
1

σ2
� 1

δ2

�
: (28)

Equation (27) is the main result of this paper. It is an ana-
lytic expression for an entire class of partially coherent vortex
beams of any azimuthal order, at any propagation distance.

We may make a few basic observations from this result.
First, it can be straightforwardly shown that the exponential
factor D�r1; r2� may be rewritten as

D�r1; r2� �
jC j2
πδ2

exp

�
−

ρ22
Aσ2δ2

�
exp

�
−

ρ21
Aσ̃2δ2

�

× exp
�
−
jρ1 − ρ2j2
Ajσj4

�
: (29)

This indicates that the exponential factors have the form of a
Gaussian–Schell model beam (Section 5.3.1 of [25]), in which
the spatial coherence depends only on the difference between
the two points r1 and r2. However, the cross-spectral density in
its entirety, represented by Eq. (27), is not Schell model, due to
the vortex terms.

The correlation length of the beam can be estimated from
the scaling factor 1∕Δ2 ≡ 1∕Ajσj4 of Eq. (29), which in the
plane z � 0 takes on the simple form

Δ2 � 2w2
z �

w4
z

δ2
: (30)

For small values of δ, the correlation length is approximately
Δ ∼ w2

z∕δ, demonstrating the inverse relation between beam
wander and coherence.

It is to be noted that the correlation length has a minimum
limiting value given by 2w2

z as δ → ∞ in this model. This lower
limit arises because the partially coherent field is constructed
from coherent beams of effective width 2w2

z . Beams with a
smaller correlation length can be made by simply using a
smaller width beam in the beam wander model.

If m � 1, our expression for the cross-spectral density
reduces to
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W �r1; r2� �
πD�r1; r2�

A3

��
1

α̃2
�x2 � iy2� −

1

σ̃2
�x1 � iy1�

�

×
�
1

α2
�x1 
 iy1� −

1

σ2
�x2 
 iy2�

�
� 2A

�
: (31)

This expression agrees with Eq. (10) of [20], which was the
original derivation of the m � 1 case.

Ifm � 0, we are looking at the wandering of a fundamental,
non-vortex Gaussian mode. Our expression reduces to

W �r1; r2� �
πD�r1; r2�

A
: (32)

This is, as can be seen simply from Eq. (29), a Gaussian–
Schell model beam.

We are now interested in studying how the vortex structure
of coherent vortex beams is conveyed to the correlation func-
tion when the spatial coherence of the beam is reduced or,
equivalently, the beam is allowed to further wander. Correlation
vortices exist at those pairs of points r1 and r2 for which
RefW g � 0 and ImfW g � 0. We next study the behavior
of such singularities in detail.

3. PROJECTIONS OF SINGULARITIES

Even when considered only in a transverse plane, it is difficult
to visualize the behavior of correlation singularities because they
depend on two transverse position vectors, r1 and r2, and thus
four variables. It is therefore often convenient to hold one of the
position vectors constant, to be called the fixed point, and to
plot the phase in the two variables of the other. This projection
of the correlation function allows us to obtain a clear picture of
the characteristics of any singularities for a variety of conditions.

We begin by considering the behavior of an m � 3 PCVB
and its associated singularities as the coherence decreases, as
illustrated in Fig. 1. In this figure, and those that follow, we
consider the field in the waist plane z � 0. Figs. 1(a), 1(c),
and 1(e) show the color-coded phase of the correlation function
as δ increases. However, as it is sometimes difficult to spot the
vortex core in these color plots, the zeros of the real and imagi-
nary parts of the cross-spectral density are shown in Figs. 1(b),
1(d), and 1(f ); crossings of these zero lines represent vortices.
The fixed point is taken to reside along the y axis.

For a highly coherent beam, Figs. 1(a) and 1(b), there is
effectively a single third-order vortex at the origin, as would
be expected for a fully coherent beam. The phase increases
by 6π, or three 2π increases, as one follows a closed counter-
clockwise path around the origin.

As the coherence decreases, Figs. 1(c) and 1(d), the central
singularity separates into three first-order singularities, all
residing along the y axis. This breakup is expected, as it is
well-known that only first-order singularities are stable under
wave-field perturbations; such perturbations include a decrease
in coherence. The singularities reside along the y axis because
the fixed point is on that axis, and the fixed point provides the
only break in the rotational symmetry of the problem.

As the coherence further decreases, Figs. 1(e) and 1(f ), new
singularities appear, of equal and opposite signs of the original
singularities, coming in from the point at infinity. As optical
vortices themselves do not possess any energy or inertia, they

are able to move, in essence, “infinitely fast,” coming from
infinity to a finite distance with a finite change in coherence.
In the low-coherence limit, the equiphase contours around each
vortex compress, resulting in two step-like jumps of π, as one
goes around a vortex instead of a smooth 2π ramp.

The existence of these vortices can be seen in Eq. (27),
which indicates that the cross-spectral density contains a
2mth-order polynomial in z2 � x2 � iy2 or alternatively can
be thought to be an mth-order polynomial in z2 and an
mth-order polynomial in z̃2. We expect there to be 2m distinct
roots to this polynomial, which suggests 2m vortices, m of
which are left-handed and m of which are right-handed.

It is striking that, in Fig. 1(f ), we see that the vortices do not
in fact reside along a straight line but instead reside on circles
formed by circular real and imaginary zeros of the cross-spectral
density. This is distinct from the m � 1 case, discussed in [21],
in which it was shown that, in the waist plane of the beam, the
two correlation vortices reside along a straight line, which in-
tersects the origin. It can be shown in Eq. (27) that this is only
approximately true for the jmj > 1 case when the field is highly
coherent. The circles associated with the zero of the real part
of the cross-spectral density can be found by taking the limit

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Phase of the cross-spectral density of a PCVB with m � 3.
For each of the images above, the beam waist w0 � 5 mm,
λ � 500 nm, �x1; y1� � �0.0; 0.001� m, and m � 3. Phase plot for
a beam with (a) δ � 0.00001 m, (c) δ � 0.001 m, (e) δ � 0.1 m.
Real and imaginary parts with locations of vortices circled for beam
with (b) δ � 0.00001 m, (d) δ � 0.001 m, (f ) δ � 0.1 m.
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δ → ∞ in Eq. (27); with some effort, one arrives at the follow-
ing expression for the cross-spectral density:

W �r1; r2� � πD�r1; r2�
w2m�2
z

2m�1

(Xm−1
l�0

�
m

l

�
2

Γ�l � 1�

× �−1�m−l jz2 − z1j2�m−l� � Γ�m� 1�
)
; (33)

where we have used z1 � x1 � iy1, and so forth, for brevity.
This expression is completely real-valued and is a 2mth-order
polynomial in jz2 − z1j, indicating that the 2m zeros of the real
part of W �r1; r2�, with respect to r2, reside on circles centered
on r1.

The zeros of the imaginary part of W �r1; r2� come from
returning to Eq. (27) and keeping the lowest-order terms with
respect to 1∕δ2. The condition for the imaginary part of
W �r1; r2� to vanish is then of the form

y1
x1

� y2
x2

; (34)

or that the zeros with respect to r2 reside approximately on a
straight line going through the point r1 and the origin. When
higher-order terms of 1∕δ2 are included, this straight line
becomes curved.

It should be noted that the circles of Eq. (33) have finite
radii as δ → ∞; we interpret this as a consequence of the fact
that the correlation length of the field never approaches zero, as
indicated by Eq. (30). This suggests that a more advanced
model of partially coherent vortex beams will be needed to
study the effect of low spatial coherence of vortices. We also
note that the position of the vortices changes in a nontrivial
way when the field propagates, as was discussed for the m � 1
case in [22].

A detailed view of the equal and opposite sets of vortices can
be seen for different values of m in Fig. 2. Now all the vortices
reside approximately along a diagonal line running through the
origin, as the fixed point has been placed on the diagonal. In
this larger transverse cross-section of the beam, the individual
groups of positive and negative vortices each appear in the
figure as a single high-order vortex.

It is to be noted that it is necessary to have the fixed point
displaced from the central beam axis if vortices are to be
observed. When r1 resides directly on axis, the system is com-
pletely rotationally symmetric with respect to r2, and the only
singularities observed are zero circles, known as ring disloca-
tions, as seen in [14].

4. TOPOLOGICAL CHARGE

As seen in previous examples, the phase always changes by an
integer multiple of 2π when one follows a closed counterclock-
wise trajectory around a vortex; this integer is known as the
topological charge. It can be shown that the net topological
charge of a vortex beam is in general conserved, and typically
vortices only appear or disappear in pairs of equal and opposite
charge that conserves the net charge. These properties of
vortices, discreteness, and stability make them of interest for
free-space optical communications because they indicate that
a vortex might be a turbulence-resistant carrier of information
[26]. However, we have seen from examples such as in Fig. 2
that the net topological charge of a PCVB evidently decreases as
the coherence is decreased; here we quantify this effect.

It is to be noted that there are two possible ways to describe
the topological charge of the PCVBs considered here. Provided
the field fluctuations are slow enough, the instantaneous topo-
logical charge within an aperture could be measured and the
average value calculated. Using the beam wander model, the
measured topological charge will be m if r0 resides within a
circular aperture A of radius a and 0 if r0 resides outside
the aperture. The average topological charge t of a beam will
be given by

t � m
Z
A
f �r0�d2r0 � m�1 − exp�−a2∕δ2�	: (35)

If δ � 0, t � m and if δ → ∞, t → 0.
Typically, however, we might expect the fluctuations of the

field to be too fast to directly measure; in such a situation, we
can only measure the topological charge of the cross-spectral
density. To do so, one must choose a fixed point r1 and
determine the charge with respect to the point r2.

Figure 3 shows the topological charge of PCVBs of three
different orders as a function of δ. The topological charge is
calculated within a circular aperture of radius a � 1 cm,
and the loss of charge is shown for two different positions
of the fixed point in Figs. 3(a) and 3(b).

It can be seen that, as δ increases and coherence therefore
decreases, the topological charge is lost in discrete drops.
Evidently the charge is more robust for a fixed point farther
away from the origin, but it is still lost even with a wander
parameter δ much smaller than the aperture size. Higher-order
beams maintain some amount of charge longer than lower-
order beams, while lower order beams maintain their initial

Fig. 2. Phase of the cross-spectral density of a PCVB of different
vortex orders. For each of the images above, the beam waist
w0 � 5 mm, λ � 500 nm, �x1; y1� � �0.001; 0.001� m, and δ �
0.001 m. (a) m � 1, (b) m � 2, (c) m � 3, (d) m � 4. The pairs
of clockwise and anticlockwise vortices can be seen to lie approxi-
mately along the line x � y. For every increase in order, another pair
is formed.
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charge for higher values of δ. This result suggests that the use of
vortices and partial coherence together in any application will
naturally involve a trade-off: though partially coherent beams
typically propagate through the atmosphere with smaller inten-
sity fluctuations than their fully coherent counterparts; these
beams also will typically start out with a topological charge
reduced from the fully coherent case. The optimal balance
of vortex and coherence properties will no doubt depend on
the specifics of the application.

We have already seen that this loss of topological charge can
be attributed to the appearance of oppositely charged vortices
from infinity. An alternative way to explain the effect, perhaps
more readily understandable, is to return to the beam wander
model. As the coherence is decreased, and the beam is allowed
to wander more from the central axis, it will spend more time
with its vortex lying outside of the region of the aperture and
remain undetectable. One would expect that the topological
charge of the cross-spectral density would therefore also be
reduced, similar to the loss that appears in Eq. (35).

5. ORBITAL ANGULAR MOMENTUM

It has long been known [27] that a vortex structure in an optical
beam is associated with the orbital angular momentum (OAM)
of the beam, though it is also known that the relationship
between vortices and OAM is only simple in the case of pure
vortex beams [28]. We conclude this paper by studying how
the OAM of PCVBs depend on the state of coherence.

The physical quantity of relevance is the z component of
the orbital angular momentum flux density flowing across a
plane of constant z, which represents the flux density of
OAM as a function of position in the cross section of the beam.
For a partially coherent field, this flux density may be expressed
as [29]

Lorbit�r; r 0;ω� � −
ε0
2k

Im

�
y
∂
∂x 0

W yy�r; r 0;ω�

− x
∂
∂y 0

W yy�r; r 0;ω� − x
∂
∂y 0

W xx�r; r 0;ω�

�y
∂
∂x 0

W xx�r; r 0;ω�
�

r�r 0
: (36)

(The analogous expression in Ref. [29] contained a sign
error that has been corrected here.) For an unpolarized beam
with W xx � W yy � W , the expression simplifies to

Lorbit�r;ω� �
−ϵ0
k

Im

�
y
∂
∂x 0

W �r;r 0;ω�−x ∂
∂y 0

W �r;r 0;ω�
�

r�r 0
:

(37)

On substitution from Eq. (27) into Eq. (37), we have

Lorbit�r;ω� � β
πϵ0
k

exp�−2r2∕w2
zβ	 ×

Xm−1
n

Cm
n �m − n�r2�m−n�;

(38)

where we have defined

Cm
n ≡

�
m
n

�
2 jC j2
πδ2

Γ�n� 1�
An�1 β−2�m−n�; (39)

with

β ≡
�
1� 2δ2

w2
z

�
; (40)

and r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
.

This unnormalized quantity depends on the intensity of the
light beam as well as the density of angular momentum. We
may define a normalized orbital angular momentum flux den-
sity, which roughly describes the orbital angular momentum
per photon of a vortex beam as a function of radial position,

l orb�r;ω� �
ℏωLorbit�r;ω�

S�r;ω� ; (41)

where S�r;ω� is the z component of the Poynting vector,

S�r;ω� � k
μ0ω

W �r; r;ω� (42)

� πk
μ0ω

exp�−2r2∕w2
zβ	

Xm
n�0

Cm
n r2�m−n�: (43)

With a small amount of effort, the normalized OAM flux
density can be shown to be of the form

l orb�r;ω� � ℏβ

Pm−1
n�0 C

m
n �m − n�r2�m−n�Pm−1

n�0 C
m
n r2�m−n� � Cm

m
: (44)

From this expression, the behavior of the angular momen-
tum density as a function of vortex order can be evaluated. For
small values of r, the expression takes on the approximate form

l orb�r;ω� ≈ ℏ

�
1� 2δ2

w2
z

�
Cm

m−1r
2

Cm
m

; (45)

behaving in a roughly quadratic fashion, while for larger values
of r, the effect of the Cm is negligible, and the value approaches
a constant value of

l orb�r;ω� ≈ mℏ
�
1� 2δ2

w2
z

�
: (46)

Taken together this describes a Rankine vortex, already dis-
cussed for the first order case in [29,30]; an illustration of the
OAM flux density as a function of radial position for different
values of δ is shown in Fig. 4. There are several features of in-
terest here. As can be seen from Eq. (46) or from Fig. 4(a), the
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Fig. 3. Topological charge of a PCVB as a function of beam
wander. The beam waist w0 � 5 mm, and λ � 500 nm. The detector
radius was set at 1 cm. As δ increases, the coherence of the beam
decreases, and the detectable topological charge drops. (a) �x1; y1� �
�.0001; .0001� m, (b) �x1; y1� � �.001; .001� m. Shifting the fixed
point farther away from the origin has the same effect as increasing
the coherence.
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value of the OAM at large r increases by integer multiples of the
OAM of a first order (m � 1) beam for a highly coherent beam.
Additionally, a highly coherent beam acts much like a pure
fluid-like rotator (angular momentum independent of radial
distance), while a highly incoherent field acts much like a pure
rigid-body rotator (angular momentum is quadratic with radial
distance). By decreasing the spatial coherence of a vortex beam,
one can increase the density of orbital angular momentum at
the fringes of the beam, at the cost of reducing it dramatically at
the beam center.

6. CONCLUSION

In this paper, we have laid out a complete description of a new
class of beam: the partially coherent vortex beam constructed
from randomized Laguerre–Gauss beams. This class of beams
has a fully analytic form with a regular, predictable behavior
that does not rely on computational methods for study. Each
order of the beam increases the orbital angular momentum by
an integer multiple of the orbital angular momentum of the
first order, and the topological charge is detectable for beams
with a coherence parameter δ < 0.0001 m. With this im-
proved understanding, researchers are now better equipped
to make use of this beam class in a variety of applications.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA9550-16-1-0240).
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Fig. 4. Normalized orbital angular momentum flux density for
different states of coherence. For each of the images above, the beam
waist w0 � 5 mm and λ � 500 nm. (a) δ � 0.001 m, (b) δ �
0.01 m, (c) δ � 0.1 m. Note the increasing range required to view
the Rankine vortex structure as the coherence decreases.
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