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We introduce a new class of partially coherent vortex beams in which the angular momentum of the beam is
provided from two different sources: the underlying vortex of the random beam and the “twist” given to the
ensemble of beams. The statistical and propagation properties of such beams are investigated, and their orbital
angular momentum properties are analyzed. The combination of distinct orbital angular momentum sources
allows unusual behaviors that were previously unobserved. © 2018 Optical Society of America
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1. INTRODUCTION

In recent years, beams possessing wavefield singularities have
become of increasing importance in optical applications.
The most familiar singularities are those of scalar waves and
they manifest as lines of zero amplitude in 3D space on which
the phase of the field is undefined, or singular. Around these
lines, the phase has a circulating structure, which had led them
to be referred to as optical vortices. The study of such vortices,
and more sophisticated singularities, has become a subfield of
optics in its own right known as singular optics [1–3]. Optical
vortices have now been employed in a number of applications,
including coronagraphy [4], coherence filtering [5], and phase
contrast microscopy [6]. Beams with optical vortices also carry
orbital angular momentum (OAM), and this angular momen-
tum has been applied to optical tweezing [7] and the design of
light-driven machines [8].

Perhaps the most significant application under considera-
tion is the use of vortices in free-space optical communications
(FSOC) [9]. It has been shown that information can be multi-
plexed using different OAM modes, greatly increasing the data
transmission rate [10]. However, it has also been demonstrated
that atmospheric turbulence tends to induce cross talk between
different modes, regardless of whether one uses the topological
phase [11] or OAM [12,13] of the beam as the carrier of
information.

One strategy for improving the behavior of such beams in
turbulence is by making them partially coherent, as partially
coherent beams have long been known to have resistance to
turbulent fluctuations [14]. Several broad classes of partially
coherent beams with OAM are known to exist, including the
venerable twisted Gaussian Schell-model (tGSM) beams [15]
and a recently discovered class of partially coherent vortex beams
we will call Rankine beams [16]. It has been shown that these
classes have distinct orbital angular momentum properties [17],

with the former acting analogous to a rigid body rotator and the
latter acting like a Rankine vortex.

Both the Rankine beams and the tGSM beams [18] can be
constructed using a superposition model, in which a weighted
ensemble of modes with different transverse axes are incoher-
ently superimposed to produce the cross-spectral density. In the
former case, the ensemble is a set of vortex modes, while in
the latter case the ensemble is a set of tilted Gaussian modes.
The similarity in their design suggests that we can create a beam
which combines the features of the two distinct classes of
partially coherent OAM beams, which we call twisted vortex
Gaussian Schell-model beams (tvGSM). Such beams have their
OAM determined both by a discrete vortex order as well as a
continuous twist parameter, which suggests unprecedented
control over the OAM. In this paper we derive the propagation
and OAM characteristics of such tvGSM beams.

2. TVGSM MODEL

To study the properties of partially coherent beams, it is most
useful to work in the frequency domain with the cross-spectral
density function W �r1, r2,ω�, which can be written as [19]

W �r1, r2,ω� � hŨ �r1,ω�U �r2,ω�iω, (1)

where h� � �iω represents an average over an ensemble of mono-
chromatic fieldsU �r,ω�. For convenience, we will use a tilde to
represent the complex conjugate throughout the paper. As we
will only consider quasi-monochromatic fields, for which the
cross-spectral density at a single frequency is a good approxi-
mation, we will suppress the expression of ω going forward.

It is to be noted that the cross-spectral density may always be
factorized in the following form:

W �r1, r2� �
ffiffiffiffiffiffiffiffiffiffi
S�r1�

p ffiffiffiffiffiffiffiffiffiffi
S�r2�

p
μ�r1, r2�, (2)
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where S�r� is the spectral density, or intensity, of the field at
frequency ω, and μ�r1, r2� is the spectral degree of coherence.
The spectral degree of coherence is a measure of the correlations
between the two points, with jμj � 1 representing full coher-
ence and jμj � 0 representing complete incoherence.

We consider a cross-spectral density which may be repre-
sented as an average over a position-dependent mode U �r, r0�,
in the form

W �r1, r2� �
Z

P�r0�Ũ �r1, r0�U �r2, r0�d2r0, (3)

where the integral is over all transverse positions r0 and P�r0� is
a probability density. We take this probability density to be of
Gaussian form

P�r0� � P0 exp�−�x20 � y20�∕2σ2�, (4)

where σ is the width of the probability function. A model of the
form of Eq. (3) was originally used in [20] to model a vortex
beam with a wandering central axis, and has been referred to as
the beam wander model. It may also be considered a special case
of a general method for devising correlation functions intro-
duced by Gori and Santarsiero [21].

For the Rankine beams [16], the modes in question were
taken to be simple Laguerre–Gaussian beam modes, of the form

U �r, r0� �
U 0

Δm exp�−��x − x0�2 � �y − y0�2�∕2Δ2�
× ��x − x0� � i�y − y0��m, (5)

where Δ is the width of the Gaussian envelope. For tGSM
beams [18], the modes are taken to be fundamental Gaussian
modes with position-dependent tilts, of the form

U �r, r0� � U 0 exp�−��x − x0�2 � �y − y0�2�∕2Δ2�
× exp�2πiα�x0y − y0x��, (6)

where α is a real-valued “twist parameter.”
For the new class of tvGSM beams, we combine the two

mode types into one, of the form

U �r, r0� �
U 0

Δm exp�−��x − x0�2 � �y − y0�2�∕2Δ2�
× exp�2πiα�x0y − y0x����x − x0� � i�y − y0��m, (7)

which includes both a position-dependent vortex core along
with the tilts that result in the twist phase of a tGSM beam.

To study the propagation of such beams, we can simply
propagate the individual modes of Eq. (7) and then combine
them using Eq. (3) at any propagation distance. The mode at
any distance z can be written in the form

U �r, r0, z� �
U 0

β
exp�ik0z�

��x � iy� − �1� iγ��x0 � iy0��m
�Δβ�m

× exp�jr − r0j2∕2Δ2β� exp
�
−i
πγα

β
jr0j2

�
× exp�2πiα�yx0 − xy0�∕β�, (8)

where

γ ≡
2παz
k0

, (9)

β ≡ 1 −
z

ik0Δ2 , (10)

and k0 is the free-space wavenumber. A quick derivation of this
result is given in Appendix A. It can be readily shown that
Eq. (8) reduces to Eq. (7) when z � 0.

On substitution of Eq. (8) into Eq. (3), one can, after quite
lengthy derivations, find the following result for the cross-
spectral density at any distance z:

W �r1, r2, z� � C�z�F�r1, r2, z�
Xm
k�0

ak�D1D2�m−k: (11)

This expression uses a lot of defined functions to make it
vaguely comprehensible. First, the series coefficient ak is of
the form

ak �
�
m
k

�
2 Γ�k � 1�
A4m−2k�2

, (12)

where �mk� is the binomial coefficient. The function C�z� is of
the form

C�z� � �1� γ2�mπ P0jU 0j2
jβj2

1

jΔβj2m , (13)

which takes into account the trivial propagation properties of
the beam. The constant A is defined as

A2 � 1

Δ2jβj2 �
4π2α2z2

k20Δ2jβj2 �
1

2σ2
, (14)

and it is a real-valued factor that helps characterize the
spreading properties of the beam. The vortex properties of
the beam are represented by the factors D1 and D2, which
may be written as

D1 ≡
�

A2

1 − iγ
−

1

2Δ2β̃
−
πα

β̃

�
�x1 − iy1� −

�
1

2Δ2β
−
πα

β

�
�x2 − iy2�,

(15)

D2≡
�

A2

1� iγ
−

1

2Δ2β
−
πα

β

�
�x2� iy2�−

�
1

2Δ2β̃
−
πα

β̃

�
�x1� iy1�:

(16)

It is trivial to verify that the product D1D2 satisfies the
Hermitian property necessary for cross-spectral densities, i.e.,
W 	�r1, r2� � W �r2, r1�.

The final component of Eq. (11) is F�r1, r2, z�, and one can
show that it has the form of a twisted Gaussian Schell-model
beam:

F �r1, r2, z� � exp�−N 2r21� exp�−Ñ 2r22� exp�−M 2jr2 − r1j2�

× exp
�

2πiα
A2jβj2Δ2 r1 ∧ r2

�
, (17)

where

N 2 ≡
β

4σ2Δ2A2jβj2 −
2π2α2z

A2jβj2ik0Δ2 , (18)

M 2 ≡
1

2A2jβj2
�

1

2Δ4
� 2π2α2

�
, (19)
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and r1 ∧ r2 represents the z-component of the curl of the two
transverse vectors. The derivation of Eq. (11), which is the key
formula of the paper, is rather lengthy and an outline of it is
therefore relegated to Appendix B.

We may broadly separate the noteworthy characteristics of
the beam into three categories: the spatial coherence, the topo-
logical characteristics, and the orbital angular momentum. We
consider each of these in turn. Going forward, we will take the
wavelength λ � 1550 nm and the beam width Δ � 2 cm.

It is to be noted that, even with these constraints, we have
three free parameters to tune the characteristics of the beam: the
wander parameter σ, the twist phase α, and the vortex order m.
If we want all of our modes to be propagating, the twist phase
has an absolute upper maximum of

αmax �
k0
2πσ

: (20)

This is determined by requiring that the maximum tilt of any
mode in Eq. (7) have a transverse wavenumber less than the
free-space wavenumber. In practice, for the beam to be paraxial,
the value of α must be much smaller than αmax.

3. COHERENCE CHARACTERISTICS

Though the structure of the beam is quite complicated in gen-
eral, the overall width of the beam is characterized by the quan-
tity N 2, which provides both the Gaussian envelope of the
beam (real part) as well as its wavefront curvature (imaginary
part). From Eq. (18), we may write the beam width σS�z� as

σS�z� �
ffiffiffi
2

p
σAjβjΔ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 � Δ2 �

�
8π2α2σ2

k20
� 1

k20Δ2

�
z2

s
: (21)

It can be seen from this expression that the presence of twist α
increases the spreading of the beam on propagation, which is
not surprising as the twist manifests in our model as a tilt of the
constituent Laguerre–Gaussian beams. In the plane z � 0, the
width is a combination of the inherent width of the beam Δ as
well as the wander σ of the beam, as would be expected.

The spectral density S�r, z� of the beam may be found from
Eq. (11), by setting r1 � r2 � r. This results in the expression

S�r, z� � C�z� exp�−r2∕σ2S �
Xm
k�0

akjQj2�m−k�r2�m−k�, (22)

with

Q ≡
1

jβj2
�
A2jβj2
1 − iγ

−
1

Δ2 − 2πiα
z

k0Δ2

�
� 1

1 − iγ
1

2σ2
: (23)

The sum represents an mth-order polynomial in r2; it is to be
noted that all of the coefficients of the sum are positive, how-
ever, which indicates that the spectral density will never be zero,
except in the fully coherent limit σ → 0. This is in agreement
with the general observation, first noted in [20], that zeros of
intensity are non-generic in partially coherent fields.

Figure 1(a) illustrates the behavior of the intensity in the
source plane for several coherence states. It is to be noted that
the intensity minimum in the middle becomes less pronounced
as the beam wander increases (coherence decreases). Roughly
when σ > Δ, the null vanishes entirely. Figure 1(b) shows
the intensity in the source plane for several vortex orders. It
can be seen that the intensity minimum for higher orders is
more robust; evidently it takes much more randomization to
fully remove the effects of a higher-order vortex. We will see
this quantitatively in the next sections.

As can be seen from Eq. (21), adding a twist phase increases
the rate at which the beam spreads on propagation. Figure 2
shows the evolution of a beam with (a) α � 0 and with
(b) α � 0.001αmax, with αmax from Eq. (20). It is clear that
the twisted beam spreads much more rapidly than the non-
twisted beam, which puts a practical limit on the amount of
twist a beam can have for long-range applications.

The spatial coherence of the beam, characterized by the
function μ�r1, r2, z�, is also in general of a very complicated
form, due to the presence of phase singularities in the correla-
tion function. However, we can define an overall global degree
of coherence as σμ ≈ 1∕M , where M is defined by Eq. (19).
With some effort, one can find
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Fig. 1. Intensity of the field in the source plane for (a) different states of coherence and (b) different mode orders. In (a), we have σ � 0.01 cm
(solid), σ � 1 cm (dashed), and σ � 2 cm (dotted), with m � 1. In (b), we have m � 1 (solid), m � 2 (dashed), and m � 4 (dotted), with
σ � 1 cm.
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σμ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
Δ2 � 1

2σ2

�
�

�
4π2α2

k20Δ
2 � 1

k20Δ
4

�
z2

1
4Δ4 � π2α2

vuut
: (24)

The presence of the twist term in the numerator indicates that
the spatial coherence increases more rapidly with a twist phase
present.

It should be noted that the presence of the underlying vortex
mode does not contribute at all to the overall spreading of the
beam or its correlation function, as m does not appear at all in
Eqs. (21) and (24). It does, however, effect the overall trans-
verse profile of the beam, as Eq. (22) indicates, and plays a
key role in the topological and OAM properties of the beam,
as we will now see.

4. TOPOLOGICAL CHARGE

As tvGSMs are partially coherent fields, the phase of the field is
a random function of position and time, and the topological
phase properties of the field must be evaluated with some care.
Here we consider two approaches to measuring the topology of
tvGSMs, each with its advantages and disadvantages.

First, let us imagine that the fluctuations of the field are slow
enough that we can instantaneously measure the phase struc-
ture of the field, using interferometry or a Shack–Hartmann
sensor. Then we may evaluate the measured topological charge
for every member of the ensemble, and directly calculate the
average topological charge from these results.

Let us assume that we measure the topological charge within
an aperture of radius b. Returning to Eq. (8), which represents
the member of the ensemble centered on �x0, y0�, we see that
there is an mth-order vortex with topological charge m at a
position �x, y�, such that

�x � iy� � �1� iγ��x0 � iy0�, (25)

or at a radial position,

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
r0: (26)

This vortex will only be measured if r < b; otherwise, the
measured topological charge is zero. Therefore, the average
topological charge of the whole ensemble is of the form

t � m
Z
r0<b∕

ffiffiffiffiffiffiffiffi
1�γ2

p P�r0�d2r0: (27)

This integral is readily evaluated, and we find that

t � mf1 − exp�−b2∕2σ2�1� γ2��g: (28)

As expected, the average topological charge is equal to m when
σ � 0 (full coherence) and decreases as σ increases. The factor
of 1� γ2, with γ given by Eq. (9), represents the effect of
the twist on the average charge. The more twisted the beam is,
the more rapidly the tilted beams will veer outside of the
detector radius, causing the charge to be lost.

The aforementioned method is limited not only in the need
to measure the phase of the field rapidly, but also in its depend-
ence on the specific ensemble. As is well known, many different
ensembles may result in the same cross-spectral density, which
means that this average value of topological charge may not be
accurate for a particular method of generating a tvGSM.

It is also known, however, that the phase singularities of a
coherent field become correlation singularities of the cross-
spectral density when the spatial coherence is reduced. We can
see this explicitly from Eq. (11), which we write below without
all of the constants and envelopes which contribute nothing to
the topological structure:

Ŵ �r1, r2� �
Xm
k�0

ak �G̃η̃1 −H η̃2�m−k �Gη2 − H̃η1�m−k, (29)

where ηj � xj � iyj, with j � 1, 2, and

G ≡
A2

1� iγ
−

1

2Δ2β
−
πα

β
, (30)

H ≡
1

2Δ2β
−
πα

β
: (31)

Equation (29) indicates that, generally, Ŵ is an mth-order pol-
ynomial in η2 and an mth-order polynomial in η̃2, assuming η1
is fixed. As has been discussed in previous work [16], on de-
crease of coherence the originalmth-order vortex will break into
m first-order vortices, with m negative first-order vortices ap-
proaching from infinity. The mth-order vortex is robust under
small decreases of coherence; however, in the limit of low
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Fig. 2. Intensity of the field on propagation for (a) α � 0 and (b) α � 5 × 10−6αmax. The solid lines are z � 0, the dashed lines are z � 2 km,
and the dotted lines are z � 5 km. In all cases, σ � 1 cm and m � 1.
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coherence, there will be a net topological charge of zero in the
region near the origin.

It is difficult to directly measure these correlation vortices,
which requires the phase of Ŵ to be measured with one point
fixed, using for instance a Young’s interference experiment. An
alternative approach, first introduced by [22], is to measure the
cross-correlation function of the field, i.e.,

E�r� � Ŵ �r, − r�: (32)

This approach is much easier to implement experimentally, and
we use it here to study theoretically the correlation singularities
of tvGSMs. With some effort, one can readily show that

E�r� � 1

A2m�2

Xm
k�0

�
m
k

�
2

Γ�k � 1�
�
−
jJj2r2
A2

�
m−k

, (33)

with

J ≡
A2

1 − iγ
−

iz
k0Δ4jβj2 −

πα

jβj2 : (34)

This is an mth-order polynomial in r2 with real coefficients,
and due to the presence of the minus signs in the sum, we ex-
pect that we will in general get m zeros of this polynomial, or
m dark rings in the cross-correlation function. This is illustrated
for several vortex orders in Fig. 3. The rings, indicated by π
phase jumps in the phase of the field, are roughly, but not ex-
actly, spaced equally in radius.

The topological charge of the underlying vortex can be
found simply by counting the number of dark rings or,

equivalently, the number of phase jumps. A decrease in coher-
ence results in an increase in the radii of the rings, though the
size saturates for sufficiently large σ. It is to be noted conversely
that, in the coherent limit, the radii of the rings shrink to zero.

The dependence of the topology on the twist parameter is
non-trivial, as illustrated in Fig. 4. The minimum radius is not
at α � 0, but at a slightly negative value. We interpret this as
having to do with the counterbalance between the positive twist
of the underlying vortex mode and the negative twist intro-
duced by α. This will be of more significance in the next
section.

5. ORBITAL ANGULAR MOMENTUM

We now consider the orbital angular momentum characteristics
of tvGSMs. In general, the angular momentum of a beam of
light is a combination of spin (polarization) and orbital (phase)
angular momentum, and must be treated vectorially. If we as-
sume that the field is unpolarized, then the z-component of the
orbital angular momentum density Lz�r, z� can be expressed in
terms of a single scalar cross-spectral density in the form (see
[23] and Section 9.8 of [3])

Lz�r, z� �
ϵ0
k0

Im

	
∂

∂ϕ2

W �r1, r2�



r1�r2�r
: (35)

With some significant mathematical gymnastics, one can finally
arrive at an expression of the form

Lz�r, z� �
ϵ0
k
C�z� exp�−r2∕σ2S �

×
	

2πα

A2jβj2Δ2

Xm
k�0

akjQj2�m−k�r2�m−k�1�

� R
Xm
k�0

ak�m − k�jQj2�m−k−1�r2�m−k�


, (36)

where R � jGj2 − jH j2.
We first look at the total orbital angular momentum of the

beam in a cross section, which can be found by integrating
Lz�r, z� over the transverse plane. We calculate the total average
OAM per photon l z , which is given by the expression

l z � ℏω

R
Lz�r, z�d2rR
Sz�r, z�d2r

, (37)

where Sz�r,ω� is the z-component of the Poynting vector,
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Fig. 3. Phase of E�r�, for (a) m � 1, (b) m � 2, and (c) m � 5. Here we have taken σ � 1 cm, α � 5 × 10−6αmax, and z � 2000 m.
Black indicates a phase of 0, white indicates a phase of π.
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5 × 10−5αmax.
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Sz�r,ω� �
k

μ0ω
C�z� exp�−r2∕σ2S �

Xm
k�0

akjQj2�m−k�r2�m−k�:

(38)

In the plane z � 0, the value of l z can be calculated, with some
effort, to be of the form

l z � ℏ

(
m� 4πασ2

"
1� m Δ2

2σ2

1� Δ2

2σ2

#)
: (39)

The OAM due to the vortex ends up being independent of the
spatial coherence of the source; this can be attributed to the
observation that the OAM is an intrinsic quantity of
Laguerre–Gauss modes [24], and therefore independent
of the choice of the beam axis r0. The second term of
Eq. (39), which is the contribution of the twist, depends on
the twist parameter, the relative beam wander Δ∕σ, as well
as the order m of the vortex.

The total OAM should be constant on propagation, and this
can be confirmed readily by analytically evaluating the integrals
of Eq. (37) and plotting the behavior of l z as a function of
distance.

Another significant OAM property of the beam is the local
OAM density per photon mz , which we may define as

mz � ℏω
Lz�r, z�
Sz�r, z�

: (40)

It has been noted [17] that a tGSM beam acts like a pure rigid
body rotator, withmz ∼ r2, while a pure Rankine beam acts like
a rigid body rotator near its core and a fluid body rotator, with
mz ∼ constant, in its outskirts. A tvGSM beam will act like a
rigid body rotator in its core, as well; for small r, we may write
the approximate form as

mz ≈ ℏ

	
2πα

A2Δ2 r
2 � am−1

am
Rr2



: (41)

The combination of two distinct types of OAM in tvGSM
beams allows for beams with behaviors not previously seen.
The first possibility is to create a beam that has a zero total
OAM, by using a positive m with a negative α. For a given
set of parameters, we can readily find a value of α for which
the total OAM is zero, as illustrated in Fig. 5(a). Looking at

the OAM density in Fig. 5(b), we see that the beam has a pos-
itive OAM core surrounded by negative OAM in the outskirts.
We therefore have a beam with counter-rotating regions.

It is interesting to note that the beam of Fig. 5 has a non-
zero average topological charge, yet a zero OAM. Conversely,
it is readily seen that a twisted GSM beam (or a tvGSM with
m � 0) has a zero topological charge, but non-zero OAM. It
has long been recognized that there is not a simple relationship
between OAM and topological charge [25], and these two cases
represent extreme examples of the discrepancy that can arise.

A second unusual possibility is to create a beam that has a
“dead zone” of circulation in its core, by suppressing the quad-
ratic part of the OAM density. By the use of Eq. (41), we can
find a value of α for which the quadratic component vanishes.
The resulting OAM density is illustrated in Fig. 6, and it has a
quartic dependence on radial distance r.

These behaviors demonstrate that it is not only possible to
control the total OAM in partially coherent beams, but to
control its transverse distribution in space.

6. CONCLUSIONS

A new class of partially coherent beams possessing OAM, called
twisted vortex Gaussian Schell-model beams, has been intro-
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Fig. 5. Plots related to a zero net OAM beam. (a) The total OAM as a function of α, with l z � 0 highlighted with a dot. (b) The OAM densitymz
as a function of r, showing the positively rotating core and negatively rotating outskirts. Here m � 1, σ � 1 cm, and α � −809 m−2.
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Fig. 6. OAM density for a beam with suppressed quadratic depend-
ence, leaving a “dead zone” in its core. Here m � 1, σ � 1 cm, and
α � 2.381 × 103 m−2.
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duced and its properties described. Such beams not only have
well-defined topological characteristics that are of potential use
for FSOC, but have unprecedented control over their OAM
characteristics, which may result in novel uses not only in
FSOC but also in the development of light-driven microma-
chines, such as discussed, for example, in [8,26,27].

It is important to note that the “twist” OAM can only
be produced using partially coherent beams. This research
indicates that the use of partially coherent beams provides
additional control over the OAM characteristics of light,
and should be considered as an option in any OAM-based
application.

APPENDIX A: PROPAGATION OF A TILTED
VORTEX MODE

We may derive Eq. (8) from Eq. (7) by use of the Fresnel
propagation formula,

U �r, z� � −
ik0
2πz

Z
U 0�r 0� exp

�
i
k0
2z

jr − r 0j2
�
d2r 0, (A1)

whereU 0�r� is the field in the source plane. First, for simplicity,
Eq. (7) is centered on the origin by making the coordinate
transformation x → x � x0, y → y � y0, which makes it re-
duce to

U 0�r��
U 0

Δm exp�−�x2� y2�∕2Δ2�exp�2πiα�x0y− y0x���x� iy�m:
(A2)

On expanding the Fresnel kernel, the integral may be written in
the form

U �r, z� � S�x, y, z�
Z

exp�−p�x 02 � y 02�� exp�i�qxx 0 � qyy
0��

× �x 0 � iy 0�mdx 0dy 0, (A3)

with

p ≡
1

2Δ2 −
ik0
2z

, (A4)

qx ≡ −2παy0 −
k0
z
x, (A5)

qy ≡ 2παx0 −
k0
z
y, (A6)

and

S�x, y, z� ≡ −
ik0
2πz

U 0

Δm exp�ik0z� exp
�
i
k0
2z

�x2 � y2�
�
: (A7)

The integral is of a standard form, which can be evaluated in
polar coordinates using Bessel functions, and the result may be
written as

U �r, z� � 2πimS�x, y, z�
�qx � iqy�m
�2p�m�1 exp

�
−
q2x � q2y

4p

�
: (A8)

The values of p, qx , and qy must be substituted back into this
expression, and the opposite coordinate transformation made
to undo the earlier one: x → x − x0, y → y − y0. The result of
Eq. (8) then follows.

APPENDIX B: DERIVING THE TVGSM
CROSS-SPECTRAL DENSITY

To derive Eq. (11), it is convenient to first express all transverse
variables as complex numbers, namely, η � x � iy and
η0 � x0 � iy0. With this, Eq. (8) may be written as

U �r, z� � U 0

β
eik0z

�η − �1� iγ�η0�m
�Δβ�m exp�−jη − η0j2∕2Δ2β�

× exp
�
−i
2π2α2z
βk0

jη0j2� exp�πα�ηη̃0 − η̃η0�∕β
�
: (B1)

We use this expression twice in Eq. (3), giving us an expression
for the cross-spectral density. We may group terms by their
power of η0 and η̃0, resulting in the compressed formula

W �r1, r2, z� � P0

jU 0j2
jβj2

1

jΔβj2m exp�−jη1j2∕2Δ2β̃�

× exp�−jη2j2∕2Δ2β�
Z

exp�−A2jη0j2�

× exp�AB̃η0 � ABη̃0��η̃1 − �1 − iγ�η̃0�m
× �η2 − �1� iγ�η0�md2r0, (B2)

where A2 is given as in Eq. (14), and we use a slightly uncon-
ventional notation to define

AB � η1
2Δ2β̃

� η2
2Δ2β

−
παη1
β̃

� παη2
β

, (B3)

AB̃ � η̃1
2Δ2β̃

� η̃2
2Δ2β

� παη̃1
β̃

−
παη̃2
β

: (B4)

It is to be noted that B and B̃ are not strict complex conjugates
of each other, but we adopt such a notation for brevity; it does
not affect the outcome of the calculation.

We may now complete the square in the exponent, and
write

W �r1, r2, z� � P0

jU 0j2
jβj2

1

jΔβj2m exp�−jη1j2∕2Δ2β̃�

× exp�−jη2j2∕2Δ2β� exp�BB̃�

×
Z

exp�−�Aη0 − B��Aη̃0 − B̃��

× �η̃1 − �1 − iγ�η̃0�m�η2 − �1� iγ�η0�md2r0:
(B5)

Now, noting that η0 and η̃0 are independent complex variables
just as x0 and y0 are independent real variables, we make the
coordinate transformation:

η0 → η0 � B∕A, η̃0 → η̃0 � B̃∕A: (B6)

We also now use our definitions for F�r1, r2, z� and C�z�,
which allows us to write

W �r1, r2, z� �
1

π�1� γ2�m
C�z�F�r1, r2, z�

A4m

Z
exp�−A2jη0j2�

× �η̃1 − �1 − iγ��η̃0 � B̃∕A��m
× �η2 − �1� iγ��η0 � B∕A��md2r0: (B7)

We now introduce our definitions ofD1 and D2, and pull out a
common factor of 1∕A4m from the integral. We now have
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W �r1, r2, z� �
1

π
C�z�F�r1, r2, z�

Z
exp�−A2jη0j2��D1 −A2η̃0�m

× �D2 −A2η0�md2r0: (B8)

We next use the binomial theorem to expand each of the
D-terms; for example,

�D1 − A2η̃0�m �
Xm
l�0

�
m
l

�
�D1�m−l �−A2η̃0�l : (B9)

On substituting this sum into the integral, and a similar sum
over k for the D2 term, we get an integral which includes a
rotationally symmetric exponential exp�−A2ρ20� and a double
sum with terms of the form �η̃0�l �η0�k. If we integrate in polar
coordinates, only terms for which l � k will be non-zero,
reducing the double sum into a single sum. The integral over
ϕ then gives 2π, and we have

W �r1, r2, z� � 2C�z�F �r1, r2, z�
Xm
k�0

�
m

k

�
2 �D1D2�m−k

A4m

×
Z

∞

0

exp�−A2ρ20��A4ρ20�kρ0dρ0: (B10)

We finally note that, with a change of variable to u � Aρ0, the
integral is of a standard form,Z

∞

0

exp�−u2�u2k�1du � Γ�k � 1�
2

: (B11)

On substitution, we arrive at Eq. (11).
It should be noted that deriving the final form of

F �r1, r2, z�, as given by Eq. (17), is also non-trivial. One must
group together all the exponents that appear outside of the in-
tegral in Eq. (B5). Of these, one finds a cross term that depends
on r1 · r2; treating this as the middle of a square of the form
jr1 − r2j2, one can complete it to derive the term involving P2.
The twist phase separates out easily, leaving terms dependent
only on r21 and r22 that can be grouped to get the final result.
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