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Coherence resonances and band gaps in plasmonic hole arrays
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We demonstrate theoretically the existence of optical coherence band gaps by performing simulations of
partially coherent light incident on a linear array of circular holes in a subwavelength-thickness gold sheet.
We use a simple scalar Foldy-Lax system of equations for our model. A possible physical mechanism for the
band gaps is discussed.

DOI: 10.1103/PhysRevA.99.023812

I. INTRODUCTION

The coherence of a light field can affect many of the
observable characteristics of the field as it propagates, in-
cluding its directionality [1], its spectrum [2], and its state of
polarization [3,4]. Consequently, the ability to control spatial
coherence allows control over the properties of a field as it
propagates. Furthermore, it is known that partially coherent
light is beneficial in a number of applications, such as free-
space optical communications [5,6], and that the degree of
coherence must be optimized for the specifics of the commu-
nications channel. The ability to control spatial coherence is
therefore of great importance.

It has been shown theoretically that the spatial coherence
of light can be modulated in a Young double-slit experiment
in which the slits are in a surface plasmon-supporting metal,
and that the coherence can be increased or decreased with
the appropriate geometry [7]. Some of these predictions were
confirmed experimentally [8–10]. It was further shown that
adding a third slit to the plasmon-supporting material can
further modulate coherence, and that the middle slit does not
act as a significant barrier to plasmon coupling between the
outer two [11]. Based on this, an array of holes in a metal plate
was proposed as a coherence-converting plasmonic device
[12]. In the simulations undertaken, however, the hole arrays
almost universally caused an increase in the spatial coherence,
and no significant decreases.

In this work, we study computationally the spatial coher-
ence of light transmitted through a plasmon-supporting metal
plate possessing a one-dimensional array of holes. We demon-
strate that such arrays produce extended spectral regions
in which plasmon coherence effects are significantly sup-
pressed. These regions represent a previously unrecognized
phenomenon that we refer to as spatial coherence band gaps.

II. DESCRIPTION OF MODEL

We use the scalar cylindrical wave model of Ref. [12]
to describe the effects of plasmonic scattering; here we re-
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view the salient details. Figure 1 illustrates the process for a
1 × 3 array of holes of radius a separated with period d . A
quasimonochromatic input field with central wavelength λ0

illuminates the plate from the z < 0 side; at each hole, part
of the illuminating field is directly transmitted, and part of it
is coupled into a cylindrical surface plasmon wave. When the
plasmon wave interacts with another hole, it can couple back
into a propagating light wave, where it can interfere with the
directly transmitted wave. If the fields illuminating each of
the holes are mutually incoherent, the light emanating from
the holes will in general be a mixture of all three inputs; the
light coming out of the holes is therefore partially coherent.

To model this process, we first consider a coherent input
field φk (x), where k represents a variable parameter of the
field, incident upon a row of holes lying along the x axis. We
take the field to be polarized along the x axis, so we may use a
scalar field. Upon striking a hole at location xn, some fraction
α of the mode will transmit directly through the hole, and
some fraction will couple to the plate as a surface plasmon
wave and propagate to other holes. Assuming that the holes
have subwavelength diameter and that the distance between
the holes is larger than the wavelength, the holes may be
treated as point scatterers. The output field at location xn is
thus

ψk (xn) = αφk (xn) + β

N∑
m=1,m �=n

G(xn, xm)ψk (xm), (1)

where N is the number of holes in the array and G(xn, xm)
is a cylindrical wave that has propagated from xm to xn and
represents the scattered surface plasmon. The cylindrical
wave may be written as

G(xn, xm) = i

4
H (1)

0 (ksp|xn − xm|), (2)

where H (1)
0 is the zeroth-order Hankel function of the first

kind, ksp is the surface plasmon wave number,

ksp = k0

√
ε0εm

ε0 + εm
, (3)

εm is the dielectric constant of the metal, ε0 is the dielectric
constant of free space, and k0 = 2π/λ0 is the free-space wave
number. We model εm as a function of λ0 using a critical
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FIG. 1. Cutaway sketch of a 1 × 3 plasmonic hole array, viewed
from the z < 0 side of the plate, showing the coherence conversion
process. (Note that the input field is the same everywhere in the
plane; the arrows in the figure are color coded only to indicate which
hole they are incident upon.)

points model [13,14]. The scattering parameter β is estimated
by treating a cylindrical hole as a spherical cavity in a solid
metal background; the details can be found in Ref. [12]. The
result is that β may be written as

|β| ≈
(

2πa

λ0

)3∣∣∣∣ (1 − εm/ε0)

(1 + 2εm/ε0)

∣∣∣∣. (4)

Equation (1) represents a Foldy-Lax system of N equations
with N unknowns, which can be solved using matrix methods;
the solution results in the value of ψk (x) at the output of each
hole.

So far, we have considered only spatially coherent fields
propagating through the system. Partial coherence is charac-
terized by use of the cross-spectral density W (xn, xm),

W (xn, xm) = 〈U ∗(xn)U (xm)〉ω, (5)

where the average is over an ensemble of monochromatic
fields U (x) of frequency ω [15]. In general, the cross-spectral
density may be written in terms of the spectral density S(x)
at each hole and the spectral degree of coherence μ(xn, xm)
between holes as

W (xn, xm) =
√

S(xn)S(xm)μ(xn, xm). (6)

The spectral degree of coherence is a normalized quantity that
represents the strength of correlations between two points in
the field, with |μ| = 1 representing complete coherence and
|μ| = 0 representing incoherence.

We consider the special case of an incident field which
has a uniform spectral density across the z = 0 plane and has
degree of coherence μ0 of Gaussian Schell-model form, i.e.,

μ0(|xm − xn|) = exp

(−|xm − xn|2
2δ2

)
, (7)

where δ is the transverse correlation length.
To propagate this partially coherent field through the hole

array, we first write μ0 in terms of its spatial Fourier trans-

form,

μ0(|xm − xn|) =
∫ ∞

−∞
μ̃0(k)eik(xm−xn )dk, (8)

where

μ̃0(k) = δ√
2π

exp

(
−1

2
δ2k2

)
. (9)

It then follows, using Eqs. (6) to (9), that the cross-spectral
density of the input field may be written as an incoherent
superposition of coherent modes as

W0(xn, xm) =
∫ ∞

−∞
μ̃0(k)φ∗

k (xn)φk (xm)dk, (10)

where

φk (x) = √
S0eikx (11)

and we have assumed a uniform spectral density S0 across the
entire input plane. We see now that k represents a transverse
wave number.

As the modes φk (x) propagate through the plasmonic sys-
tem, they will remain mutually incoherent, and the weighting
factor μ̃0(k) will remain unchanged. The cross-spectral den-
sity of the output field will therefore be

Wf (xn, xm) =
∫ ∞

−∞
μ̃0(k)ψ∗

k (xn)ψk (xm)dk, (12)

where ψk (x) is determined by numerically solving Eq. (1). We
may therefore evaluate Wf (xn, xm) by propagating individual
modes φk (x) through the system and combining them together
using Eq. (12). With this result, the output spectral degree of
coherence μ f (xn, xm) can be calculated.

III. RESULTS AND DISCUSSION

There is one significant difficulty in studying the coherence
of the field output by the plasmonic hole array. Though the in-
put field is Schell model, and the overall degree of coherence
can be characterized by the single parameter δ, the output field
is no longer Schell model, and the degree of coherence will
generally be different for light being emitted from any pair of
holes. To talk about overall changes to the spatial coherence
of the output field, we need to define a single number that
accurately characterizes this global coherence.

We therefore define the average output coherence of the
array M f by the following formula:

M f = 1

N

N∑
n=1

1

N − 1

N∑
m=1,m �=n

|μ f (xn, xm)|. (13)

The average input coherence M0 is defined similarly in terms
of μ0(xn, xm). This expression is the average of the spectral
degree of coherence, taken over all pairs of holes. It is to be
noted that the absolute value of the degree of coherence is
used in the expression, to avoid spurious low values that could
come from different terms being out of phase. It should also
be noted that the magnitude of this quantity will generally
decrease as the array size is increased, as the coherence of
more distant pairs of holes will be included.
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FIG. 2. Averaged output and input coherence for increasingly
large hole arrays, with d = 1000 nm and δ = 1000 nm. There is a
flat dip between λ0 ≈ 660 nm and λ0 ≈ 700 nm; this is the coherence
band gap we will be examining. It is noticeable with as few as 10
holes in the array.

In our simulation code, we arbitrarily decided to set α to
0.5; however, we note that for our calculations it makes no
difference what the value of α is, as long as it is nonzero,
since it is present in both the numerator and denominator of
μ(xn, xm) in such a way that it is canceled out.

In Fig. 2, we plot M f and M0 as a function of λ0 for
several array sizes from 1 × 2 to 1 × 100, with d and δ both
set to 1000 nm. As the array goes from 1 × 2 to 1 × 5, the
broad peak on the left narrows, while M f elsewhere flattens to
around the same value as M0. At the 1 × 10 array, a new peak
emerges at around 710 nm, which redshifts and splits into
multiple peaks as the array size increases. Just to the left of
this peak (or series of peaks) is a region between λ0 ≈ 670 nm
and λ0 ≈ 700 nm where M f is flat and roughly equal to M0.
This flat region exhibits a dependence on the number of holes
analogous to the dependence that a transmittance band gap has
on the number of layers in a photonic crystal. This suggests
that this flat region is a band gap, but one which affects optical
coherence rather than optical intensity.

If this flat region is truly a band gap, it should be sensitive
to the periodicity of the array; if the periodicity of the array
is destroyed, the flat region should be destroyed. We test this
sensitivity by randomizing the hole positions within the array
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FIG. 3. Coherence of randomized 1 × 20 hole arrays, with d =
1000 nm and δ = 1000 nm. For each value of σ (except zero),
100 randomizations were done, and their averaged coherence Mf

calculated. These Mf were then averaged together to produce this
figure.

to destroy the periodicity and observe how the coherence
changes. The randomization procedure is as follows. A given
hole, say, hole n, has nonrandomized location xn. We obtain
the randomized location Xn via

Xn = xn + Znσ, (14)

where Zn is a number drawn from the standard normal distri-
bution and σ is a chosen standard deviation. We constrain the
randomized location such that for every hole pair, say, Xn and
Xm, we have |Xn − Xm| > 2a. This is to prevent the holes from
overlapping. If any holes did not satisfy this condition, we
discarded that sample configuration and obtained a new one
until the condition was met. Figure 3 shows randomization
results for a 1 × 20 array with d and δ set to 1000 nm, with
σ = 50 nm, 75 nm, and 100 nm. For each value of σ , M f was
calculated for 100 configurations, and the average of those M f

is shown in Fig. 3. The unrandomized case (σ = 0 nm) is also
shown. We can see that, as σ increases, the prominent peaks
at λ0 ≈ 550 nm and λ0 ≈ 715 nm gradually disappear and the
flat region located at λ0 ≈ 690 nm disappears as the coherence
becomes basically a single broad peak. This indicates that the
flat region is a band gap.

Having established the existence of coherence band gaps,
we now need to understand their cause. To do this, consider
the plasmon waves between a pair of holes at locations x1 and
x2, as depicted in Fig. 4. Confining our attention to x1 for the
moment, we consider three plasmon waves: the plasmon wave
denoted G1 propagating from x1 to x2, a reflected wave G1r ,
and a wave G2 propagating from x2 to x1. The real part of the
argument of G2 will be R{ksp}d at x1, where R{} denotes the
real part. When the real part of the argument of G2 is

R{ksp}d = ν2π, (15)

where ν2 is an integer, then G2 will have constructive (de-
structive) interference with G1 when ν2 is even (odd). We call
these “ν2 modes.” Similarly, the real part of the argument of
G1r will be R{ksp}2d and will have constructive (destructive)
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FIG. 4. Notation for plasmonic interference between two holes.

interference with G1 when

R{ksp}2d = ν1rπ, (16)

where ν1r is again an even (odd) integer. We call these “ν1r

modes.” Combining Eqs. (15) and (16), we can see that, at
any value of kspd where these conditions coincide, ν2 and ν1r

have the relationship

ν1r = 2ν2. (17)

At x2, there are identical relationships between G2, G1, and a
reflected G2 wave. Furthermore, in an arbitrarily sized array,
every hole will have these relationships with its neighboring
holes, all at the same wavelength. Thus the entire array will
obey the relationships in Eqs. (15) to (17), meaning that the
entire array will have identical ν2 modes and identical ν1r

modes.
If we consider this behavior as a function of R{ksp}d , this

means that ν2 modes will only ever coincide with construc-
tively interfering ν1r modes, that there will be a destructive
ν1r mode between these combined modes, and that these
combined modes will alternate between constructive and de-
structive ν2 modes. This behavior will be demonstrated in
Fig. 5.

Figure 5 shows the averaged coherence of a 1 × 50 array
as a function of R{ksp}d . The ν2 and ν1r modes are indicated.
In order to show many cycles, in Fig. 5 we have neglected
the wavelength dependence of εm and β. Looking at Fig. 5,
we can make a few observations. First, we can note that
coherence peaks occur near multiples of π and that, when ν2

is even, we tend to have higher peaks than when it is odd.
This is because, at these wavelengths with even ν2, both G2

and G1r are in phase with G1, which increases the coherence.
Second, we can note that the flat band gaps occur near peaks
at odd values of ν2. This is because around these wavelengths,
particularly in the region between here and where ν1r is also
odd, G2 and G1r will destructively interfere with G1. This
minimizes the plasmonic contribution to the overall field,
which reduces the output coherence to near its input value.
This is the mechanism behind the band-gap regions. It should
be noted that in our testing there are not always band gaps at
odd ν2, but they do appear only at odd ν2.

The coherence peaks observed in these simulations may
also be interpreted in another way: as a classical form of
superradiance and subradiance. Quantum superradiance, first
introduced by Dicke [16], is a phenomenon in which closely
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FIG. 5. Mf for a 1 × 50 array, with d = 1200 nm and δ =
1500 nm. Here, the dielectric constant and scattering parameter
were set to constant values of εm ≈ −10.6488 + i1.3734 and β = 5,
independent of wavelength. Red lines are wavelengths of destructive
interference, blue of constructive interference, and purple is where
the two coincide.

packed atoms end up radiating coherently due to their in-
teraction with a mutual radiation field. For our purposes,
we may imagine this as each atom having two contributions
to its radiation: direct spontaneous emission and emission
stimulated by constructive radiation from the other atoms.
Subradiance, in contrast, is the result of destructive interfer-
ence suppressing the radiation rate. In a plasmonic hole array,
superradiance and subradiance may be interpreted as arising
from the interactions between the directly transmitted light at
each hole and the plasmonic contribution, as first discussed by
Ropers et al. [17].

Referring back to Fig. 2, the coherence peak at 750 nm is
evidently the subradiant peak, while the coherence peak at
560 nm is the superradiant peak. This can be partly justified
by looking at the two-hole case at the top of the figure, in
which the coherence is near maximum at around 550 nm, and
near minimum at around 750 nm; these are regions in which
the coherent part of the transmitted field is enhanced and
suppressed, respectively, due to the interaction between the
holes. In contrast to Ref. [17], however, the peaks observed
here are peaks in the spatial coherence of the transmitted light,
not in the intensity of the transmitted light itself.

It is to be noted that connections between surface plasmons
and spatial coherence have been considered elsewhere in
recent years, albeit in a very different context. Friberg et al.
[18–20] have considered the control and modification of the
spatial coherence of surface plasmons themselves, without
their effect on transmitted light. Their results indicate that
there is much more to be studied in partially coherent surface
plasmon optics.

IV. SUMMARY

In summary, we have theoretically demonstrated the ex-
istence of optical coherence band gaps caused by surface
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plasmons in linear arrays of circular holes in a thin metal
sheet. We have also proposed a physical mechanism caus-
ing these band gaps. It is important to note that the band
gaps discussed here are not of the typical form, which re-
sult from the interference of waves along the longitudinal
direction of propagation. Here, it is the transverse coher-
ence properties of the field that are suppressed through the
interactions of propagating plasmons. The observed effects

appear to be a band gap phenomenon that has previously gone
unobserved.
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