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We investigate the orbital angular momentum of partially
coherent beams which are constructed by a superposition of
mutually incoherent vortex modes, each mode having a dif-
ferent beam width and topological charge. It is shown that
these simple beams nevertheless provide great flexibility in
controlling orbital angular momentum through adjustment
of the beam parameters and have significant potential for
particle rotation and trapping. © 2019 Optical Society of
America

https://doi.org/10.1364/OL.44.003617

During the past few decades, there has been a growing interest
in singular optics, the study of singularities in optical wave
fields, originating with the pioneering work of Nye and
Berry [1–4]. Notably in 1992, Allen et al. demonstrated that
Laguerre–Gaussian beams, possessing a phase vortex core, con-
sequently carry a well-defined orbital angular momentum
(OAM) [5]. Since then, OAM has become an important aspect
of singular optics, due to its use in applications such as optical
tweezers [6], optical spanners [7], and free-space information
transfer [8].

The field of singular optics, which has traditionally focused
on monochromatic light, has been extended to the study of
fields with spatial and temporal fluctuations. Such partially co-
herent beams have some unique characteristics and advantages
in practical applications, such as free-space optical communi-
cation [9], particle trapping [10], and atom cooling [11].
Unlike spatially coherent beams, however, partially coherent
beams do not have a well-defined phase, and consequently
do not typically possess optical phase vortices. In 2003, though,
Schouten et al. demonstrated that the complex correlation
functions of partially coherent fields possess analogous singu-
larities [12], and since then much attention has been given to
the vortices of correlation functions [13–17]. Several investiga-
tions have concentrated on studying OAM for partially coher-
ent beams [18–20] and the unique characteristics of OAM in
such beams. Recently, it was found that three fundamental

classes of partially coherent vortex beams can be distinguished
by the different distributions of OAM in their cross-sections,
representing Rankine vortices, rigid body rotators, and fluid
rotators. These results suggest that partially coherent beams
can provide greater control over OAM than their fully coherent
counterparts [21].

In this Letter, we investigate how much control over OAM
one has in a partially coherent beam by considering beams that
are constructed as an incoherent superposition of vortex modes,
each mode having a different beam width and topological
charge. The construction of a partially coherent vortex beam
by such a superposition was introduced in Refs. [21,22],
and its OAM properties were discussed in [21]. Each mode
in the beams of [21,22] had the same topological charge, how-
ever, and those beams are a special case of the partially coherent
vortex beams we study here. Our results show that even a small
number of modes provide great flexibility in controlling OAM
through variation of the beam parameters, including control
over the radial distribution of OAM; these results show great
potential for particle rotation and trapping, and the develop-
ment of light-powered micromachines.

For this Letter, we consider a very simple class of partially
coherent beams, which may be written as the incoherent super-
position of a finite number of different Laguerre–Gauss field
modes of radial order nα and azimuthal order mα, for which
the cross-spectral density may be written in the form

W �r1, r2, z� �
XN
α�1

λαU �
nαmα

�r1, z�Unαmα
�r2, z�, (1)

where λα ≥ 0 are non-negative weights and Unαmα
�r, z� are the

normalized Laguerre–Gauss modes. To produce nontrivial
OAM states, we consider modes with different widths in the
beam waist. The modes are therefore mutually incoherent,
as there are no interference terms in our representation, but
not generally orthogonal. This can be readily achieved, for ex-
ample, by simply superimposing beams from independent laser
sources. Equation (1) differs from the venerable coherent mode
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representation [23] in that the modes are not part of an ortho-
normal basis set.

Each Laguerre–Gauss mode can be expressed as [4]

Unαmα
�r, z�

� Cα�z�Ljmαj
nα

�
2r2

w2
α�z�

�
r jmαj exp

�
−r2

�
1

w2
α�z�

� ik
2Rα�z�

��
× exp�imαφ� exp�−iΦα�z��2nα � jmαj� � 1�, (2)

with
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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πw2
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wα�z� � wα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2∕z2α

q
, Rα�z� � z � z2α∕z, (4)

Φα�z� � arctan�z∕zα�, zα � πw2
α∕λ, (5)

where wα�z� and wα are the beam widths of each Laguerre–
Gauss mode at the propagation distances z and z � 0, respec-
tively. Lmα

nα is an associated Laguerre function of order nα and
mα, and φ is the azimuthal angle. Rα�z� is the radius of the
wavefront curvature, Φα�z� represents the Gouy phase, and
zα is the Rayleigh range of each mode.

For a paraxial scalar partially coherent beam, the OAM flux
density along the z axis may be written as [19]

Md �r, z� �
ε0
k
Im�∂φ2

�W �r1, r2, z���r1�r2
: (6)

The OAM flux density depends on the intensity of the beam as
well as its transverse spatial distribution. To better understand
the physics of the OAM distribution, we define the normalized
OAM flux density

md �r, z� �
ℏωMd �r, z�

S�r, z� , (7)

where S�r, z� is the z component of the Poynting vector, which
is of the form

S�r, z� � k
μ0ω

W �r, r, z�: (8)

The quantity md represents the average OAM flux density per
photon, and it is independent of any effects due to the beam
envelope. In Ref. [21], this quantity was used to show that cer-
tain fundamental classes of partially coherent OAM beams act
like pure rigid-body rotators (with a quadratic OAM depend-
ence), pure fluid-body rotators (with a constant OAM depend-
ence), or a Rankine vortex (quadratic core, constant outskirts).
We will refer to the OAM flux density per photon as the
“distribution of OAM” for brevity.

On substitution from Eqs. (1) and (2) into Eqs. (6)–(8), we
can get the expression for the distribution of OAM for our class
of partially coherent vortex beams after a propagation distance
z, i.e.,
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(9)

Equation (9) shows that the distribution of OAM depends on
wα�z�, mα, nα, λα, z, and N , which suggests that adjusting

these parameters provides great flexibility in controlling not
only the total OAM of the beam but how that OAM is distrib-
uted in the beam’s cross-section. If all the modes have the same
topological charge m, Eq. (9) reduces to md � mℏ, which
means that the beam acts like a fluid rotator.

The total average OAM per photon can be given by the ratio
of the integrated Md �r, z� and S�r, z�:

mt�r, z� �
ℏω

R
Md �r, z�d2rR
S�r, z�d2r : (10)

With the help of Eqs. (1), (2), (6), and (8), the total average
OAM per photon of the partially coherent vortex beam can be
expressed as

mt � ℏ

PN
α�1 λαmαPN
α�1 λα

: (11)

It is important to note that the total OAM per photon depends
on mα and λα of each mode, indicating that by adjusting mα
and λα of each mode we can also control the total OAM.
Equation (11) reduces to mt � mℏ when all the modes have
the same topological charge m.

To illustrate the possibilities in controlling OAM in partially
coherent beams, we reduce our general results to two special
cases, N � 2 and N � 3, and consider how the total OAM
and distribution of OAM depend on the beam parameters.

Figure 1 shows how the distribution of OAM can be
adjusted within a beam cross-section by adjusting the relative
widths of a pair of modes. The total OAM is zero, but the beam
has a positive OAM core surrounded by negative OAM out-
skirts. The size and shape of the core region is readily adjusted
by changing the beam widths.

More unusual distributions of OAM can be achieved by
varying the azimuthal orders of the constituent beams. In
Fig. 2, the distributions are shown for a number of different
orders; because the modes are equally weighted, the total OAM
is simply the average of the totals of each beam. Here, we can
see that it is possible to create multiple counter-rotating regions
at different radial distances with an appropriate choice of order
and beam widths.

The radial order can also play a significant role in creating
new counter-rotating regions. In Fig. 3, examples of distribu-
tions for nonzero radial orders are shown. The sharp drops cor-
respond to those points where the first beam has a zero ring of

Fig. 1. Distributions of normalized OAM flux density md∕ℏ at
z � 0 with m1 � �1, m2 � −1, n1 � n2 � 0, and λ1 � λ2 � 1.
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intensity, and the OAM is therefore dominated by the
second beam.

These distributions change shape on propagation due to the
different spreading characteristics of modes with different
widths, but these simple two-mode examples are relatively ro-
bust. In Fig. 4, the evolution of the OAM distribution is shown
for short propagation distances. It is to be noted that the total
OAM remains constant and equal to zero for this case.

Adding additional modes allows us greater and finer control
over how OAM is distributed within the beam’s cross-section.
In Fig. 5, the distribution of OAM in three-mode combina-
tions is illustrated for select choices of beam widths. It is to
be noted that the width, depth, and shape of the negative
OAM regions can be changed significantly by variation of
the beam width.

Even more significant variations can be made by keeping the
beam widths constant and changing the azimuthal order of the

three modes, as illustrated in Fig. 6. Even with only three
modes, it is possible to create multiple regions of positive
and negative OAM of different strengths. As seen in Fig. 7,
changing the radial order of the beams allows even more varia-
tion, and more rapid variation, of the OAM distribution.

Fig. 2. Distributions of normalized OAM flux density md∕ℏ at z �
0 with w1 � 1 mm, w2 � 5 mm, n1 � n2 � 0, and λ1 � λ2 � 1.

Fig. 3. Distributions of normalized OAM flux density md∕ℏ at
z � 0 with w1 � 1 mm, w2 � 5 mm, m1 � �1, m2 � −1, and
λ1 � λ2 � 1.

Fig. 4. Distributions of normalized OAM flux density md∕ℏ with
w1 � 1 mm, w2 � 5 mm, m1 � �1, m2 � −1, n1 � n2 � 0,
λ1 � λ2 � 1, and λ � 632.8 nm.

Fig. 5. Distributions of normalized OAM flux density md∕ℏ at
z � 0 with m1 � �1, m2 � −1, m3 � 1, n1 � n2 � n3 � 0, and
λ1 � λ2 � λ3 � 1.

Fig. 6. Distributions of normalized OAM flux density md∕ℏ at
z � 0 with w1 � 1 mm, w2 � 2 mm, w3 � 3 mm, n1 � n2 �
n3 � 0, and λ1 � λ2 � λ3 � 1.

Fig. 7. Distributions of normalized OAM flux density md∕ℏ at z �
0 with w1 � 1 mm, w2 � 2 mm, w3 � 3 mm,m1 � �1,m2 � −1,
m3 � 1, and λ1 � λ2 � λ3 � 1.
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In all cases shown so far, the weights of the modes λn have
been taken to be equal. We can also adjust the mode weights to
emphasize one mode, and its OAM, over the others.

Finally, we note in Fig. 8 that, with three modes, the dis-
tribution of OAM changes significantly on propagation. In
such a case, the OAM distribution being used to interact with
a target could be modified by a simple change in propagation
distance.

The results of this paper illustrate the great potential for us-
ing partial coherence to control the OAM of a beam, both in
total and the distribution in a beam’s cross-section. Even using
two or three coherent modes, one gets a rich variety of counter-
rotating regions along the radial direction. Changes in virtually
any parameter in these simple beams can provide significant
changes in the distribution of OAM. It is hoped that these re-
sults will provide an improved ability to control light-driven
micromachines, and more sophisticated particle manipulation
and rotation.

In concluding, it is important to note the difference between
these incoherent superpositions of OAM modes and coherent
superpositions. In a coherent superposition, interference effects
will produce an azimuthally asymmetric beam, with bright and
dark spots along the azimuthal direction. The partially coherent

OAM beams discussed here, however, have a uniform intensity
and constant OAM density at any radial distance, making them
much more suited for use in rotating objects.
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