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Abstract: Close to the ground, it is generally known that atmospheric turbulence exhibits
strong anisotropy, which affects the performance of applications such as free-space optical (FSO)
communication. In this paper, we establish a theoretical model for calculating the spiral spectrum,
also called the orbital angular momentum (OAM) spectrum, of a Laguerre-Gaussian (LG) beam
after propagation through anisotropic turbulence along a horizontal link. This model isolates the
effects of anisotropy from other parameters of the turbulence. On the basis of this model, the
effects of the anisotropy on the probability density of the OAM spectrum and its corresponding
modal crosstalk are studied through numerical examples. Our simulation results show that the
width of the OAM spectrum will increase or slightly decrease depending on the specific nature
of the anisotropy. In addition, it is demonstrated that the inner scale is more likely to cause
modal crosstalk than the outer scale. Some strategies to reduce modal crosstalk in anisotropic
turbulence are also discussed. Our results may be useful in OAM-based FSO communication at
ground level.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recently, considerable attention has been paid to vortex beams which possess orbital angular
momentum (OAM), due to their potential benefits in both free-space and fiber-optical com-
munication, in particular through the use of OAM multiplexing and modulation (encoding /
decoding) [1–3]. In addition to amplitude, phase, polarization and frequency, OAM modes
have been proposed as a new basis set of carrier signals allowing, in principle, an increase of
the channel transmission capacity [4,5]. However, when a vortex beam propagates through
the atmosphere, the wave front distortions induced by atmospheric turbulence result in mode
crosstalk and increase the bit error rate, as part of the energy launched into a single OAMmode is
redistributed into other modes [6]. Nevertheless, Li [7] reported that the OAM of a vortex beam
disturbed by the turbulent atmosphere can be maintained using adaptive optics. The influence of
turbulence on the propagation characteristics of OAMmodes has been analyzed in various studies,
including investigations of Laguerre-Gaussian (LG) beams [8,9], Airy beams [10], Bessel-like
beams [11] and Lommel beams [12]. It has been noted, in particular, that nondiffracting beams
have an advantage in free-space optical communications due to their self-healing characteristics.
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A significant number of these studies have focused on isotropic turbulence, in which the
statistical properties of the turbulence are independent of direction, and have used the venerable
Kolmogorov model to describe those statistics. However, it is known that the atmosphere’s
statistical behavior does not always follow Kolmogorov statistics; rather, it follows a more general
non-Kolmogorov spectral power law [13]. Furthermore, a variety of experimental and theoretical
studies have shown that the turbulent atmosphere can also be anisotropic at ground level, in
a boundary layer, or in the stratosphere [14–20]. In isotropic turbulence, the turbulent eddies
– regions of uniform refractive index – are taken on average to be spherical. In anisotropic
turbulence, the eddies are taken to be ellipsoids which in general can have three different
semi-principal axes. In many cases, however, two semi-principal axes are the same and the third,
the direction of anisotropy, is different.
Anisotropy in turbulence is pertinent to a variety of atmospheric links and meteorological

conditions and can affect optical system operation. In the simplest form, the direction of
anisotropy is along the direction of propagation, and this has been shown to have beneficial
effects. For example, with an increase of the anisotropic coefficient, which is proportional to the
atmospheric layer altitude, atmospheric turbulence has a smaller effect on an imaging system
[21]. Increasing the anisotropic coefficient can effectively overcome the combined effects of
beam wander and beam spreading (also known as the long-term beam spread) and reduce the
scintillation index [22], as well as can improve field correlations [23] and increase temporal pulse
broadening [24]. These works reveal that anisotropy plays an important role in the analysis of a
beam propagating in the turbulent atmosphere.
In the aforementioned research, the anisotropy of turbulence acts only as a modifier to the

turbulence’s strength; this type of behavior can be seen when propagating along a vertical
path [25,26]. Along horizontal paths, the anisotropic coefficients along the orthogonal axes
transverse to the direction of beam propagation can be different. Andrews et al. [27–30]
proposed a general anisotropic turbulence spectrum by introducing two anisotropic coefficients
to describe the asymmetric properties of turbulent eddies along the horizontal and vertical
directions. However, their model of the power spectrum intermingles the anisotropic coefficients
with the refractive-index structure parameter; in particular, the term which contains the anisotropy
coefficient in the numerator of the power spectrum can be regarded as a constant coefficient of
the refractive-index structure parameter. With this model, a change of anisotropic coefficient
can be viewed as a simultaneous variation of the refractive-index structure parameter, making
it difficult to determine whether observed effects of anisotropic turbulence are caused by the
anisotropy or by the strength of the turbulence.
To our knowledge, there have been no reports about the specific influence of anisotropy on

the probability distribution of OAM at the receiver that distinguishes between the effects of the
anisotropic coefficient and the effects of the refractive-index structure parameter. In this article,
we study the effect of anisotropy on the spiral spectrum of LG beams by the use of a model
which separates turbulence strength and anisotropy. This model can account for Kolmogorov
and non-Kolmogorov turbulence. We introduce a rigorous formula for calculating the spiral
spectrum after propagating in these general turbulence cases, and provide physical interpretations
of the derived probability density and modal crosstalk, as well as guidelines for optimizing OAM
detection probability.

The paper is organized as follows: in section 2, the derivation of anisotropic power spectrum
at ground level is briefly reviewed; in section 3, a theoretical model for calculating the OAM
spectrum of the LG beam propagation through anisotropic turbulence is derived under the Rytov
approximation; in section 4, the influences of the turbulence parameters and beam parameters
on the received probability density and modal crosstalk are analyzed in detail and section 5
summarizes the results.
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2. Anisotropic power spectrum for near-ground atmospheric turbulence

In this section, we briefly review the procedure for deriving the anisotropic power spectrum of
refractive-index fluctuations induced by atmospheric turbulence at ground level.
For optical wave propagation in the atmosphere, the index of refraction is one of the most

important parameters affecting the propagation characteristics of optical waves. This index is
very sensitive to small-scale temperature fluctuations, and these fluctuations, combined with
turbulent-mixing, causes the random behavior of the refractive index in atmosphere. To visualize
the development of turbulent structure, let us refer to Fig. 1(a), based on the energy cascade
theory for the homogeneous and isotropic case. Large eddies, under the influence of inertial
forces, break up into smaller eddies to form a continuum of eddy sizes for the transfer of energy
from a macroscale L0 (outer scale of turbulence) to a microscale l0 (inner scale of turbulence).
The eddies in this model are often assumed to be isotropic on average. However, at ground level,
this isotropic behavior is broken, since the temperature of the ground is usually much higher
than that of the atmosphere; this is especially true in the daytime in tropical or desert areas.
As a result, the refractive index fluctuations in the vertical direction are stronger than those in
directions parallel to the ground. Figure 1(b) shows the development of eddies in the anisotropic
case, in which eddies become ellipsoids.

Fig. 1. Schematic for the Kolmogorov cascade theory of turbulence. (a) Isotropic
atmospheric turbulence. (b) Anisotropic atmospheric turbulence. L0 and l0 denote the outer
and inner scale of turbulence, respectively. Turbulent cells (eddies) between the scale size
L0 and l0 form the inertial subrange. a, a′, b′ and c′ denotes the semi-principal axes of
turbulent cells in different directions, respectively.

To define the anisotropic power spectrum, let us start with a general anisotropic model for the
refractive index structure function,

Dn (R) = βC2
n

(
x2/µ2x + y2/µ2y + z2/µ2z

)γ/2
, l0< |R|<L0, (1)

where R = (x, y, z) is a spatial vector, and µx, µy, µz are the anisotropy coefficients along the x, y
and z directions, respectively. The quantity γ is the power law of the turbulence; β is a constant
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which is equal to unity when γ = 2/3, and otherwise has units m−γ+2/3. If γ is 2/3, Eq. (1)
reduces to the well-known Kolmogorov model of turbulence.
According to [31], the relation between the structure function and the power spectrum in the

isotropic case takes on the form

Φn (κ) =
1

4π2κ2

∫ ∞

0

sin(κR)
κR

d
dR

[
R2 dDn (R)

dR

]
dR, (2)

where κ =
(
κx, κy, κz

)
is a vector spatial frequency and κ =

√
κ2x + κ

2
y + κ

2
z . To evaluate the

anisotropic power spectrum, wemake the change of variables x = µxx′, y = µyy′ and z = µzz′. The
resulting structure function in Eq. (1) becomes isotropic in the new spatial variableR′ = (x′, y′, z′).
The coordinate differential dR in Eq. (2) is related to dR′ by dR = µxµyµzdR′, and the resulting
power spectrum is isotropic in the stretched spatial frequency κ′ = (κ′xµx, κ′yµy, κ′zµz). After
substituting Eq. (1) into Eq. (2) and integrating, we obtain the expression

Φn (κ) =
µxµyµzA(α)C̃2

n(
µ2xκ

2
x + µ

2
yκ

2
y + µ

2
z κ

2
z
)α/2 , 1l0 < |κ |< 1

L0
, 3<α<4, (3)

where α = γ + 3, C̃2
n = βC2

n is a generalized structure constant with units m3−α, A(α) is a
dimensionless constant, given by

A(α) =
1
4π2
Γ(α − 1) cos (απ/2) , (4)

and Γ(·) in Eq. (4) is the Gamma function. However, Eq. (3) is only valid over the inertial subrange
1/l0< |κ |<1/L0. To extend the power spectrum over all spatial frequencies for mathematical
convenience, we modify the power spectrum following the von Karman model widely used in
treating isotropic and homogeneous turbulence,

Φn (κ,α) =
µxµyµzA(α)C̃2

n exp
[
−

(
µ2xκ

2
x + µ

2
yκ

2
y + µ

2
z κ

2
z

)
/κ2m

]
(
µ2xκ

2
x + µ

2
yκ

2
y + µ

2
z κ

2
z + κ

2
0

)α/2 , 3<α<4, 0< |κ |<∞, (5)

where κ0 = 2π/L0 and κm = c(α)/l0, with c(α) being a function with α, given by

c(α) =
{
2πΓ [(5 − α) /2]A(α)

3

}1/(α−5)
. (6)

When µx = µy , 1 and µz = 1, Eq. (5) reduces to the conventional anisotropic non-Kolmogorov
spectrum with circularly symmetric turbulent eddies in the x − y plane stretched or compressed
along the z-direction [18,27]; furthermore, when L0 → ∞ and l0 → 0, Eq. (5) reduces to the
form introduced in [22]. In particular, when µx = µy = µz = 1 and α = 11/3, it reduces to the
conventional isotropic Kolmogorov spectrum, i.e., Φn

(
κx, κy, 0

)
= 0.033C2

nκ
−11/3.

From Eq. (5), it is readily seen that the choice of anisotropy coefficients results in very
different turbulence even for the same ratios of µx, µy, µz. For example, let us imagine two sets
of coefficients: (µx, µy, µz) = (3, 1, 3) and (6, 2, 6). They have the same ratios, but they will lead
to the different results for the power spectrum, because the anisotropy coefficients are related
to the other parameters in the power spectrum such as the generalized structure constant C̃2

n,
inner scale l0 and outer scale L0. In order to introduce a stronger restriction on the anisotropy
coefficients, we require that the product of the coefficients satisfies the condition: µxµyµz = 1.
This condition implies that the eddies for isotropic turbulence and anisotropic turbulence at the
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same altitude have the same volume, i.e., 4πa3/3 = 4πa′b′c′/3, where a is the average radius of
eddies in the isotropic case; a′, b′ and c′ are the average semi-principal axes of eddies in the x, y
and z direction in the anisotropic case (see again Fig. 1). In the following analysis, this volume
condition is always kept.
For future reference, an atmosphere with µx/µy � 1 has eddies resembling horizontally-

extended flat circular pancakes, while an atmosphere with µx/µy � 1 has eddies resembling
vertically-oriented needles.

3. Transmission model of the OAM mode for a LG beam propagating in anisotropic
non-Kolmogorov turbulent atmosphere along horizontal path

We now consider how to simulate the propagation of a LG beam through anisotropic turbulence
using the model of the previous section. A schematic of our configuration, in which a LG beam
propagates at ground level through a horizontal link, is shown in Fig. 2. The y direction is
vertical, and x − z plane is parallel to the ground. The propagation axis of the LG beam is along
the z-axis. Due to the presence of turbulence, the OAM mode spectrum at the receiver plane will
be dispersed even though the OAM mode in the transmitter plane is pure. For example, if the
OAM mode is of order l = 1 in the transmitter plane, some of the energy will leak into other
neighboring modes l = 0, 2,−1, 3 · · · , and so forth. For simplicity, we consider a LG beam with
radial order p = 0. In this case, the electric field of the LG beam at the receiver plane in the
absence of turbulence can be written as [32,33]

U (r, θ, z) =

√
2
π |l|!

1
w(z)

[√
2r

w(z)

] l

exp
[
−

r2

w2(z)

]
exp (ilθ)

× exp

{
i(l + 1) tan−1 (z/zR) − i

kr2

2z
[
1 + (zR/z)2

] } ,

(7)

where (r, θ) are the radial and azimuthal coordinates in a polar coordinate system and z is the

distance between the transmitter plane and the receiver plane. Here w(z) = w0

√
1 + (z/zR)

2 is
the radius of the fundamental Gaussian beam at the receiver plane, w0 is initial beam width,
zR = kw2

0/2 is the Rayleigh range, and k = 2π/λ is the wave number, with λ being the wavelength
of the light beam. The quantity l is the topological charge, indicating the number of 2π phase
cycles the beam exhibits in a counterclockwise path around the circumference of the mode.

In the presence of turbulence, the electric field of the LG beam at the receiver plane under the
Rytov approximation becomes [25,29,31]

Utur (r, θ, z) = U (r, θ, z) exp [ψ (r, θ, z)] , (8)

where ψ (r, θ, z) is the complex random phase perturbation induced by the turbulent atmosphere.
All possible realizations of this perturbation are represented by a statistical ensemble which we
will use to determine the average effects of the turbulence.

Based on the analysis in [34], we can express the Utur (r, θ, z) as a superposition of spiral
harmonics

Utur (r, θ, z) =
1
√
2π

∞∑
m=−∞

am (r, z) exp (imθ) , (9)

where m is an integer number, and the functions am (r, z) are given by the integral

am (r, z) =
1
√
2π

∫ 2π

0
Utur (r, θ, z) exp (−imθ) dθ. (10)
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Fig. 2. Schematic diagram of the effects of an anisotropic turbulent atmosphere on the
OAM mode.

The square of modulus of am takes the form

|am (r, z) |2 =
1
2π

∫ 2π

0

∫ 2π

0
Utur (r, θ1, z)U∗tur (r, θ2, z) exp [−im (θ1 − θ2)] dθ1dθ2. (11)

On substituting from Eq. (7) into Eq. (11) and taking the average over the ensemble of the
turbulent phase perturbations, we find that

〈|am (r, z) |2〉 =
1
2π

∫ 2π

0

∫ 2π

0
U (r, θ1, z)U∗ (r, θ2, z) exp [−im (θ1 − θ2)]

× 〈exp [ψ (r, θ1, z) + ψ∗ (r, θ2, z)]〉dθ1dθ2

=
2
π |l|!

1
2π

[
1

w(z)

]2 [√
2r

w(z)

]2l

exp
[
−

2r2

w2(z)

]
×

∫ 2π

0

∫ 2π

0
exp [−i (m − l) (θ1 − θ2)] 〈exp [ψ (r, θ1, z) + ψ∗ (r, θ2, z)]〉dθ1dθ2,

(12)
where 〈· · ·〉 stands for the ensemble average and the asterisk denotes the complex conjugate. The
quantity 〈|am (r, z) |2〉 represents the probability density of vortex/spiral modes in turbulence.
According to [35], the second-order statistics of the complex phase perturbation may be

represented as

〈exp [ψ (r, θ1, z) + ψ∗ (r, θ2, z)]〉=

exp
{
−2πk2z

∫ 1

0
dt

∫ ∞

0
d2κ⊥Φn (κ⊥, κz = 0) [1 − exp (trd · κ⊥)]

}
,

(13)

where κ⊥ ≡
(
κx, κy

)
is the transverse spatial frequency, and Φn (κ) is the spectral power spectrum

of the refractive index fluctuations shown in Eq. (5). The vector rd ≡ r1 − r2 is the difference
between two transverse points r1 ≡ (r, θ1) and r2 ≡ (r, θ2). In the derivation of Eq. (13), the
Markov approximation is applied, which means that the fluctuations in the refractive index are
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delta-correlated at any pair of points along the propagation direction. To evaluate the integral, we
first make the change of variable κx = κ

′
x/µx, κy = κ

′
x/µy in Eq. (5), yielding

〈exp [ψ (r, θ1, z) + ψ∗ (r, θ2, z)]〉=

exp
{
−
2πk2z
µxµy

∫ 1

0
dt

∫ ∞

0
dκ′xdκ

′
yΦn

(
κ ′⊥

) [
1 − exp

(
tr′d · κ

′
⊥

) ]}
,

(14)

where κ ′⊥ ≡
(
κ′x, κ′y

)
, r′d =

(
xd/µx, yd/µy

)
. The differential dκ′xdκ′y can be expressed in polar

coordinates, i.e., dκ′xdκ′y = κ′dκ′dφ. By then integrating over φ, Eq. (14) becomes

〈exp [ψ (r, θ1, z) + ψ∗ (r, θ2, z)]〉=

exp
{
−
4π2k2z
µxµy

∫ 1

0
dt

∫ ∞

0
κ′dκ′Φn

(
κ ′⊥

) [
1 − J0

(
tκ′ |r′d |

) ]}
,

(15)

where J0 is the Bessel function of order 0.
We now restrict ourselves to the quite general case where either the points r1 and r2 are

located sufficiently close to the optical axis or the inner scale of turbulence is much larger than
the transverse coherence of the laser beam propagating in turbulence for a certain propagation
distance [35]. Then the Bessel function can be approximated by the first two terms of its Taylor
expansion, i.e., J0(x) = 1 − x2/4. By applying this condition and integrating over κ′, Eq. (15) is
simplified to the form

〈exp [ψ (r, θ1, z) + ψ∗ (r, θ2, z)]〉= exp

(
−

Tµzx2d
µ2x

)
exp

(
−

Tµzy2d
µ2y

)
, (16)

with
T =

π2k2zA(α)
6(α − 2)

C̃2
n

[
ηκ2−αm exp

(
κ20/κ

2
m

)
Γ1

(
2 − α/2, κ20/κ

2
m

)
− 2κ4−α0

]
, (17)

xd = r (cos θ1 − cos θ2) , yd = r (sin θ1 − sin θ2) , (18)
where η = 2κ20 + (α − 2) κ

2
m and Γ1 is the incomplete Gamma function. It follows from Eq. (16)

that the decoherence of the light beam caused by the turbulence is strongly affected by the
anisotropy coefficients µx, µy and µz.

Substituting from Eq. (16) into Eq. (12), we obtain the final expression of the mode probability
density for spiral modes

〈|am (r, z) |2〉=
1

π2 |l|!

[
1

w(z)

]2 [√
2r

w(z)

]2l

exp
[
−

2r2

w2(z)

]
×

∫ 2π

0

∫ 2π

0
exp [−i (m − l) (θ1 − θ2)] exp

(
−

Tµzx2d
µ2x

)
exp

(
−

Tµzy2d
µ2y

)
dθ1dθ2.

(19)
The total energy received by the detector can be written as E = 2ε0

∑∞
m=−∞ Cm, where Cm =∫ R

0 〈|am (r, z) |2〉rdr represents the energy content for each OAM mode and R denotes the radius
of the receiver aperture.
The fraction of energy possessed by the mth spiral harmonic of the transmitted LG beam is

then determined by the expression,

Pm = Cm/

∞∑
m=−∞

Cq. (20)

It is clear that a LG beam with topological charge l has the energy weight Pm = 1 for m = l and
Pm = 0 for m , l at the transmitter plane, and the values of Pm remain unchanged in free-space
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propagation (without turbulence) because the LG beams are eigenmodes of the Helmholtz
equation under the paraxial approximation. When the designated OAM mode l propagates
through atmospheric turbulence, the value of Pm for m = l will decrease at the receiver plane due
to the random phase perturbation induced by turbulence. In this case, Pm=l can be regarded as
the detection probability of the signal OAM mode l, which shows the transfer efficiency of the
transmitted OAM state. For m = l ± ∆l, Pm is defined as the crosstalk probability which denotes
the probability of a photon changing its OAM state, and ∆l denotes the difference between the
transmitted and received topological mode.

To assess the magnitude of the OAM fluctuations in turbulence, we introduce a parameter, the
variance of crosstalk probability [36], defined as

V =
∞∑

m=−∞
Pm (m − m)2 , (21)

where m =
∑∞

m=−∞ Pmm denotes the average OAM at the receiver plane. It is clear that no mode
crosstalk occurs when V is equal to zero. For larger V , more energy has leaked into adjacent and
more distant modes.

4. Numerical results

In this section, on the basis of Eqs. (20) and (21), we numerically study the spiral spectrum
(e.g., detection probability and crosstalk probability) of the received OAM modes for a LG beam
propagating in an anisotropic non-Kolmogorov turbulent atmosphere along a horizontal path.
At ground level, it is reasonable to assume that µx = µz, i.e. that there is no anisotropy with
respect to the two horizontal axes. Recalling that we have constrained the values of the anisotropy
coefficients by µxµyµz = 1, the values of all three coefficients can be determined if the ratio of
the µx to µy is known.
In the following numerical examples, the parameters used in the calculation are taken to be

λ = 1550nm, w0 = 2cm, l = 1, L0 = 1m, l0 = 1cm, z = 2km, α = 11/3, C̃2
n = 10−14m3−α and

R = 5cm unless otherwise specified.
Figure 3 illustrates the mode crosstalk probability at the receiver plane for several different

values of µx/µy. It can be seen that the mode crosstalk probability depends strongly on this ratio.
As µx/µy increases, the mode crosstalk becomes more significant, implying that the received
probability l = 1 (∆l = 0) decreases and more energy enters into other adjacent modes (|∆l|>0).
Conversely, as µx/µy decreases, the mode crosstalk actually improves compared to the isotropic
(µx = µy) case. We may understand these differences by looking at how the spatial coherence of
the beam is affected by the anisotropy. From Eq. (16), the coherence widths of the beam in the x
and y direction at the receiver plane are δx =

√
µ2x/µzT and δy =

√
µ2y/µzT , respectively, defined

as the 1/e point. Therefore, the coherence area of the beam is proportional to πδxδy = πµy/T
when the condition µx = µz is applied. One finds that the coherence area in anisotropic turbulence
is only dependent on µy if other turbulence parameters such as the generalized structure constant,
inner scale and outer scale are fixed. As the value of µx/µy increases, µy decreases, which means
that the spatial coherence of the beam decreases. The increase in mode crosstalk probability can
be therefore explained by the scrambling of the phase of the beam by the anisotropic turbulence.
As µx/µy decreases, µy increases, which implies that the spatial coherence of the beam is larger,
and less scrambled by the atmosphere.
Figure 4(a) shows the variation of the detection probability Pm=l (∆l = 0) with µx/µy and

Fig. 4(b) shows the variance of crosstalk probability V with µx/µy for different values of initial
topological charge l. As expected, Pm=l decreases as µx/µy increases, irrespective of the initial
l, and the corresponding V becomes large. However, a beam with larger l experiences more
significant crosstalk than one with smaller l, leading to small Pm=l and large V at fixed µx/µy. It
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is reasonable to believe that this higher crosstalk arises because the higher-order vortex modes
have a more rapidly-varying phase, making them more susceptible to turbulence-induced phase
distortion. Furthermore, higher-order vortex modes have a larger radius on propagation, leaving
them exposed to a larger cross-section of the turbulence.

Fig. 3. Different order crosstalk probability of a LG beam with l = 1 propagating in
anisotropic turbulent atmosphere for different values of µx/µy.

Fig. 4. Detection probability Pm=l and the dimensionless variance of crosstalk probability
V of a LG beam as a function of µx/µy for different values of l.

Figures 5(a) and 5(b) show the variation of Pm=l and V as a function of propagation distance z
for three different values of µx/µy, respectively. As expected, one can see that the value of Pm=l
decreases and the corresponding V increases as the distance z increases, regardless of µx/µy, as
the effects of turbulence inevitably accumulate.
To investigate the behavior of the crosstalk probability with different orders Pm=l+∆l (∆l , 0),

we plot in Figs. 5(c) and 5(d) the variance of Pm=l+∆l (e.g.,∆l = 1, 2, 3, 4) with propagation
distance. For simplicity, we only plot the crosstalk probability for ∆l>0; the extension to the case
for ∆l<0 is straightforward since Pm=l−∆l = Pm=l+∆l. In Fig. 5(d), the main crosstalk probability
Pm=l+∆l (∆l = 1) first increases rapidly, reaches a maximum value, and then appears to decrease
as the propagation distance z increases. As the beam begins to propagate, the turbulence scatters
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Fig. 5. (a) Detection probability Pm=l, (b) the variance of crosstalk probability V , (c-d)
different order crosstalk probability Pm=l+∆l of a LG beam as a function of propagation
distance for several cases of anisotropy.

energy exclusively into the ∆l = 1 mode, causing a rapid increase; as it propagates further, energy
continues to scatter to more distant modes, causing a decline, but also can scatter back into the
∆l = 1 mode, making the reduction of Pm=l+1 slower than its increase.

We now investigate the influence of the other turbulence parameters, such as power law index
α, inner scale l0 and outer scale L0, on the detection probability Pm=l. Figure 6(a) presents the
changes of Pm=l with the power law index for different inner scales l0.

Fig. 6. (a) Detection probability and (b) T of a LG beam plotted as a function of α for
several inner scales of turbulence l0 with µx/µy = 3.
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The anisotropy ratio in the calculation is set as µx/µy = 3. Pm=l first decreases as α increases,
reaches a minimum value when α is about 3.1, and then increases with further increase of α. Such
phenomenon indicates that the LG beam suffers the most serious perturbation when α is about
3.1. According to Eq. (16), it is shown that this variation is closely related to the parameter T . In
Fig. 6(b), the variation of T against the power law index is plotted. The value of T is proportional
to the strength of turbulence, namely, the larger T is, the stronger the turbulence is. Therefore,
the maximum value of T corresponds to the minimum value of Pm=l. In addition, one finds that
the value of α will drift slightly with the change of l0 when T/Pm=l reaches maxima/minima. For
example, for l0 =1cm, 5cm and 10cm, the values of α are 3.1, 3.15 and 3.175, respectively [see
the inset figures in Figs. 6(a) and 6(b)].
Figure 7(a) shows the dependence of the detection probability Pm=l on the inner scale l0 and

the outer scale L0. Relative to L0, l0 plays a much greater role in determining the detection
probability. When the outer scale is larger than 4m, it has almost no effect on the detection
probability. It is known that the main effect of the outer scale on the beam is to cause the beam
position to randomly drift (also called beam wander), while the inner scale gives rise to intensity
fluctuations (scintillation) in the beam, or can even cause the beam to split into several pieces,
destroying the original LG mode. Thus, the detection probability dramatically drops as the inner
scale decreases. Beam wander, conversely, can cause the beam to miss the detector, but maintains
the vortex structure on propagation. The dependence of the generalized structure constant and
the wavelength of light on the detection probability is illustrated in Fig. 7(b). The detection
probability decreases with the increase of structure constant C̃2

n or with the decrease of wavelength
λ. As expected, a beam with long wavelength is more suitable for OAM communications owing
to it being less susceptible to the turbulent atmosphere.

Fig. 7. Detection probability of a LG beam propagating in anisotropic turbulent atmosphere
for different values of the inner scales of turbulence, outer scales of turbulence, refractive-
index structure parameters and beam wavelengths. The anisotropy parameter is chosen to be
µx/µy = 3.

Finally, let us investigate the effects of the initial beam width w0 and the radius of receiver
aperture R on the detection probability in anisotropic turbulence. Figure 8(a) displays detection
probability Pm=l as a function of the beam width w0, and it can be seen that there exists an
optimum value of w0 (represented as w0m) for any given z where Pm=l reaches a maximum value.
This optimal w0m increases as the propagation distance increases. The calculated w0m are about
2.2cm, 2.7cm and 3.1cm for z = 1km, 1.5km and 2km, respectively.

Quite remarkably, this optimal value is approximately the same for different values of anisotropy,
turbulence strength, and detector size. This was tested for anisotropy ranging from µx/µy = 0.5
to µx/µy = 3, for turbulence strength ranging from C̃2

n = 10−15 m3−α to C̃2
n = 10−14 m3−α, and

for different aperture sizes ranging from 2cm to 6cm. In all cases, the optimal value was the
same for each propagation distance, though the maximum value of Pm=l changes.
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Fig. 8. Detection probability of a LG beam propagating in anisotropic turbulence atmosphere
along horizontal path as a function of propagation distance for different values of the beam
width w0 and the radius of the receiver aperture R with w0=2cm.

The value of this optimal width apparently satisfies a very simple mathematical formula. Let
us recall that the radius of a LG beam intensity ring on free-space propagation, measured from
the beam center to a radial point of maximum intensity, is given by [37,38],

r(z) = w0 (l/2)1/2
√
1 + (z/zR)

2, (22)

where zR is the Rayleigh range. Table 1 presents r(z) as a function of w0 for several propagation
distances, with l = 1. It is important to note that r(z) is smaller than the Gaussian width w(z)
of Eq. (7), due to the presence of

√
2 in the denominator. It is seen that the optimal detection

probability shown in Fig. 8(a) occurs when w0 is chosen to have the minimum value r(z) (marked
with red). Since r(z) can be calculated analytically, we have found a very easy way to determine
the beam width that optimizes the detection probability.

Table 1. Radius of a LG Beam Spot against Initial Beam Width for Several Propagation Distances

z = 1km z = 1.5km z = 2km

w0/cm r(z)/cm r(z)/cm r(z)/cm

2.0 2.246 2.974 3.764

2.1 2.228 2.901 3.63

2.2 2.221 2.842 3.533

2.3 2.224 2.797 3.442

2.4 2.235 2.763 3.366

2.5 2.252 2.740 3.304

2.6 2.276 2.726 3.253

2.7 2.305 2.721 3.213

2.8 2.339 2.723 3.183

2.9 2.377 2.732 3.161

3.0 2.419 2.746 3.148

3.1 2.464 2.767 3.141
3.2 2.512 2.792 3.142

3.3 2.562 2.821 3.149
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The origin of this result is hinted at in Eq. (19), and the small values of T in Fig. 6(b). The
integral over θ1 and θ2 depends on the turbulence only through the slowly-varying exponents
in Eq. (19), which will be approximately constant and independent of the turbulence strength.
Though the distribution of OAM at the detector depends in a complicated way upon the turbulence
structure, evidently the optimal beam size is dominated by the propagation characteristics of
the beam in free space. We note that our results are restricted to weak turbulence, and that this
optimal size will likely change in strong turbulence.
In Fig. 8(b), it can be seen that Pm=l first decreases and then tends to a saturation value as

R is increased. Moreover, the larger z is, the larger the R is required for reaching the stable
value. According to Eqs. (19) and (20), the mode weight for each Cm [the numerator of Eq. (20)]
increases with the increase of R, but the denominator of Eq. (20) increases faster than the
numerator of Eq. (20). Thus, an increment of R leads to the detection probability decreases.
When the R is sufficiently large, i.e., the whole beam spot is included in the receiver aperture, the
detection probability is no longer dependent on R.

5. Summary

Anisotropy in turbulence has received considerable attention in recent years and can significantly
affect the performance of important optical systems such as free-space optical communications
and LIDAR. An understanding of how the OAM spectrum of a LG beam evolves in such a media
is hence necessary, in order to optimally increase the data transmission rate based on OAM
multiplexing technology.
Here we have developed a theoretical model for calculating the spiral/OAM spectrum of LG

beam propagation through anisotropic turbulence at ground level. On the basis of the derived
model, the specific influence of turbulence parameters such as the anisotropy coefficient, power
law index, outer scale and inner scale on the OAM detection probability have been investigated
in detail through some numerical examples. In addition, the effects of the initial beam width
and wavelength on detection probability are also presented. Our results reveal that the detection
probability decreases monotonically as the ratio of the anisotropy coefficient in the x direction to
that in the y direction, i.e., µx/µy, increases, which means anisotropy in turbulence generally
plays a negative role in OAM based communication. However, there exists an optimum initial
beam width for enhancing the detection probability, which can reduce the effects of anisotropy to
some extent. Further, utilizing a long wavelength for a transmitted beam is also applicable to
improve the detection probability. Our findings may be helpful in the design of an OAM-based
free-space optical communications link in anisotropic turbulence.
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