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We study the beamwander of a class of structured light beams,
Hermite–Gaussian correlated Schell-model (HGCSM) beams,
in theory and in experiment. It is found that modulating the
coherence structure of a structured light beam can reduce
the turbulence-induced beam wander, i.e., a HGCSM beam
with larger mode orders or lower coherence experiences
smaller beam wander. Our experimental results are consistent
with theoretical predictions, and the insights here suggest
that HGCSM beams could be useful in free-space optical
communications. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004371

It is well known that a laser beam will experience random per-
turbations in amplitude and phase when it propagates through
a turbulent atmosphere, due to fluctuations of the refractive
index caused by stochastic variations of temperature [1].
Accordingly, the instantaneous center of a laser beam will ran-
domly displace in the receiver plane, an effect known as beam
wander [1,2]. Beam wander is a significant limitation in appli-
cations such as free-space optical communication [3], global
quantum communication [4], and laser guide stars [5]; thus,
it is imperative to overcome or reduce its influence.

Researchers have long recognized that partially coherent
beams (PCBs) can have lower turbulence-induced beam wan-
der than their fully coherent counterparts [6–9]. An experimen-
tal study of the beam wander of a Gaussian Schell-model
(GSM) beam was reported in Ref. [7]. The resistance of
PCBs to turbulence is often explained by using coherent mode
representation [10,11]. The beam wander of various partially
coherent beams in turbulent atmosphere has been widely inves-
tigated, and several strategies have been introduced to reduce
beam wander, e.g., modulating the PCBs with non-trivial beam
profiles [12], phases [9,13], and polarization [14].

In addition, coherence structure manipulation as a new
method for generating novel structured light beams has
attracted a great deal of attention [15,16]. Laser beams with

nonconventional correlation functions (Schell-model functions
with non-Gaussian correlation) can be achieved by coherence
structure manipulation and display some extraordinary propa-
gation properties [15–21]. More significantly, these new classes
of beams show stronger resistance to turbulence than traditional
GSMbeams [20–24]. To date, few papers have studied the beam
wander properties of structured light beams with nonconven-
tional correlation functions [9], and none has studied the appli-
cation of coherence structure in reducing turbulence-induced
beam wander in both theory and experiment. In this Letter,
we theoretically and experimentally study the beam wander
of structured light beams, choosing Hermite–Gaussian corre-
lated Schell-model (HGCSM) beams as an illustrative example.

Beam wander can be expressed as the variance of random
displacement of the instantaneous beam center as it propagates
through atmospheric turbulence. A model of beam wander of
coherent beams valid under general weak turbulence conditions
is given by Andrews and Phillips as [1]. In 2012, the theory was
extended to the case of partially coherent beams [25]:
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where k � 2π∕λ is the wavenumber, with λ being the wave-
length, L is the total propagation path length, and z is the dis-
tance of an intercept point from the input plane at z � 0. The
function Φn�κ� is the atmospheric spectrum, where κ denotes
spatial frequency. The quantity WFS is the beam width at the
receiver plane in free space, and Λ � 2L∕kW 2

FS . The quantity
HLS�κ, z� � exp�−κ2W 2

LT � is a large-scale filter function, and
WLT is the long-term beam width in the presence of turbu-
lence, to be discussed in more detail momentarily.

Here, for ease of calculation, Eq. (1) is simplified by apply-
ing the geometrical optics approximation, also discussed in
Ref. [1]. In this approximation, diffraction effects are neglected,
and the last term in the above equation becomes
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We model the turbulence using the von Karman power spec-
trum, which can describe Kolmogorov �α � 11∕3� and non-
Kolmogorov �α ≠ 11∕3� power spectra and takes into account
both inner and outer scales:

Φn�κ� � A�α��κ2 � κ20�−α∕2C2
n exp�−κ2∕κ2m�, (3)

where C2
n is a generalized refractive-index structure parameter

with units m3−α, κ0 � 2π∕L0, with L0 being the outer scale of
turbulence, κm � c�α�∕l 0, with l0 being the inner scale of
turbulence. The quantities A�α� and c�α� are defined
in Ref. [24].

With the geometrical optics approximation and a model of
turbulence, we can integrate Eq. (1) and obtain a formula for
the beam wander in non-Kolmogorov turbulence:
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and Γ�·� represents the Gamma function. Equation (4) is a gen-
eral formula of beam wander for an arbitrary laser beam propa-
gating in non-Kolmogorov turbulence. It is striking to note that
the beam wander depends on the source parameters, i.e., the
only parameters we can control, only through the long-term
beam width WLT . Any change to the source parameters that
affects WLT will consequently affect beam wander, and WLT
can depend on these parameters in a non-trivial way. The quan-
tity W 2

LT can be described as the mean-squared beam width of
a laser beam propagating in turbulence [26].

We now focus on the specific example of HGCSM sources.
In the Cartesian coordinate system, the cross-spectral density
function of a HGCSM beam in the source plane is expressed
as [19,24]

W �r1, r2� � G0 exp
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−
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where r1 ≡ �x1, y1� and r2 ≡ �x2, y2� are two arbitrary trans-
verse position vectors in the source plane, G0 is a constant,
and σ0 denotes the beam width. The function μ�r2 − r1� rep-
resents the degree of coherence (DOC) of the beam and is given
by [19,24]
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with δ0x and δ0y being the transverse coherence widths along x
and y directions, respectively. Here, Hm denotes the Hermite
polynomial of order m.

The mean-squared width of this beam in non-Kolmogorov
turbulence was obtained as Eq. (33) in our previous study (see
Ref. [24]) and can be expressed as
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with m and n being the beam orders along x and y directions,
respectively. T is a turbulence parameter, which can be written
as T � R

∞
0 κ3Φn�κ�dκ. It is to be noted from this expression

that WLT is larger for higher beam orders and lower spatial
coherence.

Applying Eqs. (4) and (7), we can study the beam wander of
HGCSM beams in non-Kolmogorov turbulence. Generally,
the root-mean square (RMS) of the centroid of a laser beam
in the receive plane is used to express beam wander, as in
Ref. [1]. Now, we will study the RMS of the centroid of
HGCSM beams through non-Kolmogorov turbulence based
on the above equations. In the following numerical examples,
the parameters of the beam and the turbulence are set as
λ � 632.8 nm, σ0 � 2.5 mm, L0 � 1 m, l 0 � 1 mm,
C2

n � 5 × 10−13 m−2∕3, α � 11∕3, and δ0x � δ0y � δg , and
the propagation path length is L � 2.5 m. For these parame-
ters, the Rytov variance σ2 � 0.00048 ≪ 1, which satisfies the
condition of weak turbulence.

Figure 1 reveals the beam wander of HGCSM beams versus
the coherence length δg for different values of the beam orders
m and n with C2

n � 5 × 10−13 m−2∕3. We find from Fig. 1 that
the value of the beam wander increases rapidly as δg is increased
from zero, and then asymptotically approaches a fixed value in
the coherent limit (δg → ∞). We also find that the beam wan-
der of HGCSM beams is smaller than that of traditional GSM
beams �m � n � 0�. Furthermore, the magnitude of the beam
wander decreases with increasing beam orders, which means the
fluttering of the beam spot is less dramatic with large beam
orders. Thus, we have confirmed that HGCSM beams with
larger beam orders and/or lower coherence exhibit a stronger
turbulence resistance.

Figure 2 shows the beam wander of HGCSM beams versus
the generalized refractive-index structure parameter C2

n for dif-
ferent values of beam orders m and n, for a fixed coherence
width δg � 0.17 mm. This value was taken to compare with

Fig. 1. Beam wander of HGCSM beams in the receiver plane versus
coherence length for different beam orders.
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later experimental results, though it can be seen in Fig. 1 that a
smaller δg results in a more significant effect. We first note that
the value of the beam wander increases rapidly with the increase
in C2

n. For larger values of C2
n, the dependence becomes linear.

Figure 2 also illustrates that the beam wander of HGCSM
beams decreases as the order of the beams increases.

Next, we compare the experimental beam wander of
HGCSM beams with our theoretical results. Figure 3 shows
our experimental setup, including both the generation of a
HGCSM beam as well as the measurement of both the source
spatial coherence and beam wander after thermally induced
turbulence. A laser beam emitted from a He–Ne laser �λ �
632.8 nm� first passes through a neutral density filter (NDF)
and then goes through a beam expander (BE). After being redi-
rected by a reflecting mirror (RM), the laser goes toward a spa-
tial light modulator (SLM), which acts as a phase grating
designed by the method of computer-generated holograms.
We then select the first-order diffraction pattern of the holo-
grams with a circular aperture (CA). The beam from the CA
first passes through a thin lens L1 and then illuminates a rotat-
ing ground-glass disk (RGGD), producing an incoherent beam.
After passing through a collimated thin lens L2 and a Gaussian
amplitude filter (GAF) �σ0 � 2.5 mm�, a HGCSM beam is
generated just behind the GAF, i.e., the plane behind the
GAF is the source plane z � 0.

The generated source is further split into two components
by a beam splitter (BS). The reflected part passes through a lens
L3 with focal length f 3 and arrives at a charge-coupled device
�CCD1�, which can record the instantaneous intensity. The
distance from the GAF to L3 is equal to the distance from
L3 to the CCD1, and the distance is 2f 3 (i.e., it is a 4f imaging
system); thus, the spatial coherence width in the image plane of
CCD1 is the same as that in the source plane. We can measure

the spatial coherence width of the generated beam through the
frames captured (instantaneous intensity) by CCD1. The meas-
uring process and the related derivation of the spatial coherence
width were reported in a previous paper and can be found in
Ref. [27]. The transmitted beam passes over a 35 cm × 50 cm
electric hot plate and then through a collecting lens L4, then
arrives at CCD2, located in the focal plane of L4. The CCD2

records the instantaneous intensity distribution, and the output
signal is sent to a computer to calculate beam wander. The dis-
tance from GAF (source plane) to L4 is 2.5 m and the electric
hot plate is located between the GAF and L4. The electric hot
plate produces turbulence through convection, and the
strength of the turbulence is controlled by the temperature
of the hot plate. The beam center is about 2.5 cm above
the hot plate surface.

One important consideration in the experimental measure-
ment of beam wander is the relative sizes of characteristic times
of the system, namely, the characteristic time τs of the intensity
fluctuations induced by the RGGD, the characteristic time τa
of the intensity fluctuations induced by turbulence, and the
integration time τd of the CCD2. In most previous theoretical
studies of beam wander [6,25,28], the detector is assumed to be
a “slow” detector, and the times satisfy the inequality
τs ≪ τd ≪ τa. Thus, the CCD2 in our experiment is regarded
as a slow detector, and it is sensitive to the turbulence-induced
wander, but not the source fluctuations caused by the RGGD.

We evaluate the value of the beam wander hr2c i1∕2 in the
receiver plane from the data by the following formula [7]:

hr2c i1∕2 �
"XN
n 0�1
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N

#
1∕2
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where N is the number of total frames recorded by the CCD2.
In this experiment, we recorded 3000 frames, i.e., N � 3000.
The vector �xn 0 , yn 0 � denotes the spatial coordinates of the cent-
roid of each frame, and n 0 denotes number of realizations, rang-
ing from 1–3000. The vector �xc , yc� represents the average
coordinates of the centroid of total frames. They satisfy the
formulas
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where In 0 �xi, yj� denotes the intensity of the n 0th frame, and
I t�xi, yj� denotes the total intensity distribution found by sum-
ming over the 3000 realizations. The pair �xi, yj� is the pixel
spatial coordinates of the frames.

Using Eq. (8), we can measure the beam wander of
HGCSM beams and study its dependence on the initial beam
coherence width and the temperature of the hot plate, for
different beam orders.

Figure 4 shows the experimental beam wander of HGCSM
beams in the receiver plane versus the coherence width δg , when

Fig. 2. Beam wander of HGCSM beams in the receive plane versus
the generalized refractive-index structure parameter for different
beam orders.

Fig. 3. Experimental setup for generating and measuring spatial
coherence width and beam wander of a HGCSM beam.
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the temperature of the hot plate is 160°C, for different values of
beam orders m and n. It is seen that the value of the beam wan-
der increases rapidly with an increase in δg when the value of δg
is smaller than 0.11 mm. The value of the beam wander is al-
most independent of the coherence width δg when the value of
δg is larger than 0.11 mm. Furthermore, we note that the beam
wander of a HGCSM beam with large beam orders m and n is
smaller than that of a HGCSM beam with small m and n or a
GSM beam, which means that a high-order HGCSM beam is
less affected by thermal turbulence, at least with respect to beam
wander; these results can be compared to Fig. 1.

Figure 5 shows the experimental beam wander of HGCSM
beams versus the temperature of the hot plate for different
beam orders. We find that the value of the beam wander in-
creases almost linearly with an increase in the temperature of
the hot plate (i.e., the strength of turbulence). We can also con-
firm from Fig. 5 that a HGCSM beam is less affected by the
turbulence than a GSM beam and that increasing the beam
orders of HGCSM beams will enhance the ability of turbulence
resistance; these results can be compared to Fig. 2.

It is clear from the figures that the experimental results verify
the functional behavior of the theoretical model, and the
superior performance of higher-order HGCSM beams. We be-
lieve that the discrepancy in the details between theoretical and

experimental results is caused by differences between our sim-
ple theoretical turbulence model and actual experimental tur-
bulence. In the experiment, the exact model for the power
density spectrum is unknown and likely differs from the von
Karman power spectrum used for the theoretical calculation.

Through both theoretical and experimental studies, we con-
firm that the use of HGCSM beams of low coherence and high
order provides one way to reduce turbulence-induced beam
wander for a given beam size. The essence of reducing beam
wander is an increase in the beam size in the receiving plane.
For different cases with the same beam size in the receiving
plane, the beam wander is smaller for a larger source beam size.
Our results show that modulating the coherence structure of
structured light beams is a very effective strategy to reduce
the negative effects of turbulence, an insight that will be useful
in free-space optical communications.
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