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Abstract: We introduce a new class of twisted partially coherent beams with a non-uniform
correlation structure. These beams, called twisted Hermite Gaussian Schell model (THGSM)
beams, have a correlation structure related to Hermite functions and a twist factor in their degree
of coherence. The spectral density and total average orbital angular momentum per photon
of these beams strongly depend on the distortions applied to their degree of coherence. On
propagation through free space, they exhibit both self-splitting and rotation of their spectral
density profile, combining the interesting effects of twisted beams and non-uniformly correlated
beams. We demonstrate that we can adjust both the beam order and the twist factor of THGSM
beams to improve their resistance to turbulence.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Beams carrying orbital angular momentum (OAM) have attracted a great deal of attention due
to their many important applications, such as increasing the information capacity of optical
communications [1], acting as a spanner to rotate microscopic particles [2], and detecting spinning
objects [3]. It is well known that beams with a vortex phase possess OAM. However, partially
coherent beams with a so-called twist phase also typically carry OAM [4,5], and this twist may
be exploited in a manner similar to optical vortices.
The concept of a twist phase and the typical beams with twist phase, twisted Gaussian

Schell model (TGSM) beams, were first introduced by Simon and Mukunda in 1993 [6], and
were experimentally realized by Friberg et al. in 1994 [7]. The twist phase appears in the
correlation function of a partially coherent beam (PCB), and is a function of two positions
in the cross-section of the beam. This phase cannot be separated into a product of simpler
one-dimensional contributions, which differs from the quadratic phase factors associated with
spreading and focusing of a beam. The twist phase can therefore only exist in partially coherent
beams: the magnitude of the phase is bounded from above by the inverse square of the transverse
coherence width, and it vanishes in the limit of full coherence [6]. In addition, this phase displays
handedness and results in the rotation of the beam spot on propagation [6–8]. Because of its
unique characteristics, researchers have focused great attention on PCBs with a twist phase and
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have found that they have many useful applications, such as improving the performance of ghost
imaging [9], overcoming the classical Rayleigh limit in imaging [10], and resisting detrimental
turbulence-induced effects [11]. However, most of studies have been limited to TGSM beams,
due to the difficulty in embedding the twist phase into PCBs with a more complicated correlation
structure.
However, after a new method for designing novel correlation structures for scalar and vector

PCBs was introduced by Gori and his co-workers [12,13], much effort has focused on PCBs with a
prescribed correlation structure and their extraordinary properties. For example, partially coherent
non-uniformly correlated beams display self-focusing properties [14,15], Hermite Gaussian
Schell model beams exhibit self-splitting properties [16], and Laguerre Gaussian correlated Schell
model beams possess ring-shaped intensity profiles in the far field [17]. Furthermore, all the
beams mentioned above display excellent resistance to turbulence, i.e., they reduce scintillation,
beam wander, beam spreading and other negative effects which reduce the reliability of laser
radar, remote sensing systems and free-space optical communications [18–21].
As both twisted beams and non-uniformly correlated beams possess potentially beneficial

characteristics, both in free space and turbulence, it is natural to investigate whether these
characteristics can be combined in a single beam. In this paper, we introduce a class of twisted
PCBs with a prescribed correlation structure that we call twisted Hermite Gaussian Schell model
(THGSM) beams. The DOC of these beams is non-uniformly correlated and possesses a twist
factor. The propagation properties of such beams are studied in free space and in atmospheric
turbulence, and it is shown that one can adjust the beam order and twist factor to enhance the total
OAM of the beams and, simultaneously, improve their resistance to turbulence. With multiple
degrees of freedom that can be adjusted to optimize the beam for different turbulence conditions,
THGSM beams are an excellent candidate for use in optical applications in challenging media.

2. Theoretical model for THGSM beams

Typically, the spatial coherence properties of scalar PCBs are described by the cross-spectral
density (CSD) function in the space-frequency domain and by the mutual coherence function in
the space-time domain. Both of these functions have to be nonnegative definite kernels. In recent
years, the CSD function has become the quantity of choice for studying quasi-monochromatic
fields, and it is defined as a two-point correlation function at the source plane:

W (r1, r2) = 〈E∗ (r1)E (r2)〉ω , (1)

where E(r) denotes the electric field fluctuating in a direction transverse to the z-axis, and the
angular brackets 〈 〉ω means an average over a ensemble of monochromatic field realizations.
The asterisk indicates the complex conjugate, and the quantities r1 and r2 are two arbitrary
position vectors in the transverse plane. To be a mathematically genuine correlation function, the
CSD must correspond to a nonnegative definite kernel, which is fulfilled if the function can be
written in the following form [12]

W (r1, r2) =
∫

p (v)V∗0 (r1, v)V0 (r2, v) d2v, (2)

where p (v) is a non-negative function and V0 (r, v) is an arbitrary kernel.
A vast amount of research has shown that different choices for p (v) and V0 (r, v) can generate

very different kinds of PCBs with distinct behaviors [22]. Here, we choose these functions
to combine unusual behaviors of two classes of beams studied previously. To produce a
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Hermite-correlated beam, we choose p (v) in the form [15],

p (v) = (1/4π) (4a)2m+1 (
vxvy

)2m exp
(
−av2

)
, (3)

where m is the beam order. With a chosen as a positive real constant, p (v) is a non-negative
function, resulting in a mathematically valid CSD. To give the beam a twist phase, we set V0 as
[23]

V0(r, v) = exp
(
−σr2

)
exp

{
−

[
(auy + ix)vx − (aux − iy)vy

]}
. (4)

The quantity σ is a positive real constant characterizing the width of the kernel function, a is a
positive real constant that determines the coherence width, and u is a real constant representing
the twist factor.

Substituting Eqs. (3) and (4) into Eq. (2), a lengthy but straightforward calculation results in
the following expression for the CSD function,

W (r1, r2) = exp

(
−

r21 + r22
4ω2

0

)
exp

[
−
(r1 − r2)2

2δ2g

]
exp [−iu(x1y2 − x2y1)]

× H2m

[
1

2
√

a
(x1 − x2) +

iu
√

a
2
(y1 + y2)

]
H2m

[
1

2
√

a
(y1 − y2) −

iu
√

a
2
(x1 + x2)

]
,

(5)
where ω0 =

(
4σ − 2au2

)−1/2 is the beam width parameter, δg =
√
2
(
1/a + au2

)−1/2 is the
coherence width parameter and H2m(x) denotes the Hermite polynomial of order 2m.
In typical studies of twisted beams, e.g. Reference [6], an inequality relating the coherence

width δg and the twist factor u is provided, as not every choice of these parameters represents a
physically realizable beam. In our derivation using Eq. (2), however, we begin with a physically
realizable beam and derive the form of the cross-spectral density. The result is a beam which is
valid for all twist parameters u, but with δg itself a function of u.

Equation (5) shows that the CSD function of this new class of beams contains a twist term as
well as correlations based on Hermite polynomials; thus we refer to these beams as THGSM
beams. For the case m = 0 and u , 0, THGSM beams reduce to a TGSM form; for the case m>0
and u = 0, THGSM beams reduce to a Hermite-Gaussian correlated Schell-model (HGCSM)
beam [16]. In the special case m = 0 and u = 0, THGSM beams reduce to a conventional
Gaussian Schell model form. THGSM beams therefore serve as a superset that includes the
preceding types as limiting cases.

It is to be noted that Eq. (5) is not strictly of Schell model form. The arguments of the Hermite
functions and the twist phase are not Schell model. However, TGSM beams themselves are not
strictly Schell model due to the twist phase, so we refer to our THGSM beams as Gaussian Schell
model due to the presence of the Gaussian term that depends only on (r1 − r2)2.
Two standard quantities of interest in the study of PCBs are the spectral density S(r) and the

degree of coherence µ(r1, r2). By setting r1 = r2 = r, the CSD function reduces to the spectral
density function. The DOC is given by the expression,

µ (r1, r2) =
W (r1, r2)√

W (r1, r1)W (r2, r2)
. (6)

Similar expressions apply for the spectral density and DOC at any propagation distance z.
Figure 1 shows the density plot of the absolute value of the DOC of the proposed THGSM

beams for different values of the beam order m and twist factor u in the source plane. One
confirms from comparing Figs. 1(a1) and 1(b1) that the number of side lobes increases as the
beam order m increases. Comparing Figs. 1(a1)–1(a3) or Figs. 1(b1)–1(b3), we note that the
twist factor distorts the DOC much more dramatically with increasing u.
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Fig. 1. Density plot of the absolute value of the DOC of THGSM beams for different values
of the beam order m and twist factor u. The position vector r2 = 0 and the DOC is plotted as
a function of (x1, y1).

The corresponding spectral intensity distributions of the beams are plotted in Fig. 2. We find
the beam profile gradually splits from one Gaussian beam spot to four spots; furthermore, the
value of the beam order also affects the degree of splitting. It should be noted, from the second
and fourth columns in the Fig. 1 and Fig. 2, that the distribution of the spectral density and the
DOC are independent of the sign (or the handedness) of the twist factor.

Fig. 2. Density plot of the normalized intensity of THGSM beams for different values of
the beam order m and twist factor u.

The twist factor dependence of these beams is quite different from conventional TGSM beams,
which keep the same Gaussian beam profile regardless of the choice of twist factor [6,7]. However,
the spectral density of our THGSM beams is modulated by the Hermite function which depends
on both the beam order and twist factor. We therefore have a class of twisted partially coherent
beams with distinct correlation functions.

3. The CSD and OAM of THGSM beams propagation in turbulence

BeamswithOAMand/or partial coherence have been viewed as key in improving free-space optical
communication through atmospheric turbulence; THGSM beams possess both characteristics
simultaneously. In this section, the CSD and OAM of THGSM beams propagating in free
space and turbulent atmosphere are derived. In the following section we study their propagation
characteristics.
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Paraxial propagation of the CSD of PCBs in turbulence can be treated by the generalized
Huygens-Fresnel integral [24],

W (ρ1, ρ2, z) =
(

k
2πz

)2 ∫ ∫ ∞

−∞

W (r1, r2) exp
[
−

ik
2z
(r1 − ρ1)

2 +
ik
2z
(r2 − ρ2)

2
]

× 〈exp [Ψ (r1, ρ1) + Ψ
∗ (r2, ρ2)]〉 d

2r1d2r2,
(7)

where ρ1 ≡ (ρ1x, ρ1y) and ρ2 ≡ (ρ2x, ρ2y) represent two arbitrary transverse position vectors at
the receiver plane, k = 2π/λ is wave number, with λ being the wavelength, and Ψ denotes the
complex phase perturbation induced by the refractive-index fluctuations of the random medium
between source position r and detector position ρ. The ensemble average term in Eq. (7) can be
expressed as [15,18]

〈exp [Ψ (r1, ρ1) + Ψ
∗ (r2, ρ2)]〉

= exp
{
−

(
π2k2z
3

) [
(ρ1 − ρ2)

2 + (ρ1 − ρ2) · (r1 − r2) + (r1 − r2)2
] ∫ ∞

0
κ3Φn (κ) d2κ

}
,

(8)
where Φn (κ) is the spatial power spectrum of the refractive-index fluctuations of the turbulent
atmosphere. For brevity, we set

T =
∫ ∞

0
κ3Φn (κ) d2κ. (9)

We model the turbulence using the van Karman power spectrum, which can describe Kolmogorov
(α = 11/3) and non-Kolmogorov (α , 11/3) power spectrum; for this model T can be expressed
in the form,

T =
Ω(α)

2(α − 2)
C2

n

[
βκ2−αm exp

(
κ20/κ

2
m

)
Γ1

(
2 − α/2, κ20/κ

2
m

)
− 2κ4−α0

]
, 3< α < 4, (10)

where Ω(α) = Γ(α − 1) cos (απ/2) /4π2, and Γ(·) represents the Gamma function. C2
n is a

generalized refractive-index structure parameter with unitsm3−α, β = 2κ20−2κ
2
m+ακ

2
m and Γ1(·) is

the incomplete Gamma function. Other turbulence-dependent parameters are κ0 = 2π/L0, with L0
being the outer scale of turbulence, and κm = c(α)/l0, with c(α) = [2πΩ(α)Γ(5 − α/2)/3]1/(α−5)
and l0 being the inner scale of turbulence.
By inserting our expression for a THGSM beam, Eq. (5), into Eq. (7), and performing some

tedious integration, we obtain the expression of the CSD function of THGSM beams in the target
plane after passing through turbulence,

W (ρ1, ρ2, z) = C0 exp

[
ik
2z

(
ρ2
2 − ρ2

1

)
− T ′ (ρ1 − ρ2)

2 +
1

4A1

(
ik
z
ρ1 − T ′ (ρ1 − ρ2)

)2]
× exp

{
1

4A2

[
ik
z

(
T ′

A1
ρ1 − ρ2

)
+ T ′

(
1 −

T ′

A1

)
(ρ1 − ρ2)

]2
+
1
J

(
G2
++G2

−

)}
,

(11)
The parameters in Eq. (11) have a complicated dependence on position and are given as follows,

A1 = σ +
ik
2z
+ T ′, A2 = σ −

ik
2z
+ T ′ −

T ′2

4A1
, T ′ =

π2k2zT
3

, (12a)

J = −
(

T ′

2A1A2
−

1
4A2

) (
a2u2 + 1

)
−

(
T ′2

4A2
1A2
+

1
4A1

) (
a2u2 − 1

) 1
2A2

a2u2 + a, (12b)
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G± =
1

4A1

(
k
z
+ iT ′

) (
±iauρ1x − ρ1y

)
−

iT ′

4A1

(
±iauρ2x − ρ2y

)
+

1
4A2

[
±

iauk
z

(
T ′2

A2
1
ρ1x − ρ2x

)
−

k
z

(
T ′

A1
− 1

) (
T ′

A1
ρ1y − ρ2y

)]
+

1
4A2

[
±auT ′

(
ik

A1z
−

T ′2

A2
1
+ 1

)
(ρ1x − ρ2x) − iT ′

(
T ′

A1
− 1

)2 (
ρ1y − ρ2y

) ]
,

(12c)

C0 =

m∑
l=0

m∑
d=0

42m−l−d−1a2m+1k2(2m)!(2m)!G2m−2l
+ G2m−2d

−

d!l!z2A1A2(2m − 2l)!(2m − 2d)!J4m−d−l+1 . (12d)

For Eq. (12c), when the sign is “+”, the subscript of the coordinate stays the same i.e., x = x and
y = y; when the sign is “-”, the subscripts of the coordinates are swapped i.e., x = y and y = x.
The spectral density (or intensity) in the output plane is obtained simply as

S(ρ, z) = W (ρ, ρ, z) . (13)

Because of the twist phase, we expect THGSM beams to possess non-zero OAM. For paraxial
scalar PCBs, the OAM flux density along the z axis may be written using the cross-spectral
density as [25,27]

O(ρ, z) = −
ε0
k

Im
[
ρ1y∂ρ2xW (ρ1, ρ2, z) − ρ1x∂ρ2yW (ρ1, ρ2, z)

]
ρ1=ρ2=ρ

, (14)

where ∂ρ2x and ∂ρ2y denote partial derivatives with respect to ρ2x and ρ2y, and ε0 denotes the
free-space permittivity.
The OAM flux density indicates the spatial distribution of OAM in a transverse plane of the

beam. This quantity depends not only on the strength of circulation of the beam at a point,
however, but also the beam intensity. To better understand how OAM is distributed throughout
the beam’s cross-section, we define the normalized OAM flux density and the total average OAM
per photon, respectively, as

On(ρ, z) =
~ωO(ρ, z)
Sp(ρ, z)

, (15)

Ot(ρ, z) =
~ω

∫
O(ρ, z)d2ρ∫

Sp(ρ, z)d2ρ
, (16)

where ~ is Planck constant divided by 2π and Sp(ρ, z) is the z component of the Poynting vector,
which is of the form

Sp(ρ, z) =
k
µ0ω

W(ρ, ρ, z), (17)

where µ0 is vacuum permeability. Equation (16) provides the total OAM per photon in the
cross-section of the beam, while Eq. (16) describes the average OAM per photon at a particular
point in the beam’s cross-section. Substituting from Eq. (11) into Eqs. (15) and (16), we
can derive expressions for the normalized OAM flux and the total average OAM per photon of
THGSM beams and determine how they change on propagation through the atmosphere.

4. The CSD and OAM of THGSM beams propagating in free space and in turbu-
lence

In this section, we study the propagation properties of THGSM beams propagating in free space
(C2

n = 0) and in a turbulent atmosphere by using the formulas derived above. In the following
numerical examples, the parameters of the beams and the turbulence are set as λ = 632.8nm,
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σ = 0.5cm−2, a = 0.8cm2, C2
n = 5 × 10−15m−2/3, L0 = 1m, l0 = 1mm. These values are

representative of those often used in laboratory tests of structured light beams. For the case
of free space, we investigate how the Hermite and twist properties of the beam influence its
propagation, and evaluate the dependence of OAM on these properties. For the case of turbulence,
we study investigate how the random medium modifies the inherent beam characteristics.

4.1. In free space

Figure 3 shows the evolution of the normalized spectral density of THGSM beams propagating
in free space with different values of beam order m and twist factor u. Figure 3(a) presents a
beam with m = 1 and u = 0 (i.e., Hermite Gaussian Schell model beams) exhibiting self-splitting
during propagation, showing that the behavior seen in Ref. [28] is maintained for our new beam
class. Comparing Figs. 3(a) and 3(b), we see that a THGSM beam rotates with respect to its
central axis on propagation as it splits, as expected for beams possessing a twist phase [23].
These beams therefore simultaneously display the effects associated with twisted beams and
Hermite Gaussian Schell model beams.

Fig. 3. Density plot of the normalized intensity of THGSM beams upon propagation in free
space for different beam orders m and twist factors u.

One sees in Figs. 3(b) and 3(c) that the sign of the twist factor determines the rotation direction
of the beam spot; the positive/negative value of u corresponds to clockwise/anti-clockwise
rotation, based on the direction of light propagation. We confirm from comparing Figs. 3(b) and
3(e) that THGSM beams with larger twist factor will split much deeply and continue rotating
over longer propagation distances. Figure 3(d) shows a beam with a larger order (m = 3), and
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one finds that the beam splits even more, which indicates beam order can be used to control the
degree of splitting.

One of the most significant characteristics of THGSM beams is an orbital angular momentum
that can be tuned using several beam parameters. Figure 4(a) shows the total average OAM
per photon of the beams with different beam order m on propagation in free space; the figure
verifies the conservation of total OAM. It is to be noted that the value of the total average OAM
per photon increases with beam order, even though the twist factor remains the same, and even
though there is no underlying vortex structure associated with the beam order in Eq. (4).

Fig. 4. The total average OAM per photon of THGSM beams with different beam order m
versus (a) the transmission distance in free space; (b) the normalized factor uδ2g in the source
plane.

Figure 4(b) further illustrates how the total average OAM per photon depends on the beam
parameters. It can be seen that the direction of the total average OAM per photon is only
determined by the sign of the twist factor. For the negative value of u, the handedness of the total
average OAM per photon is along the propagation direction, causing the beam spot to rotate in
the anti-clockwise direction as it travels. When the value of u is positive, the situation is reversed.
Figure 4(b) shows that the total average OAM per photon increases with increasing beam order
and larger twist factor. Thus, THGSM beams have two free parameters for controlling the total
average OAM per photon: the twist factor and the beam order.

In recent years, researchers have also started focusing on the distribution of OAM in the beam
cross-section, as it gives a picture of the nature of the beam’s circulation [26]. It has been
shown [25] that traditional TGSM beams possess a normalized OAM flux density that increases
quadratically with radial distance, making them behave like rigid-body rotators. Figure 5(a)
shows the normalized OAM flux density of THGSM beams for different beam orders. We can
now see that THGSM beams also have a quadratic normalized OAM flux density, and that this
flux density increases with increasing beam order. Figure 5(b) shows how the normalized OAM
flux density of the beams changes as the beam propagates. The OAM flux density is calculated at
point (2cm, 2cm) versus the propagation distance in free space; the quantitative behavior of the
figure will change if this observation point is changed, but not the qualitative evolution. The
value of the normalized OAM flux density decreases gradually on propagation, and beams with
larger beam order always have larger normalized OAM flux density, although it decreases sharply
over short propagation distance. This decrease is evidently associated with the splitting property
of the beam, which redistributes the OAM to larger radial distances.
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Fig. 5. The normalized OAM flux density of THGSM beams with different beam order
m versus (a) position coordinates in the source plane; (b) propagation distance at point
(2cm, 2cm) in free space.

4.2. In turbulent atmosphere

The use of partially coherent beams and OAM beams in turbulence has proven useful for a number
of applications. Here we investigate how the characteristics of THGSM beams are changed when
they propagate in the atmosphere.
Figure 6 shows the distribution of the normalized intensity of THGSM beams at different

distances in turbulence with different beam order m and twist factor u, to be compared with Fig. 3.
It can be seen that THGSM beams still undergo self-splitting and rotation even in turbulence.
Figure 6 also shows that the beam profile of THGSM beams inevitably evolves to a Gaussian
profile over long propagation distances; this behavior is attributable to the accumulated influence

Fig. 6. Density plot of the normalized intensity of THGSM beams upon propagation in
turbulence for different beam order m and twist factor u.
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of the spatially isotropic turbulence. Comparing Figs. 6(a)–6(c), one finds that the evolution
of the intensity is strongly affected by the twist factor u; a beam with larger u can maintain its
split profile over a longer distance than a beam with small u; this indicates that THGSM beams
possessing a twist phase are less affected by turbulence. We see from Figs. 6(b) and 6(d) that a
THGSM beam with larger beam order can also maintain its split profile over a longer propagation
distance than a THGSM beam with small beam order. Evidently, beams with a higher order are
more resistant to turbulence degradation.
We may characterize the splitting property of THGSM beams by calculating the ratio of the

spectral intensity on the optical axis (ρ = 0) to the maximum spectral intensity in the transverse
plane of THGSM beams; a low axial intensity corresponds to significant splitting. Figure 7 plots
this ratio versus the propagation distance in turbulence for different values of the beam order m
and the twist factor u. One sees from Fig. 7 that the value of the ratio decreases relatively quickly
over short propagation distances, illustrating the splitting of the original single beam spot into
four beam spots. The ratio increases to one at long propagation distances, which shows that the
four beam spots degrade and combine to one beam spot (Gaussian distribution). Furthermore,
the ratio of the spectral intensity of THGSM beams with larger beam order m and twist factor u
degrades slower than that of the beams with smaller parameters. These results again indicate that
THGSM beams with larger beam order m and twist factor u are less affected by turbulence.

Fig. 7. Ratio S(0, z)/Smax(ρ, z) of the spectral intensity in the optical axis to the maximum
intensity in the transverse plane of THGSM beams with different (a) twist factor and (b)
beam order on propagation.

We next consider the influence of turbulence on the OAM of THGSM beams. Figure 8(a)
shows the total average OAM per photon of the beams with different beam order m on propagation
in turbulence. We find that the total average OAM per photon of the beams remains invariant on
propagation in turbulence. This is to be expected because the turbulence is isotropic: though
OAM may be lost or gained on propagation through any particular realization of the turbulent
medium, on average these fluctuations average to zero. Figure 8(b) shows the total average OAM
per photon of THGSM beams with different beam order m versus the normalized factor uδ2g at
z = 1km in turbulence. This figure is essentially identical to Fig. 4(b); it again shows that the
value of the total average OAM per photon increases with larger beam order and twist factor.

Figure 9(a) shows the normalized OAM flux density of THGSM beams with different beam
order m on propagation in turbulence, again using a reference point (2cm, 2cm). We find the
value of the normalized OAM flux density decreases gradually on propagation, as in free space.
However, if we compare the spectral density for free space and turbulence propagation, Figs. 3
and 6, we see that the beam shapes are already significantly distorted at 3 km; the normalized
OAM flux density plots of Figs. 5(b) and 9(a) are nevertheless quite similar over this range.
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Fig. 8. The total average OAM per photon of THGSM beams with different beam order m
versus (a) the transmission distance; (b) the normalized factor uδ2g at z = 1km in turbulence.

Fig. 9. The normalized OAM flux density of THGSM beams with different beam order m
on propagation in turbulence at point (2cm, 2cm); (b) Degradation rate of the normalized
OAM flux density in turbulence with different beam order m.

To better see the differences at the end of this propagation range, Fig. 9(b) compares the
normalized OAM flux density in turbulence to that in free space for different beam orders. Here,
we define a degradation rate of the THGSM beam in turbulence as follows,

η =
Onfree − Ontur

Onfree
× 100%, (18)

where Onfree and Ontur represent the normalized OAM flux density of THGSM beams in free
space and in turbulence, respectively.
Figure 9(b) shows that the value of the degradation rate increases over short propagation

distances, then it decreases to a minimum, after which it increases gradually. It is to be noted that
the value of η becomes less than zero about z = 500m, which means the normalized OAM flux
density of THGSM beams in turbulence is larger than that in free space at the point (2cm, 2cm).
One can explain this phenomenon by the fact that the turbulence causes the four spot distribution
of intensity of THGSM beams to merge into one uniform spot. Due to the accumulated influence
of turbulence and the “dissipation” of light intensity as the propagation distance increases, the
value of the degradation rate recovers to a positive value. Comparing the evolution of the
degradation rate for different beam orders, we find that THGSM beams with a large beam order
can keep the the normalized OAM flux density at one point much better, which again means that
beams with larger beam order are less affected by turbulence.
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Figure 10, which shows the normalized OAM flux density in free space and turbulence at 3
km, provides more insight into the effects of turbulence. It can be seen that, compared to the free
space case, the beam in turbulence has had its quadratic behavior broadened. In essence, the
OAM flux has been pushed further from the beam axis. Nevertheless, the higher-order beams
maintain a higher OAM flux density near the core than the lower-order beams.

Fig. 10. The normalized OAM flux density of THGSM beams with different beam order m
on propagation in (a) free space, and (b) in turbulence, at a propagation distance of 3 km.

Overall, we find that the average OAM of THGSM beams are, as expected, unchanged by
turbulence, but the normalized OAM flux density is significantly broadened.

5. Summary

In this work, we have introduced a new class of twisted PCBswith a prescribed correlated structure,
which we have labeled THGSM beams. These beams combine the characteristics of twisted
beams and non-uniformly correlated beams, which have previously only been implemented in
separate beam classes. In the source plane, we found that both the DOC and the spectral density
are strongly influenced by the twist phase and beam order, resulting in non-uniform distributions.
The total OAM of the beams is influenced by both of these parameters, giving us two means of
controlling OAM in THGSM beams.
We have also studied the evolution of THGSM beams in free space and in turbulence, using

analytic expressions for the cross-spectral density. Our results show that THGSM beams
simultaneously possess the self-splitting and rotation properties of Hermite beams and twisted
beams, respectively, and maintain these characteristics on propagation through turbulence.
Furthermore, it was demonstrated that beams with higher order and twist factor are more resistant
to turbulence.

It is to be noted that although higher-order beams have higher OAM and maintain their OAM
flux density profile over longer propagation distances than lower-order beams, they also have
lower on-axis intensity over much of their propagation distance, due to their self-splitting property.
We therefore note that the optimal choice of beam for a specific application will likely involve a
tradeoff between desired OAM characteristics and intensity characteristics. Overall, however, the
broad class of THGSM beams perform significantly better than their less structured counterparts
such as TGSM, HGCSM, and GSM beams.

THGSM beams therefore provide a significant degree of flexibility in the control of OAM and
in providing improved resistance to turbulence.
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