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We use a new mathematical method to design a superres-
olution lens using a superoscillation technique based on
polynomial roots. We walk through an example of the
method using simulations. Our method allows for ease of
design by being mathematically and conceptually simpler
than other methods. © 2020 Optical Society of America

https://doi.org/10.1364/OL.388252

Resolution better than that allowed by the diffraction limit,
called superresolution, is an important strategy for improv-
ing the performance of optical systems. Although there is no
unique definition of resolution, it is intimately related to the
width of the system’s point spread function (PSF); for a single
thin lens, the PSF is the well-known Airy disk. The Rayleigh
criterion defines the resolution of a lens as the distance from the
center of the PSF’s central lobe to the first zero ring of the PSF.
A number of different methods for attaining superresolution
have been introduced, including lens coatings [1,2], structured
illumination [3], and near-field imaging [4].

One superresolution method introduced in recent years
employs so-called superoscillations—oscillations in a band
limited signal that are faster than the band limit would seem to
permit [5,6]. These oscillations, which may be interpreted as a
delicate interference phenomenon, are not restricted to the near-
field of an imaging system. The first use of a superoscillatory lens
(SOL) to achieve superresolution was developed by Huang and
Zheludev [7]. They used prolate spheroidal wavefunctions to
design an intensity and phase modulating mask to produce a
one-dimensional super-oscillatory region in the image plane.
Rogers et al. later introduced an SOL with a binary mask [8],
simplifying the lens design. SOLs have also been developed
using optical eigenmodes [9], and achromatic SOLs have been
introduced [10] to reduce wavelength sensitivity.

One consistent challenge in applying superoscillations in
optics is the rather complicated mathematics often used, such
as asymptotic analysis [5] or Tschebyscheff polynomials [11].
Recently, however, an intuitive strategy for designing super-
oscillatory functions was introduced by Chremmos and Fikioris
[12] based on the straightforward application of polynomi-
als and their zeros. This one-dimensional method was later
expanded to two dimensions and shown to be able to produce

superoscillatory patterns of optical vortices by the current
authors [13].

In this Letter, we modify the polynomial superoscillation
methods from Refs. [12,13] to create a new method for design-
ing SOLs and demonstrate its performance with simulations.
We go through the entire process of designing a superresolution
lens and discuss some advantages and drawbacks of our method.

First, we will briefly review the polynomial method from
Ref. [13]. Suppose we have a two-dimensional (2D) function
t(x , y ), whose Fourier transform t̃(kx , ky ) is band limited to
the range k2

x + k2
y ≤ k2

max. This function will generally not have
any oscillations with a wavelength smaller thanλmin = 2π/kmax.
We now multiply t(x , y ) by a complex polynomial h(x , y ),
defined as

h (x ) :=
N∏

n=1

(z̄− z̄n), (1)

where N is the order of the polynomial, z̄= x + i y , and z̄n
are the complex zeros of the polynomial. We label the product
as s (x , y ) := h(x , y )t(x , y ). If two or more zeros are spaced
closer than λmin/2, then locally the field is oscillating faster than
conventional Fourier theory allows; it is superoscillatory [5].

We note that multiplying t(x , y ) by h(x , y ) does not change
the band limit. This is because the polynomial terms in h(x , y )
convert to derivatives in the Fourier transform operation. That
is, if we rewrite h(x , y ) as

h(x , y )=
N∑

n=0

c n z̄n, (2)

where c n are complex constants, then the Fourier transform of
s (x , y )may be written as

s̃ (kx , ky )=

N∑
n=0

inc n

(
∂

∂kx
+ i

∂

∂ky

)n

t̃(kx , ky ). (3)

The function s̃ (kx , ky ) has the same band limit as t̃(kx , ky )
since the derivatives will be identically zero outside the band
limit. We also note that Eq. (3) indicates that the first N − 1
derivatives of t̃(kx , ky ) must be continuous to avoid having
Dirac delta singularities in s̃ (kx , ky ) [13].
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The method described above only produces zeros at isolated
points in the x y plane; for superresolution imaging, we desire
zero rings to limit the radius of the PSF. Modifying our approach
to achieve this is the focus of this Letter.

In Fig. 1, we show an arrangement for superresolution imag-
ing with an SOL. The SOL consists of a lens contained within an
aperture, preceded by a transmission mask. We assume that light
from a point-like source in the object plane propagates along the
z axis and that the mask has a transmission function t(rL ). We
take the object and image distances to be do and d I , respectively,
so that the field UI (rI ) in the image plane has the well-known
form

UI (rI )=
iU0eik0dI

λ0d I
e

ik0
2

(
|ro |2

do
+
|rI |

2

dI

)

×

∫∫
A

t (rL) e
−ik0

(
ro
do
+

rI
dI

)
·rLd2rL. (4)

Here, U0 is the object-field amplitude, λ0 is the wavelength,
k0 = 2π/λ0, A is the aperture area, and ro , rI , and rL are the x y
coordinate vectors for the object, image, and lens planes, respec-
tively. We note that Eq. (4) depends on the Fourier transform of
the transmission function, i.e.,

UI (rI)= γ (rI , ro )

∫∫
A

t
(
rL

)
e−ik(ro ,rL )·rL d2rL , (5)

where γ (rI , ro ) contains all the functions and constants in front
of the integral in Eq. (4), and k(ro , rL ) is defined as

k
(
ro , rL

)
:= k0

(
ro

do
+

rI

d I

)
. (6)

With Eq. (5), we can now see how the polynomial method
can be used to design an SOL. The field in the image plane is
proportional to the Fourier transform of the transmission func-
tion t(rL ). If we have a circular aperture and no transmission
mask, the system will produce the classic lens PSF, an Airy disk,
with a first zero ring at radius1UL,

Fig. 1. Proposed superoscillatory lens setup.

1UL =
3.83d Iλ0

2πa
, (7)

where a is the radius of the aperture. We refer to this situation as
the “unmodified lens” (UL).

By modifying the aforementioned 2D polynomial method
[13], we can place zero rings, rather than vortices, in the PSF at
any desired radii. Instead of using the polynomial of Eq. (1), we
define h as

h
(
rI

)
:=

N∏
n=1

(∣∣rI

∣∣2 − r 2
n

)
. (8)

This will produce N zero rings in the PSF, with the nth ring hav-
ing radius rn . If at least one ring has a radius smaller than1UL,
then, by the Rayleigh criterion, we expect that the SOL will have
a resolution superior to the UL.

It is to be noted in Eq. (8) that each zero is associated with
a quadratic term, in contrast with Eq. (1). This is required to
achieve the proper relationship between Fourier transforms
and polynomials in polar coordinates. For example, the Fourier
transform of the product of a function t(rI ) with |rI |

2 roughly
follows the rule

F
{∣∣rI

∣∣2t(rI )
}
=F

{
(x 2

I + y 2
I )t(rI )

}
→

(
∂2

∂x 2
L

+
∂2

∂ y 2
L

)
t̃(rL ). (9)

There is not, however, such a simple derivative rule for the prod-

uct of t(rI ) and |rI | =

√
x 2

I + y 2
I .

The complete process for designing a SOL by this method
is as follows. First, we choose a band limited transmission
function t(rL ). For a point object at a point ro , calculate the
Fourier transform t̃(rI ) of the transmission function, which
is proportional to a (unmodified) PSF UI (rI ). (We neglect
the function γ (rI , ro ), which only modifies the phase of the
PSF and provides an overall scaling factor.) We now define a
polynomial h(rI ) using Eq. (8), with at least one rn <1UL.
The choice of the rn values is completely arbitrary, so they can
be made arbitrarily small . In principle, the lower limits on res-
olution using this method are determined only by the limits
of validity of Fourier optics and by sidelobe tradeoffs we will
discuss near the end of the Letter. Next, we multiply t̃(rI ) and
h(rI ) to yield a modified transform s̃ (rI ) := h(rI )t̃(rI ). This
modified function is proportional to the superresolution PSF
generated by a new transmission function t ′(rL ). This new
transmission function is the transmission needed by the mask in
order to produce the new PSF; it can be found by inverse Fourier
transforming the modified PSF:

t ′
(
rL

)
:=F−1 {s̃ (rI )

}
. (10)

With this new transmission function, the basic design process is
complete.

Before moving on to an example, it is worth mentioning a
few things about our method. First, due to the quadratic terms
in Eq. (8), each added zero contributes two derivatives to the
Fourier transform. To introduce N zero rings, we thus require
that the base transmission function t(rL ) have its first 2N − 1
derivatives be continuous, rather than just the first N − 1.
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Second, the lens shown in Fig. 1 is not strictly necessary, as
the quadratic phase imparted by the lens can be incorporated
directly into the mask design. Conceptually, though, thinking
of the lens as a separate entity allows us to easily analyze the
performance of the SOL by comparing it against the UL.

We now design an SOL with our method. The physical
parameters used in our simulation are shown in Table 1. The
lens radius and focal length were taken from a lens in a company
catalog. The object and image distances were chosen to yield a
magnification of 1/4, common in nanolithography. The wave-
length chosen was one of the smallest operating wavelengths
(and hence smallest1UL) of the lens.

Next, we need to choose an initial transmission function for
the lens. For a standard UL, the transmission function is

t
(
rL

)
:=

{
1
∣∣rL

∣∣≤ a
0 otherwise

. (11)

We would like a transmission function that supports N = 5
added zeros, which requires that it possess at least 2N − 1 con-
tinuous derivatives. Following our previous work [13], we take
our initial transmission function to be

t
(
rL

)
:=

{
cos10

(πrL
2a

) ∣∣rL

∣∣≤ a
0 otherwise

. (12)

We note that a cosn() function band limited to its first zero, as in
Eq. (12), has n continuous derivatives, so this transmission func-
tion can support up to N = 5 added zeros.

The PSF intensity of this transmission function is shown
in Fig. 2(a). We have indicated the first zero ring of the UL,
1UL, with a dotted line. To make a superresolution lens, we
require that at least one of our rn be less than 1UL, which is
about 600 nm for this lens. Here, we take r1 = 500 nm; the
new PSF intensity is shown in Fig. 2(b). Although we now have
superresolution, we can see that there are large sidelobes nearly
three times the magnitude of the central lobe. Such sidelobes are
an unavoidable feature in superoscillatory functions, and they
can severely limit the viewing area of an image.

We can add zero rings to push these sidelobes further away
from the desired superresolved imaging spot. The peak of the
sidelobes are at about |rL | = 1225 nm. Figure 2(c) shows the
PSF with a second zero ring added at r2 = 1370 nm. We explain
the choice of 1370 nm instead of 1225 nm in the following
paragraph. We now see that the large sidelobes in Fig. 2(b) have
been split into two significantly smaller sidelobes, each only
about half the intensity of the central lobe. This is a significant
improvement, but we can go further by adding more zero rings
near the peaks of these two sidelobes. In Fig. 2(d), we have added
two more zero rings, r3 = 900 nm and r4 = 1900 nm. Here, we
now have lobes centered at |rL | ≈ 2400 nm that are a little taller
than the central lobe (about 1.4 times the intensity), but there
is a wide region of low intensity around the central lobe. This
final result gives us superresolution with a viewing area of radius

Table 1. Parameters of the Simulated Lens Setup

Lens radius a 0.635 cm
Focal length f 13 mm
Object distance do 65 mm
Image distance d I 16.25 mm
Light wavelength λ0 385 nm
First zero ring radius1UL 603 nm

Fig. 2. Designing a superresolution lens. The dotted gray lines
are guides to the eye. (a) PSF of the cos 10() transmission func-
tion: 1UL ≈ 600 nm. (b) A zero ring has been added with a radius
of 500 nm. (c) Another zero ring has been added with a radius of
1370 nm. (d) Two more zero rings have been added with radii of
900 nm and 1900 nm. (e) The lens-plane transmission function
needed to produce the PSF in (d).

2000 nm. We note that a limited viewing area is a common issue
for SOLs, typically requiring a scanning confocal setup for use
[8]. Finally, Fig. 2(e) shows the lens plane transmission function
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Fig. 3. Combined image of two point sources of incoherent light. (a) x axis view of the combined image for both the SOL and the unmodified lens
(UL). (b) Two-dimensional view of the SOL image plane. (c) Two-dimensional view of the UL image plane.

t ′(rL ) that will produce the PSF in Fig. 2(d). Values below zero
imply a phase shift of π ; the resultant transmission mask is
therefore primarily an amplitude mask, with simple phase flips.
These flips are required to create the destructive interference
that results in zero rings.

Our choice to set r2 to 1370 nm instead of 1225 nm was
part of the balancing act that this method requires. Setting r2 to
1225 nm also splits the large sidelobe into smaller lobes, as in
Fig. 2(c), except that they do not have equal intensities. Then,
setting r3 and r4 to the peaks of those lobes results in a PSF
similar to that shown in Fig. 2(d), except that the viewing area
is slightly smaller, and the large lobes on the end are now four
times the intensity of the central lobe, instead of 1.4 times, as in
Fig. 2(d). This arises because the zeros have been packed closer
together. As is typical in superoscillation, as the zeros get closer
together, the sidelobes get larger. Obtaining superresolution
with this method thus consists of finding a balance between the
central lobe width, viewing area size, and sidelobe intensity; this
balance will depend on the specific application. Another factor
to consider is absolute intensity, as the central lobes of all the
PSFs in Fig. 2 have a maximum intensity that is less than 0.5%
of the maximum intensity of the central lobe of the UL PSF.
This low intensity is a factor of the number of zeros and their
spacing: improving central lobe intensity will typically involve
fewer zeros and lower resolution.

Let us now compare the performance of the SOL and the
UL. Recall that we set r1, the first zero for the SOL, to 500 nm.
Following the Rayleigh criterion, if we have achieved superres-
olution with the SOL, then a pair of point source PSFs placed
500 nm apart should be resolvable with the SOL, but not with
the UL. We plot this in Fig. 3, for both the SOL and the UL,
assuming incoherent illumination. Figure 3(a) shows an x axis
slice of both of the combined images. We can see that for the
SOL the two objects are resolvable, with the valley between the
central peaks being 77% of the intensity of the peaks, whereas
the valley for the UL is about 96% of the value of the central
peaks and is thus barely resolvable, if at all. In Figs. 3(b) and 3(c),
we show 2D color plots of the combined images for the SOL and
UL, respectively.

In this Letter, we have theoretically demonstrated a method
to design superresolution lenses that allows for easy positioning
of zeros in the image. Here we have used both amplitude and
phase modulation; one avenue of future research would be
to modify the transmission function to be phase only, which
should reduce the loss of intensity and be easier to manufacture.
Strategies for constructing phase-only masks from transmission
masks have been used before for the detection of vortex beams
[14].
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