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A spatial filter, as a key element in edge enhanced imaging,
determines the resolution and the contrast of imaging.
However, the conventional spiral phase filter (SPF) results
in background noise near the edges of objects in the formed
images due to the fact that the point spread function
(PSF) of the SPF has sub-oscillations that decrease the
edge resolution. In this Letter, we propose a method for
inversely designing the spatial filter, aiming to achieve high-
resolution images. We show that the sub-oscillations in the
PSF of the filter can be, in principle, completely suppressed.
Further, we experimentally demonstrate the edge enhance-
ment, with high resolution, for both amplitude and phase
objects by using our own designed filter. Our method may
find potential applications in fingerprint identification and
image processing. ©2020Optical Society of America

https://doi.org/10.1364/OL.391429

The technique of edge enhancement, which extracts the impor-
tant information at the boundary of objects in optical imaging,
has significant applications in many areas such as biological
imaging [1,2], astronomical observation [3,4], fingerprint
identification [5], and remote sensing [6]. Up to now, several
approaches have been proposed to realize edge enhancement,
including differential interference contrast [7,8], radial Hilbert
transformation [9], and the use of metamaterials or plasmonic
structures [10,11]. Among them, the radial Hilbert transfor-
mation is one of the most well-known and convenient methods
to achieve an edge enhanced image. Such a method uses a spiral
phase filter (SPF) in the Fourier transform plane of a 4f imag-
ing system to filter the spatial frequency information, leading
to a strong edge contrast for both amplitude and phase objects
[9,12–14]. The SPF has further been embedded into the micros-
copy system for the observation of the phase contrast image of
bio-tissues and cells [14–16]. Bernet and co-workers demon-
strated quantitative imaging of a complex object reconstructed

from at least three spatially filtered images through different
rotational orientations of SPFs in phase contrast microscopy
[17]. Recently, the SPF has been extended to nonlinear optics
for advancing the concept of the nonlinear spiral phase contrast
image [18].

Any straight line crossing the singular point of the SPF
corresponds to a 1D Hilbert transformation. Therefore, the
amplitude and phase contrast images by the SPF are isotropic,
i.e., independent of their local orientations. In order to realize
orientation-selective edge enhancement, the modified SPFs,
such as the fractional SPF [19–21], the phase shifted SPF
[22,23], and the SPF with spatial-varying polarization [24,25],
are used to break the isotropy of the traditional one.

However, the conventional as well as the modified SPFs are
not the optimal filters, since the superfluous side lobes, near
the main lobe in the point spread function (PSF) of the SPF,
give rise to diffraction noise near edges, decreasing the imaging
resolution. To overcome this issue, the Laguerre–Gaussian SPF
was proposed, instead of a conventional SPF, to suppress the
side lobes in the PSF [13]. Later, a SPF with the Bessel-type
amplitude was introduced to further reduce the diffraction
noise [26]. More recently, it was demonstrated that an Airy SPF
[27], compared with the aforementioned filters, may display
some advantages in achieving an amplitude or phase contrast
image with high resolution. Nevertheless, there is still a lack of
good guidelines for designing an optimum filter for practical
situations.

In this Letter, we advance an effective protocol for inversely
designing the spatial filter in the Fourier plane of a 4f edge
enhanced imaging system via PSF engineering. The inversely
designed spatial filter makes the sub-oscillations in the PSF be
totally suppressed, thus leading to a high quality of amplitude
and phase contrast imaging. With the help of a spatial light
modulator (SLM), we carry out experiments to demonstrate the
edge detection, with high resolution, for both amplitude and
phase objects by using our inversely designed spatial filter.
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Typical edge enhanced imaging is based on the classical 4f
system, as shown in Fig. 1, where (x0, y0), (u, v), and (x , y )
are the Cartesian coordinates in the object plane, Fourier plane,
and image plane, respectively. An object with (complex) trans-
mittance g (x0, y0) is illuminated by a collimated coherent light.
The Fourier transform of the object G(u, v) is formed in the
rear focal plane (Fourier plane in Fig. 1) of L1. A spatial filter
with a (complex) transmission function H(u, v) is located in
the Fourier plane to modulate the spatial frequency information
of the object. The output function o(x , y ) in the image plane
is a Fourier transform of the product of functions H(u, v) and
G(u, v). According to the convolution theorem, it takes on the
form

o(x , y )= g (x , y )⊗ h(x , y ), (1)

where “⊗” represents the convolution operation. The Fourier
transform of the spatial filter h(x , y ) (also named PSF of the
spatial filter) is given by

h(x , y )=
i

λ f

∫∫
H(u, v) exp

[
−

i2π

λ f
(ux + vy )

]
dudv,

(2)

where λ is the wavelength of the illumination, and f is the focal
length of the lens.

The transmission function of the conventional SPF in a 4f
edge enhanced imaging system is expressed as

H(ρ, ϕ)= circ
( ρ

R

)
exp(iϕ), (3)

where (ρ, ϕ) are the polar coordinates of the Fourier plane.
Here circ is a circular aperture function of radius R induced by
the sharp-edge aperture of the filter. On substituting Eq. (3) into
Eq. (2) and integrating over ρ and ϕ, we obtain the following
expression of the PSF for the SPF [9]:

h(x , y )=−
iπ R
2r

[H0(ξ)J1(ξ)− H1(ξ)J0(ξ)] exp(iθ), (4)

where r =
√

x 2 + y 2, θ = arc tan(y/x ), and ξ = 2π Rr /λ f .
Here H0 and H1 are the Struve functions of orders zero and
one, respectively, whereas J0 and J1 are the Bessel functions of
the first kind and of orders zero and one, respectively. It can be
seen from Eq. (4) that the PSF is a complex function. For the
sake of simplicity, we now consider only objects that are of pure
amplitude or pure phase type. Based on Eq. (1), the intensity
distribution I (x , y )= |o(x , y )|2 in the image plane therefore
can be written as

I (x , y )= |g (x , y )⊗ Re[h(x , y )]|2

+ |g (x , y )⊗ Im[h(x , y )]|2, (5)

Fig. 1. Diagram of the 4f imaging system. Focal length of lenses L1

and L2 is f .

where Re and Im stand for taking the real and imaginary parts of
a complex function, respectively.

It follows from Eq. (5) that the image captured by a detector
in the image plane is a linear summation of the convolution of
the object with the real part of the PSF and with the imaginary
part of the PSF. In general, the variation of the PSF h(x , y )
with respect to variables x and y is much faster than that of
g (x , y ), which means g (x , y ) is a slowly varying function with
respect to h(x , y ). Thus, to obtain the best contrast of object
edges in images, we require that the integral of the PSF over the
whole space vanishes, i.e.,

∫∫
h(x , y )dxdy = 0. This condition

implies that the transmission function g (x , y ) within a gradu-
ally varying region results in nearly zero intensity in the image
plane, while within the region of sharp edges (rapid varying
region), the received intensity is strongly enhanced. Such a
condition is equivalent to the transmission function H(u, v)
of the filter being zero at the central point, i.e., H(0, 0)= 0.
Therefore, for designing an optimal filter, the central point of
the filter must be a singular point [9,12,26,27].

To further illustrate this process, we plot in Fig. 2 the contour
graphs of the real and imaginary parts of the PSF of the SPF and
the corresponding cross-lines in x and y directions, respectively.
One finds that both the real and imaginary parts are composed
of one positive and one negative peak, and a series of side lobes
around them. Further, it is found that by rotating the imaginary
part 90 deg clockwise, it becomes identical to the real part.
From this characteristic, it is seen that the contributions to edge
enhancement from the real and imaginary parts are “orthogo-
nal,” implying that the real part of PSF enhances the edge of
the object only in x direction, whereas the y direction edge is
enhanced only by the imaginary part.

By mimicking the vector representation, we may write
the PSF in vector form as Eh(x , y )= Re[h(x , y )]x̂ +
Im[h(x , y )] ŷ , where x̂ and ŷ are two mutually orthogonal
unit vectors in the x and y directions. For an object with
sharp edges, it can be expressed as Et(x , y )= t(x , y ) cos φ x̂ +
t(x , y ) sin φ ŷ , where t(x , y ) is the transmission function near
the edge, and φ is the angle of the tangent line of the bound-
ary with respect to the x axis. Thus, the image of the object
boundary becomes

Fig. 2. (a), (c) Contour graphs of the real and imaginary parts of the
PSF of the SPF; (b), (d) corresponding cross-lines of the real and imagi-
nary parts in x and y directions, respectively.
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I (x , y )= |t(x , y )⊗ Re[h(x , y )]|2 cos2 φ

+ |t(x , y )⊗ Im[h(x , y )]|2 sin2 φ. (6)

Equation (6) is the main result of this Letter, which allows one
to inversely design and optimize the spatial filter for achieving
high quality of the edge enhanced image by starting from the
PSF engineering. Note that Eq. (6) is valid only when the real
and imaginary parts of the PSF are “orthogonal” to each other.
Since the side lobes of the PSF of the spatial filter produce back-
ground noise in the image plane, one could re-shape the PSF,
by using Eq. (6), to suppress the side lobes completely. One of
the simplest forms for the PSF that is free of side lobes may be
written as

h(x , y )= a [ f (x + d0, y )− f (x − d0, y )]

+ ib[ f (x , y + d0)− f (x , y − d0)], (7)

where a and b are real coefficients, and d0 is a shift parameter.
The real function f (x , y ) is taken to have a single peak and can
be, for instance, a Gaussian function, Lorentz function, or cir-
cular function. If the coefficients a = b, the edge enhancement
image is isotropic; otherwise, it is anisotropic. Here, we notice
that the corresponding transmission function H(u, v) of the
spatial filter, which can be obtained by the Fourier transforma-
tion of PSF h(x , y ) in Eq. (7), vanishes at the central point,
i.e., H(0, 0)= 0.

For simplicity but without loss of generality, we assume that
the function f (x , y ) is of Gaussian type, i.e.,

f (x , y )= exp

(
−

x 2
+ y 2

w2
0

)
, (8)

wherew0 is the width of the Gaussian function. We refer to the
filter function with its PSF taking the form of Eq. (7) [Eq. (8)
has been substituted] as the four-Gaussian filter (FGF). The
real and imaginary parts of the PSF of the FGF are displayed
in Figs. 3(a) and 3(b), respectively. In order to make the size of
two peaks in Figs. 2(a) and 2(c) equivalent to Figs. 3(a) and 3(b),
the parameters d0 and w0 are chosen to be 0.02 mm, while the
parameters a and b are set as one. One can see in Figs. 3(a) and
3(b) that the PSF is free of side lobes. When performing the
inverse Fourier transform of the PSF, the analytical expression
for the transmission function of the FGF is found to be

H(u, v) =−
2πw2

0
λ f exp

[
−
π2w2

0(u
2
+v2)

λ2 f 2

]
×

[
sin
(

2πud0
λ f

)
+ i sin

(
2πvd0
λ f

)]
.

(9)

Figures 3(c) and 3(d) illustrate the amplitude and phase dis-
tribution of the filter function of FGF, respectively. It is found
that the amplitude has rectangular symmetry, unlike that of
the Laguerre–Gaussian SPF or Airy SPF, which are circular
symmetric [13,27], and the phase shown in Fig. 3(d) is not a true
spiral phase. However, when the argument in the sine function
of Eq. (9) is smaller than 5 rad, i.e.,2πd0u(v)/λ f ≤ 5 rad, the
term in the second square brackets of Eq. (9) approximately
reduces to 2πd0(u + iv)/λ f , which is the form of a spiral
phase. We also note here that we do not consider the aperture
function circ(ρ/R) in the plane of the filter. Our numerical
results (not shown here) show that the aperture function has
almost no effect on our designed PSF if the radius R is larger
than 5.0 mm. In principle, our filter has the best performance

Fig. 3. (a), (b) Density plots of the real and imaginary parts, respec-
tively, of the PSF shown in Eq. (7) when f (x , y ) is a Gaussian function
in Eq. (8). (c), (d) Amplitude and phase distribution of the spatial filter
function corresponding to the PSF in (a) and (b).

in edge enhanced imaging, since the side lobes in its PSF are
suppressed completely.

We now carry out an experiment for edge enhanced imaging
by using our inversely designed FGF and compare the results
with those achieved by a conventional SPF. The experimen-
tal setup is shown in Fig. 4. A laser beam generated from a
Nd:YAG laser (λ= 532 nm) passes through a neutral density
filter (NDF) and a beam expander (BE), then goes toward
the first SLM (SLM1). Two lenses L1 and L2 with focal length
f = 400 mm compose a typical 4f imaging system. The two
SLMs SLM1 and SLM2 are located in the front and rear focal
planes of L1 acting as the object and the spatial filter, respectively.
In the experiment, the circular apertures (not shown in Fig. 4)
are separately placed in the optical path after SLM1 and SLM2 to
filter out the first-order diffractions as desired object and spatial
filter, respectively. The beam profile analyzer (BPA) is placed in
the rear focal plane (i.e., image plane) of L2. The inset figure in
Fig. 4 is the computer generated hologram loaded by the SLM2
to generate the inversely designed FGF.

A circular aperture with radius R = 3.5 mm is first used as an
amplitude object to compare the edge enhanced images formed
by the SPF and our inversely designed FGF. The transmission of

Fig. 4. Experimental setup for edge enhancement in a 4f imaging
system. NDF, neutral density filter; BE, beam expander; SLM1, SLM2,
spatial light modulators; L1, L2, lenses; BPA, beam profile analyzer.
The inset is a computer generated hologram loaded by the SLM2 to
generate the inversely designed FGF.
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Fig. 5. (a), (b) Experimental results of the edge enhanced images of
a circular aperture by means of (a) SPF and (b) FGF. (c) Corresponding
1D intensity distribution of the image along the dotted white lines.
(d)–(f ) Corresponding numerical simulation results.

the aperture for R ≤ 3.5 mm is unity and zero for R > 3.5 mm.
Figures 5(a) and 5(b) illustrate the experimental results of the
recorded edge enhanced images by the SPF and the FGF, respec-
tively. It is shown that the background noise near the edge has
been effectively suppressed by using the FGF, in contrast to that
using the SPF. To compare the detailed characteristics of the
two images, Fig. 5(c) displays the cross-lines for intensity distri-
butions at the edges denoted by dotted white lines in Figs. 5(a)
and 5(b). It is seen clearly that the spatial resolution of the edge
enhanced image is greatly improved when our FGF is adopted.
For comparison, we plot in Figs. 5(d)–5(f ) the corresponding
numerical simulations. One finds that the experimental results
agree well with the theoretical prediction.

Next, we examine the edge enhancement features of our FGF
on a phase-only object. In this case, a panda phase picture [see
Fig. 6(a)] is loaded by SLM1 to act as the phase object. The edge
enhanced images captured by the BPA with the SPF and the
FGF are presented in Fig. 6(b) and 6(c), respectively. We find
a high quality of the phase contrast image can also be achieved
by adopting the inversely designed FGF, compared to that with
the conventional SPF. We note that the intensity distribution on
the edges is slightly inhomogeneous. This may be caused by the
non-uniform intensity distribution of the illumination.

In conclusion, we have presented an approach for inversely
designing the spatial filter used in a 4f edge enhancement
optical system. The approach is based on engineering of the
filter’s PSF, completely suppressing its sub-oscillations. As a
result, the high-contrast edge enhanced images with high res-
olution are obtained compared to those using a conventional
SPF. Our approach can also be extended to design anisotropic
(i.e., orientation-selective) edge enhancement by controlling
a and b in Eq. (7). Moreover, the single peak function f (x , y )
in Eq. (8) can also be taken as a circular or a Lorentz-type func-
tion. By adjusting the function parameters appropriately, one

Fig. 6. (a) Phase object of a panda. (b), (c) Experimental results
of edge enhanced images recorded by the BPA with SPF and FGF,
respectively.

may obtain edge enhanced imaging with much higher con-
trast/resolution. Due to the importance of edge enhancement
of the phase objects (e.g., biological tissues), we will give more
experimental examples of phase object edge enhancement with
our inverse design method somewhere else.
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