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Singularities in the polarization state of non-uniform electromagnetic beams have been

a topic of both theoretical and practical interest for many years, as have singularities in

the correlation functions of random scalar wavefields. However, there has been relatively

little work done to explore the intersection of these phenomena, namely singularities

in the polarization state of partially coherent wavefields. In this paper, we use a simple

model of a partially coherent electromagnetic vortex beam to highlight three different

ways that one can define polarization singularities in scalar wavefields, one of which has

been previously undiscussed.
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1. INTRODUCTION

The study and application of singularities in wavefields has grown in recent years into a vibrant
and significant subfield of optics, known as singular optics [1–3]. The most commonly discussed
types of such singularities are phase singularities in scalar waves, which typically manifest as lines of
zero intensity in three-dimensional space. Around these singularities the phase has a circulating or
helical structure, which has led to them being called optical vortices, here referred to as scalar optical
vortices. Such singularities have been applied to fields, such as free-space optical communication
[4, 5], optical tweezing [6, 7], and image processing [8, 9].

To use a scalar wave description of light, the state of polarization is assumed to be uniform.
Research over the past 20 years has demonstrated, however, that novel effects arise for optical beams
that have spatially-varying polarization, known as vector beams. For vector beams, singularities of
phase are no longer typical, and instead the most common singularities are singularities of the state
of polarization. These come in two generic types: C-points (points of circular polarization where
the orientation of the polarization ellipse is undefined) and L-lines (lines of linear polarization
where the helicity of the polarization ellipse is undefined). Much work has been done to elucidate
the properties of polarization singularities, and beams with such singularities have been shown to
be useful in a number of applications, including focusing [10, 11] and atmospheric propagation
[12, 13].

But no light wave is truly monochromatic, and in recent years researchers have delved into the
behavior of wavefield singularities when the field is partially coherent. For the scalar case, it has
been shown that phase singularities evolve into singularities of the two-point correlation function
when the spatial coherence of a wavefield is decreased [14–16]. There has now been a significant
amount of research on partially coherent scalar vortex beams [17–20].

In contrast, there has been relatively little work done to investigate the nature of polarization
singularities in partially coherent vector vortex beams, and how they are related to their fully
coherent counterparts; exceptions include the papers of Felde et al. [21], and Soskin and
Polyanskii [22]. The vectorial nature of such beams, however, presents more than one way to
define singularities related to the state of polarization In this paper, we highlight three ways of
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characterizing the singularities of a partially coherent
electromagnetic wavefield, one of which has previously
gone unmentioned. We introduce a simple model of a partially
coherent electromagnetic beam possessing a polarization
singularity, and examine how that polarization singularity
manifests through the different ways of characterizing it.

We begin by reviewing needed definitions related to
polarization singularities and coherence, and then discuss the
different ways of classifying singularities in partially coherent
electromagnetic waves. We then use our model to examine
the relationships between the different classifications, and
their significance.

2. POLARIZATION SINGULARITIES

In a coherent paraxial electromagnetic wave, the state of
polarization is generally elliptical, with the polarization ellipse
described by its handedness, angle of orientation 9 , and
ellipticity (ratio of minor to major axis). The most commonly
occurring, or generic, singularities in the cross-section of such
a beam are C-points and L-lines, which correspond to points of
circular polarization and lines of linear polarization, respectively.
C-points are singularities in the orientation of the polarization
ellipse, and L-lines are singularities in the handedness of the
ellipse. We focus on C-points and their non-generic cousins here,
which are the most topologically interesting.

C-points may be readily found using the Jones vector of the
electric field in a circular polarization basis, which we write as
|E〉LR. Here “LR” refers to the left-hand circular EL and right-
hand circular ER complex components of the electric field, with
vector dependencies x̂ + iŷ and x̂ − iŷ, respectively. A point of
pure circular polarization will manifest anywhere that one of the
complex components vanishes, e.g., EL = 0. The phase θL of the
component at this point is consequently undefined, making, for
example, a right-handed C-point a phase singularity of the scalar
component EL of the field.

C-points are characterized by the behavior of the orientation
angle 9 as one traverses a closed loop around the singular
point. This angle must vary continuously with position, except
at the C-point itself, and therefore can only change by multiples
of 180◦ around any closed loop. This change is referred to as
the topological index n, and may be formally defined by the
following integral,

n = 1

2π

∮

dr · ∇9(r). (1)

The topological index of different polarization singularities is
additive: a loop taken around multiple singularities will give
an index equal to the sum of the indices of the individual
singularities. C-points in particular come in three generic types:
lemons with index n = +1/2, stars with index n = −1/2, and
monstars with index n = +1/2. The monstar is a less common
transition singularity formed in creation and annihilation events
between singularities, so we focus on lemons and stars, which are
illustrated in Figure 1. In this figure, we illustrate the orientation

of the major axis with line segments as well as colors representing
the angles.

It is to be noted that the topological index can be readily
found from the values of the topological charges of the two
components EL and ER of the electric field, as we now show. The
topological charge t is the net number of 2π changes the phase of
the component undergoes in a closed path around the singularity
or singularities, and is formally defined as

t = 1

2π

∮

dr · ∇θ(r), (2)

where θ is the phase of the particular component.
To determine the relation between the charges of the

components and the index of the singularity, we apply some
intuition about the properties of the polarization ellipse. In the
LR basis, the two vector components rotate in opposite directions
with angles that we label as φL(r, t), φR(r, t). The total field will
point along the major axis of the ellipse at a time t0 when these
two angles correspond with the ellipse orientation angle, or

9(r) = φR(r, t0) = φL(r, t0). (3)

But these two rotation angles may be related to the complex
phases θL,R(r) by the relations

φL(r, t) = ωt − θL(r), φR(r, t) = θR(r)− ωt, (4)

where ω is the angular frequency of light. We may eliminate the
time dependence t0 from these equations by summing φL(r, t)
and φR(r, t); by further using Equation (3), we get the relation

9(r) = θR(r)− θL(r)

2
. (5)

If we substitute this expression into Equation (1), we readily
find that

1

2π

∮

dr·∇9(r) = 1

2

{

1

2π

∮

dr · ∇θR(r)−
1

2π

∮

dr · ∇θL(r)

}

.

(6)
Using the definition of topological charge, we have

n = 1

2
(tR − tL) =

1t

2
. (7)

In short, the topological index can be determined directly from
the difference of the enclosed topological charges of the left- and
right-handed components; this result was first determined by
Angelsky et al. [23].

It is to be noted that this result indicates that polarization
singularities of topological index n = ±1/2 can come in generic
and non-generic forms. In the generic form, one component has
topological charge unity and the other has topological charge
zero, resulting in a point of circular polarization, and the C-
points are the types one expects to see form naturally in random
wavefields. However, any case where the topological charges
differ by an integer will result in a half-integer topological index,
and will have the form of a star or lemon. However, the intensity
of the field will be zero at the singularity, and not a point of
circular polarization. We refer to these non-generic lemons and
stars as polarization vortices to distinguish them from C-points.
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FIGURE 1 | Orientation of the major axis of the polarization ellipse for (left) a lemon (n = 1/2) and (right) a star (n = −1/2), in the plane perpendicular to the optical

axis. The major axis is depicted two ways: with lines indicating the major axis direction for selected positions and with a colormap to indicate the value of 9.

3. PARTIAL COHERENCE IN SCALAR AND
VECTOR FIELDS

The discussion so far has focused on monochromatic fields.
When studying fields that are fluctuating in space and time,
one must turn to a statistical description of their behavior. For
scalar fields, the preferred quantity of study is the cross-spectral
density; for vector fields, the preferred quantity is the cross-
spectral density matrix. In this section we briefly review relevant
definitions related to these functions.

For a statistically stationary scalar field, the cross-spectral
density W(r1, r2,ω) of the field at two points r1 and r2 may be
defined as

W(r1, r2,ω) = 〈Ũ(r1,ω)U(r2,ω)〉ω, (8)

where we use a tilde to represent the complex conjugate
and 〈· · · 〉ω represents an average over an ensemble of
monochromatic fields {U(r,ω)}; as first demonstrated by Wolf
[24], this ensemble can be created for any partially coherent field.
The cross-spectral density is in general frequency dependent,
but for quasi-monochromatic fields of central frequency ω0 the
overall behavior of the field can be well-represented by the
cross-spectral density evaluated at ω0; we will consider such
cases for simplicity and suppress the frequency dependence in
later expressions.

The cross spectral density can be used to directly calculate
two important observables of the field: the spectral density
S(r) = W(r, r) and the spectral degree of coherence
µ(r1, r2), a normalized quantity that is equal to the visibility
of interference fringes observed when measured with Young’s
two-pinhole experiment,

µ(r1, r2) =
W(r1, r2)√
S(r1)S(r2)

. (9)

As also shown byWolf [24], the cross-spectral density can always
be written in a modal representation called the coherent mode

representation, of the form

W(r1, r2) =
∑

s

λsφ̃s(r1)φs(r2). (10)

Here, λs ≥ 0 is an eigenvalue and φs(r) is an orthonormal
eigenfunction of the cross-spectral density, as determined from
the relation

∫

S
W(r1, r2)φ̃s(r1)d

2r1 = λsφs(r2). (11)

The domain of integration depends on the geometry of the
problem, but is typically taken to be the source plane of a paraxial
beam. The summationmay be over one or more indices, andmay
be finite or infinite; for a two-dimensional domain, it is typically
a double sum.

The coherent mode representation is a convenient way to
illustrate that singularities of phase—associated with zeros of
intensity—are not typical features of partially coherent waves. As
first noted in reference [14], in order for a zero of intensity to
appear at a given point, the real and imaginary parts of eachmode
must simultaneously vanish at that point. If there are N modes,
this involves satisfying 2N equations with 2 degrees of freedom
in a cross-section of the partially coherent beam. This is an
overspecified problem unless N = 1, which is the fully coherent
case. So phase singularities associated with zeros of intensity are
not commonly encountered in partially coherent fields.

Phase singularities of two point correlation functions, such
as the cross-spectral density, however, are common. The cross-
spectral density satisfies a pair of Helmholtz equations, and
by fixing one point, say r1 ≡ rP , the cross-spectral density
is equivalent to a monochromatic wave in the other variable,
satisfying the Helmholtz equation,

[∇2
2 + k2]W(rP , r2) = 0, (12)

where k = ω/c and ∇2
2 is the Laplacian with respect to variable

r2. Just as monochromatic fields will typically possess optical
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vortices, the cross-spectral density will typically possess coherence
vortices. It is to be noted, however, that by fixing one point of
observation, we are only seeing a projection of the singularity,
which exists in a higher-dimensional r1, r2 space; studies of the
structure of the complete singularity have been done in both the
source plane [16] and on propagation [25].

For convenience, we note that the cross-spectral density may
be written using bra-ket notation from quantum theory,

W(r1, r2,ω) =
∑

s

λs 〈r2|s〉ω 〈s|r1〉ω

= 〈r2|λ |r1〉ω ,

(13)

where 〈r|s〉ω = φs(r,ω) and λ is equivalent to the usual quantum
density operator.

When studying paraxial electromagnetic beams, it is most
efficient to decompose them into two orthogonal polarization

components â and b̂. Therefore, there are four different field
correlations to consider, between 4 different scalar modes Ea(r1),
Ea(r2), Eb(r1), and Eb(r2). In order to deal with this increased
complexity, the cross spectral density matrixW is introduced,

W(r1, r2) = 〈E†(r1)⊗ E(r2)〉 (14)

= 〈r2|λ|r1〉 .

A number of observables of the field may be calculated from this
matrix, such as the polarization matrix J̄(r) ≡ W(r, r) and the
electromagnetic degree of coherence [26], defined as

η(r1, r2) =
Tr(W(r1, r2))

√

Tr(J̄(r1))Tr(J̄(r2))
, (15)

where Tr represents the trace of the matrix. In analogy with
the scalar cross-spectral density, W(r1, r2) can be written in a
coherent mode representation.

W(r1, r2) =
∑

n

λnE
†
n(r1)⊗ En(r2) (16)

or in terms of the density operator

W(r1, r2) = 〈r2|λ |r1〉
Wij(r1, r2) = 〈r2, j|λ |r1, i〉 ,

(17)

where now 〈s|r1〉 = Es(r1) represents a vector coherent mode of
the field.

4. SINGULARITIES IN PARTIALLY
COHERENT VECTOR BEAMS

In making a change from scalar beams to vector beams,
the singularities of interest change from optical vortices to
polarization singularities. In making a change from coherent
scalar beams to partially coherent scalar beams, the singularities
of interest change from optical vortices to correlation vortices.
We now come to the key observation of this article: in going from

coherent vector beams to partially coherent vector beams, we end
up with more than one way of defining and characterizing the
singularities. In this section, we first discuss two known ways of
characterizing them and then introduce a third.

The first approach is perhaps the most straightforward: at
any given point, i.e., r1 = r2 ≡ r, we may always uniquely
decompose the cross-spectral density into a fully polarized part
and a completely unpolarized part, as first illustrated by Stokes
[27] and derived in modern form in reference [28]. The polarized
part by itself will be a continuous vector field, and will therefore
possess C-points that can be characterized as for a fully coherent
field, which we refer to as coherent polarization singularities. The
decomposition may be written in the form

J̄(r) = W(r, r) = J̄pol(r, r)+ J̄unpol(r, r). (18)

The polarized and unpolarized parts may be written as

J̄unpol(r, r) =
[

A(r) 0
0 A(r)

]

, (19)

J̄pol(r, r) =
[

B(r) D(r)
D∗(r) C(r)

]

, (20)

where

A(r) = Tr(J̄)±
√

[Tr(J̄)]2 − 4Det(J̄)

2
, (21)

B(r) = 1

2
(JLL − JRR)+

1

2

√

[Tr(J̄)]2 − 4Det(J̄), (22)

C(r) = 1

2
(JRR − JLL)+

1

2

√

[Tr(J̄)]2 − 4Det(J̄), (23)

D(r) = JLR. (24)

We may view this characterization of the singularities of the
field as looking purely at their vector nature, by focusing on the
“diagonal” (r1 = r2) elements of the cross-spectral density. This
decomposition was originally formulated in the xy polarization
basis, but has the same form in the LR basis.

Working in the LR basis has a particular advantage in studying
singularities, however. Because a C-point is defined as a point
where the field is circularly polarized, JLR = 0 at every C-point.
Furthermore, the coherent part of the field can be written as the
direct product of a Jones vector with itself in the LR basis, with
components EL(r), ER(r), such that JLR(r) = E

∗
L (r)ER(r). Since

Equation (5) shows that the orientation angle 9(r) is directly
related to the phases of the LR field components through 29(r) =
θR(r)− θL(r), the orientation angle of the ellipse for the coherent
part of the field can be derived directly from the phase of JLR(r).

It is to be noted that this decomposition cannot be applied
globally to the whole beam. As was shown by Wolf [29], it
is not in general possible to separate a paraxial vector beam
into a polarized beam and unpolarized beam, each of which
individually satisfies the wave equation.

An alternative approach for studying the singularities of a
vector cross-spectral density is to focus on the analogy with the
scalar case, and look for coherence singularities in the directly
observable part of the vector field. When performing Young’s
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two-pinhole experiment with partially coherent electromagnetic
waves, the visibility of interference fringes is given by η(r1, r2),
defined in Equation (15). In analogy with the scalar case, we may
find eta singularities by fixing one observation point r1 = rP
and looking for singularities with respect to the second point r2,
i.e., points where η(rP , r2) = 0. As noted by Raghunathan et al.
[30, 31], these singularities behave like scalar coherence vortices,
with a discrete topological charge. Eta singularities have been
relatively unexplored compared to other classes of singularities,
though they have been observed in Mie scattering [32] and in the
propagation of partially coherent radially polarized beams [33].
Whereas, the coherent polarization singularities focused on the
diagonal elements of the cross-spectral density matrix in space
(r1 = r2), this representation looks at the diagonal elements with
respect to polarization, in the form of the trace.

There is a third option, however, that may in a sense be
considered a hybrid of the two, or even a generalization. As in the
scalar case, we look at the projection of the cross-spectral density
on a fixed reference point rP . Doing that here leaves us with a
quantity that depends on a single spatial variable r2, but is still a
2× 2 matrix. We now further contract the cross-spectral density
matrix with a polarization state â as well.

WP â(r) = 〈r|λ |rP 〉 |â〉
= â ·W(rP , r). (25)

The resultant quantity is a non-uniform complex vector field,
which we expect to possess polarization singularities; we refer
to these as partially coherent polarization singularities. Whereas,
the two previous classes of singularities essentially simplified
the cross-spectral density matrix by diagonalizing in either
space or polarization and projecting with respect to the other
quantity, here we perform a projection with respect to both space
and polarization.

It is to be noted that the cross-spectral density matrix, and
consequently the vector â, are measured in the LR circular
polarization basis. The resulting vector can be written in terms
of L and R components as

WP â(r) =
[

aRWRR(r)+ aLWLR(r), aRWRL(r)+ aLWLL(r)
]

.
(26)

Several questions arise upon seeing the variety of distinct types of
singularities that can appear in partially coherent vector beams.
The first of these is: how are such singularities related to the
singularities of the field in the coherent limit, if at all? The second
question is: what is the significance of these different types of
singularities? In the next section, we introduce a simple model
of a partially coherent vector beam with controllable spatial
coherence to answer these questions.

5. CONSTRUCTION OF MODEL PC BEAMS

To construct a model of a partially coherent beam with a built-
in polarization singularity, we will utilize the relationship (7)
between topological index and topological charge in the LR
polarization basis to first construct a coherent field possessing
polarization singularities. This field will then be used in a beam

wander model to produce the cross-spectral density matrix of a
partially coherent non-uniformly polarized beam. The behavior
of the beam’s singularities can then be analyzed as a function of
the spatial coherence.

To model the R and L components of the coherent beam, we
will use Laguerre-Gauss beams of radial order 0 and azimuthal
order m; we write these modes as |m〉. We write the particular
orders of each component asm = tR andm = tL.

Written in coordinates natural for vortex beams, r± = x± iy,
and using t = αm where α = ±1, the field of a scalar component
with singularity centered at c = (c+, c−) is, in bra-ket notation,

〈r|c, t〉 = Cm(σ
2)(rα − cα)

me−|r−c|2/2σ 2
eikz . (27)

The complex scalar constant σ 2 = w2(0)/2+i z
k
; from this we can

determine the beam width w2(z) = 2|σ 2(z)|/ cos(8(z)) and the
Gouy phase, 8 = arg(σ 2). The fields are taken to be normalized;
the normalization factors are included in

Cm(σ
2) = 1√

m!

(

cos(8)

σ 2

)m+1

. (28)

Equation (27) describes the behavior of a scalar field at any
propagation distance z. An electromagnetic field built from the
scalar modes |c, t〉may then be written as

|c,λ, t〉 = λL |c, tL〉 |L〉 + λR |c, tR〉 |R〉 . (29)

To summarize the notation: here ti represents the topological
charge of the ith component, where αi is its sign and mi is
its magnitude.

Using this model, a coherent beam of n = 1/2, for example,
could be constructed with (tR, tL) = (m+1,m) for any integerm.
The λi in the model are complex coefficients whose relative phase
affects the orientation of the polarization singularity, and whose
magnitudes define how far from the polarization singularity an
L-line will manifest. However, the location of singularities in the
cross spectral density matrix will be affected by the particular
choice made, so they will be taken to both be unity for the
remainder of this article.

The beam wander model is a construction of a partially
coherent beam through an ensemble of coherent beams with
shifted central axes. This model was first used in 2004 [14] to
model a partially coherent scalar vortex beam, and may now be
considered a special case of a technique for designing genuine
correlation functions [34]. The transverse position of the central
axis is defined by the central point c and the probability density
of the ensemble is given by ρ(c). For a scalar beam 8(r − c), the
cross-spectral density has the form

W(rP , r) =
∫ ∞

−∞
d2cρ(c)8∗(rP − c)8(r− c). (30)

The probability density is usually taken to be of Gaussian form,
which allows the entire integral to be evaluated analytically.

To create a polarization vortex beam with a prescribed
topological index, it is convenient to use separate phase vortex
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solutions for the R and L components and take advantage of
the relationship of their topological charges to index n described
in Equation (7). A scalar model of partially coherent Gaussian
beams of arbitrary topological charge was introduced by Stahl
and Gbur [20], and can be used to apply the beam wander model
to the R and L components. To make partially coherent beams
carrying lemons and stars, we will expand that model to the
electromagnetic case and then choose the azimuthal modes of the
L and R components so that 1

2 (tR − tL) = ±1/2.
The result is the following expression for the cross-spectral

density matrix,

W(rP , r) =
∫ ∞

−∞
d2c ρ(c) 〈r|c, 1, t〉 〈c, 1, t|rP 〉 , (31)

with probability density

ρ(c) = 1

πδ2
e−c2/δ2 . (32)

Here δ represents the amount of wander the beam undergoes;
δ = 0 represents the coherent limit.

The diagonal terms for this have already been solved in Stahl
and Gbur [20], giving

Wii = WgQii

m
∑

k=0

ℓ!

(

mi

ℓ

)2
(

H̃αiHαi

)mi−ℓ
. (33)

In this expression, Wg is a Gaussian term dependent on the
widths of the mode and the probability density function, Qij is
a coefficient dependent on the topological charges ti = αimi,

Wg = exp

[

−12

4

(

2r2

σ 2δ2
+ 2r2

P

σ̃ 2δ2
+ |r− rP |2

|σ |4

)]

Qij =
1

δ2
C̃iCj

( |σ |2δ2
|σ |2 + cos8δ2

)mi/2+mj/2+1

= 12

δ2
C̃iCj1

mi+mj ,

(34)

andHi is a complex function that depends on the two coordinates
r and rP of the cross-spectral density,

Hi(rP , r) = 1

(

1

δ2
+ 1

2σ̃ 2

)

(x+αiiy)−
1

2σ̃ 2
(xP+αiiyP ). (35)

Furthermore, 1 is a length parameter of the form,

12 = 2w2 + w4/δ2. (36)

It is to be noted that the function Wg possesses no zeros and
therefore does not affect the number of singularities or their
positions for any of the singularity types considered.

The off-diagonal components of the cross spectral density
matrix may be solved in a similar manner, by evaluating
the integral,

Wij(r
′, r) =

C̃iCj

πδ2

∫ ∞

−∞
d2xc(r̃

′
αi
− c̃αi )

mi (rαj − cαj )
mj

× e−|r′−c|2/2σ̃ 2
e−|r−c|2/2σ 2

e−c2/δ2 .

(37)

Following a procedure analogous to that of reference [20], we
employ the substitution ρ = rc − 12(rp/σ̃

2 + r/σ 2)/2, together
with binomial expansions of the vortex terms to get the following
expression for the off-diagonal elements ofW,

Wij =
WgQij

π12

mi
∑

k=0

mj
∑

l=0

(

mi

k

)(

mj

l

)

H̃
mi−k
i H

mj−l

j

×
∫ ∞

0
dρ2

( ρ

1

)k+l
e
− ρ2

12

∫ 2π

0
dφ ei(αjl−αik)φ .

(38)

The integral over φ is equal to 2πδαjl−αik, applying this and
a straightforward Gaussian integral compresses our result to
the form,

Wij=WgQij

mmin
∑

ℓ=0

δ
αjℓ

αiℓ
ℓ!

(

mi

ℓ

)(

mj

ℓ

)

H̃mi−ℓ
αi

H
mj−ℓ
αj

=WgPij(r+, r−),

(39)

where Pij is a polynomial factorable into r+ and r− terms and
mmin is the minimum of {mi,mj}. Using this formula, we can
write the cross-spectral vectors, defined in Equation (25), and
electromagnetic degree of coherence, defined in Equation (15),
in terms of the non-zeroWg and the polynomials Pij in the form

η =
Wg(PRR + PLL)

√

Tr
[

J(rP )
]

Tr
[

J(r)
]

. (40)

WP â= Wg[ aRPRR+aLPLR aRPRL+aLPLL ] (41)

Because our expression for the cross-spectral density matrix
is analytic, we can directly determine the number of phase
singularities each component must possess. Referring to
Equation (39) for Pij, we see that the largest powers of the
polynomial are of the forms (x−αiiy)

mi and (x+αjiy)
mj , resulting

inmi andmj distinct roots, respectively.Wemay therefore expect
that there will bemi first-order singularities of charge−αi, andmj

first-order singularities of charge+αj.
We may use this observation to determine the singular

behavior of the beam for each type of singularity discussed.
For coherent polarization singularities, the net topological index,
given by Equation (7), will be determined by the zeros ofWLR, or

n = (−αLmL + αRmR)/2. (42)

The topological index of the coherent part of the beam will
therefore remain constant, regardless of the state of coherence.

For eta singularities, we combine Wii and Wjj. The first term
will be a polynomial of order mi in both +αi and −αi, and the
second term will be a polynomial of order mj in both +αj and
−αj. Let us consider the case where both αi > 0 and αj > 0,
for simplicity. Because the order of a sum of polynomials is
the maximum of the orders of the individual polynomials, we
find that the number of positive singularities N+

η and negative

singularities N−
η is given by

N+
η = N−

η = max(mR,mL). (43)
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FIGURE 2 | Behavior of a coherent polarization singularity as the spatial coherence is decreased, with (A) δ = 0.1 cm, (B) δ = 0.5 cm, (C) δ = 3 cm.
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FIGURE 3 | Behavior of an eta singularity as the spatial coherence is decreased, with (A) δ = 0.1 cm, (B) δ = 0.5 cm, (C) δ = 3 cm. Here tR = 1, tL = 0 and the

observation point is taken at r1 = (0.35, 0.35) cm. Dashed lines have been included to show the position of the coordinate system origin.

FIGURE 4 | Behavior of an eta singularity as the spatial coherence is decreased, with (A) δ = 0.1 cm, (B) δ = 0.5 cm, (C) δ = 3 cm. Here tR = 2, tL = 1 and the

observation point is taken at rP = (0.35, 0.35) cm. Dashed lines have been included to show the position of the coordinate system origin.

The net topological charge will always be zero, though the
number of positive and negative charges will depend on the order
of the components. For example, a lemon made from tR = 3 and
tL = 2 would have 3 pairs of t = 1 and t = −1 phase vortices.

A similar calculation may be done to determine the number
and type of singularities in WP â. We again restrict ourselves
to the case where αi > 0 and αj > 0. In this case, the left
component of the vector will have max(mR,mL) negative charges
and mL positive charges in general, while the right component

of the vector will have mR positive charges and max(mR,mL)
negative charges. The total number of lemons and stars may then
be calculated by:

Nlemons = positive R+negative L = mR +max(mR,mL), (44)

Nstars = negative R+positive L = mL +max(mR,mL). (45)

This assumes that none of the zeros coincide, which is the typical
scenario. It is to be noted that the number may change in the
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FIGURE 5 | Behavior of a partially coherent polarization singularity as the spatial coherence is decreased, with (A) δ = 0.1 cm, (B) δ = 0.5 cm, (C) δ = 3 cm. Here

tR = 1, tL = 0 and the observation point is taken at rP = (0.35, 0.35) cm. The unit vector â is taken parallel to the polarized part of the field at rP .

FIGURE 6 | Behavior of a partially coherent polarization singularity as the spatial coherence is decreased, with (A) δ = 0.1 cm, (B) δ = 0.5 cm, (C) δ = 3 cm. Here

tR = 1, tL = 0 and the observation point is taken at r1 = (0.35, 0.35) cm. The unit vector â is taken perpendicular to the polarized part of the field at rP .

special case when the projection vector â is taken to be a pure
circular polarization state. By making an appropriate selection of
â, not only the positions of the polarization singularities but their
total number may therefore be manipulated.

6. SINGULARITIES IN MODEL BEAMS

We may now apply our model to investigate and confirm
the behavior of the three classes of singularities for partially
coherent electromagnetic beams and their relationships to the
underlying singularity of the coherent beam. In all examples, we
take w0 = 0.5 cm.

We first consider the case of coherent polarization
singularities, characterized by points where JLR(r) = 0,
where we take tR = 1, tL = 0, resulting in a generic lemon.
Figure 2 shows the behavior of the polarization singularity as the
spatial coherence is decreased.

It can be seen that the singularity is unchanged in position
or even in phase structure as δ is varied. This result is also
true for a non-generic lemon, with tR = 3 and tL = 2 (not
shown). We may explain this result as arising from the rotational
symmetry of all constituent parts of the field: the left and right
components of the field, as well as the probability distribution
ρ(c), are all symmetric about their central axes. Therefore, there
is nothing in the model that provides a direction to break
symmetry and allow the position of the polarization singularity to

change. This result is noteworthy as it suggests that the coherent
polarization singularities maintain their original structure when
a beam is randomized under quite general circumstances, and
indicates that the topological index will remain unchanged on
randomization, as predicted by Equation (42).

The situation for eta singularities, where η(rP, r) = 0, is
significantly different. In Figure 3, there is no eta singularity at
the origin in the coherent limit, whereas there is a polarization
singularity at that position. This discrepancy arises because eta
singularities are associated with a zero of Tr[W(r1, r2)], which
typically evolves into a zero of intensity in the coherent limit.
A generic C-point has a non-zero intensity, so this polarization
singularity is not directly reflected in the behavior of the
eta singularities.

It can be seen that, as the spatial coherence is decreased, a
second eta singularity of opposite charge approaches from the
point at infinity along the line of r1, resulting in a field with a
net topological charge of zero near the origin. This is the same
behavior seen for correlation singularities in scalar fields [14].

For a non-generic polarization vortex, the eta singularity
behavior connects more closely to the underlying polarization
singularity, as seen in Figure 4. In the coherent limit, the
polarization singularity is also a point of zero intensity due to the
overlap of zeros of the L andR components of the field. Therefore,
this corresponds to an eta singularity at the origin, and that eta
singularity is preserved as the spatial coherence is decreased.

Frontiers in Physics | www.frontiersin.org 8 May 2020 | Volume 8 | Article 168

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Raburn and Gbur Singularities of Partially Polarized Beams

FIGURE 7 | Behavior of a partially coherent polarization singularity as the spatial coherence is decreased, with (A,D) δ = 0.1 cm, (B,E) δ = 0.5 cm, (C,F) δ = 3 cm.

Here tR = 2, tL = 1 and the observation point is taken at r1 = (0.35, 0.35) cm. The unit vector â is taken parallel to the polarized part of the field at rP in (A–C) and

perpendicular in (D–F).

In Figure 3, we end up with a single plus-minus pair as
coherence is decreased, whereas in Figure 4 we end up with
three pairs. These results are consistent with the predictions
of Equation (43).

We finally consider the behavior of partially coherent
polarization singularities whereWP â(r) = 0, where the behavior
of such singularities strongly depend on the choice of projection
â. We may naturally decompose the behavior into the case where
â is parallel to the polarized part of the field at the observation
point rP and the case where â is perpendicular to this polarized
part. Figure 5 shows the parallel case; we can see that, in the
coherent limit, this projection accurately reproduces the lemon
behavior at the origin.

The situation is different for the perpendicular case, as shown
in Figure 6. The net topological index stays equal to that of the
coherent limit, but there are additional singularities present for
this case, even as we approach full coherence.

According to Equation (45), we expect to see two lemons
and one star in general in the projection as the coherence is
decreased, and this is true in both Figures 5, 6. To further
confirm that our calculation in Equation (45) is correct, we
consider the higher-order polarization vortex case with tR =
2, tL = 1 in Figure 7. Now we predict 4 lemons and
3 stars, which can be seen in Figures 7C,D. It is to be
recalled, however, that the number of zeros depends on the
projection vector â; in our case, we find that annihilation events
happen in Figure 7E, resulting in fewer singularities in the low
coherence limit.

7. CONCLUSION

Although there is a simple relationship between coherent optical
vortices and correlation singularities when looking at scalar
wavefields, there are multiple ways to define singularities of a
partially coherent vector field. In this article we have discussed
three different methods for defining partially coherent vector
singularities, and introduced a simple model of a partially
coherent vector field to compare them.

Our model demonstrates that, in each case, the singularities
that exist in a coherent vector field do evolve into singularities
of the cross-spectral density matrix, though each of the
partially coherent projections have different relationships to
their coherent counterparts. It is to be noted that each of
these projections will have their own relevance to experimental
observations. The coherent polarization singularities will be
reflected in the Stokes parameters of the partially coherent field,
whereas the eta singularities and partially coherent polarization
singularities will appear in Young’s two-pinhole interference
experiments, where the fields from two different spatial points are
interfered. Furthermore, because the first two methods involve
a diagonalized projection of the cross-spectral density matrix in
space or polarization, partially coherent polarization singularities
cannot be derived from measurements of either of these, and
vice-versa. They represent distinct manifestations of singularities
in the partially coherent vector case.

It is of interest to note that there is an analogy here
to a discussion that arose several years ago, relating to the
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proper definition of the degree of coherence when dealing
with electromagnetic fields. In addition to the aforementioned
definition using eta [26], which is determined by the visibility of
interference fringes, Tervo et al. [35] simultaneously introduced
a definition that stresses the statistical correlations between field
components. A third definition was introduced by Réfrégier
and Goudail [36] that stresses invariant properties of the field.
It appears that the appropriate choice of degree of coherence
depends on the interests of the experimenter, and we expect the
same is true for the multiple possible definitions of singularities
in partially coherent electromagnetic fields.

This article focuses on several definitions of electromagnetic
singularities. Like the scalar case [16], however, all
these definitions are projections of the true partially
coherent electromagnetic singularities which exist in
a higher-dimensional space, and which is not easily
visualized. Future work will involve trying to determine
the nature of such singularities, and it is hoped that
the recognition of the various projections will aid in
this investigation.

From a practical perspective, we note that there has been
much attention paid in recent years to the use of optical vortices
in free-space optical communication, which potentially have
several advantages over traditional communication schemes [4,

5]. With this in mind, it would seem that beams possessing vector
singularities will be a natural next step in research, especially
considering that vector beams possess some advantages over
scalar beams on propagating in atmospheric turbulence [12]. An
understanding of how polarization singularities evolve when the
spatial coherence of beams is reduced will be essential for such
research, and we hope that this paper is a step in that direction.
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