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We introduce a general strategy for the synthesis of vector
partially coherent beams (PCBs) with a prescribed non-
uniform correlation structure. With it, we characterize a
specific family of such beams, termed radially polarized
Hermite non-uniformly correlated (RPHNUC) beams.
These beams possess unusual propagation properties com-
pared to vector PCBs with uniform correlation structure; for
example, they maintain their dark hollow core and evolve
multi-ring structures. These beams may prove useful in
free-space optical communications, optical trapping, and
polarization-sensitive imaging. © 2020 Optical Society of
America

https://doi.org/10.1364/OL.397316

Although polarization is a fundamental property of light fields,
researchers have only recently investigated how non-trivial
polarization states can be used to produce novel optical effects.
Traditionally, most studies have focused on beams with a
spatially uniform state of polarization (SOP), but it is now
appreciated that beams with a non-uniform SOP (e.g., radially
or azimuthally polarized beams) [1] are advantageous in many
applications. For example, radially polarized beams have been
shown to have a smaller focal spot [2], and non-uniformly
polarized beams have been shown to have improved resistance to
atmospheric turbulence [3]. Vector beams are now a vibrant and
active topic of research.

Spatial coherence is also an important property of laser
beams, and beams with decreased spatial coherence, called par-
tially coherent beams (PCBs), often have advantages over their
coherent counterparts [4,5]. In 2007, a powerful new method
for designing correlation functions of scalar PCBs was intro-
duced by Gori et al. [6], allowing a wide variety of novel PCBs
to be investigated [4,5]. One broad and extremely important
class derived from the formalism by Gori et al. is non-uniformly
correlated beams [7], which possess a non-homogeneous degree
of coherence. Such beams display many potentially beneficial
properties on propagation, such as improved resistance to
atmospheric turbulence [8,9].

The combination of polarization and partial coherence has
led to the discovery of novel effects. It was long assumed that
the SOP and the degree of polarization (DOP) of vector beams
remain invariant on propagation in free space. In 1994, how-
ever, James predicted that the DOP of PCBs can change on
propagation [10]; this was subsequently verified experimentally
by Vidal et al. [11]. Wolf introduced a unified theory of polari-
zation and coherence in 2003, allowing for the systematic study
of vector PCBs [12]. Using this, it was shown by Korotkova and
Wolf [13] that the SOP of stochastic electromagnetic beams
may change on propagation as well. In 2008, Salem and Wolf
explored the phenomenon of coherence-induced polarization
changes in detail and predicted that the polarization properties
of vector beams could be modulated by varying their spatial
coherence width [14]. These studies as a whole demonstrated
that coherence and polarization are closely connected and that
much can be learned from their synthesis.

In 2009, Gori et al. extended their method for designing
correlation functions from scalar to electromagnetic waves [15],
allowing the development of many new classes of vector PCBs.
Since then, researchers have investigated the different behaviors
of vector PCBs arising due to different coherence structures
[16,17]. However, a vast majority of these works have focused
on uniformly correlated (or Schell-model) sources, and only
a few papers have studied vector PCBs with a non-uniformly
correlated structure. It is expected that, just as non-uniformly
polarized and non-uniformly correlated beams have shown
advantages separately in optical applications, their combination
will allow even greater improvements.

In this Letter, we introduce a general strategy for the synthesis
of vector PCBs with a prescribed non-uniform coherence and
we employ it to generate radially polarized PCBs with Hermite
non-uniform correlation (RPHNUC) beams, and we examine
their free-space propagation. These beams possess propagation
characteristics very different from radially polarized partially
coherent (RPPC) beams (which possess uniform coherence at
the source).

Typically, the spatial coherence properties of vector PCBs
are characterized by either the beam coherence-polarization
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matrix in the space–time domain [18] or the cross-spectral
density (CSD) matrix in the space–frequency domain [19].
In recent years, the CSD matrix has become the quantity of
choice for researching broadband fields. The CSD matrix of
quasi-monochromatic fields at two position vectors r1 and r2 at
the source plane is defined as

↔

W(r1, r2)=

[
Wx x (r1, r2) Wx y (r1, r2)
Wy x (r1, r2) Wy y (r1, r2)

]
, (1)

with elements

Wαβ(r1, r2)= 〈E ∗α(r1)Eβ(r2)〉, (α, β = x , y ). (2)

The quantities E x and E y in Eq. (2) denote two mutually
orthogonal components of the random electric field vector
along the x and y directions, respectively, which are perpendicu-
lar to the z axis. The asterisk denotes the complex conjugate, and
the angular brackets denote an average over a monochromatic
ensemble. Though the CSD matrix is dependent on frequency
ω, we will work at a single frequency and suppress its explicit
depiction.

From the result of Gori et al. [15], it is known that any CSD
matrix expressed in the following one-dimensional integral form
is physically realizable:

Wαβ(r1, r2)=

∫
pαβ(v)V ∗α (r1, v)Vβ(r2, v)dv, (3)

where pαβ(v) are the elements of the following weighting
matrix:

↔

p (v)=
[

px x (v) px y (v)
p∗x y (v) p y y (v)

]
, (4)

and the elements of the weighting matrix must satisfy the follow-
ing inequalities:

px x (v)≥ 0, p y y (v)≥ 0, px x (v)p y y (v)≥ |px y (v)|
2.
(5)

We take Vα(β)(r, v) to be a kernel of the form

Vα(β)(r, v)= τα(β)(r) exp [−ikR(r)v] , (6)

where k is the wavenumber, τα(β)(r) is a complex scalar function
of coordinate r, andR(r) is a real scalar function of coordinate r.

Substituting from Eqs. (4) and (6) into Eq. (3), we obtain the
expression

Wαβ(r1, r2)= τ
∗

α (r1)τβ(r2)µαβ(r1, r2), (7)

where τα(β)(r) represents the average α(β)th component of the
electric field, andµαβ(r1, r2) is the Fourier transform of pαβ(v),
i.e.,

µαβ(r1, r2)= p̃αβ [R(r2)−R(r1)] . (8)

The SOP of the vector PCB is closely related to τα(r). For
example, if we set τα(r)= Aα exp(− r2

4w2
0
), with Aα being a

constant and w0 being the beam width, the beam exhibits a
uniform SOP: the SOP at any point in the source plane is the
same. Such beams are referred to as uniformly polarized PCBs.
In contrast, if we set

τα(r)=
α

2w0
exp

(
−

r2

4w2
0

)
, (9)

the beam exhibits a non-uniform radial SOP and is a radially
polarized PCB. We may also choose τx (r)=

y
2w0

exp(− r2

4w2
0
)

and τy (r)= x
2w0

exp(− r2

4w2
0
), in which case, we have an

azimuthally polarized PCB.
The correlation structure of a PCB depends on the choices for

pαβ(v) andR(r). If we take pαβ(v) of Gaussian form andR(r)
linear in the coordinate r, PCBs with a pseudo-Schell-model
structure are generated [20]; if pαβ(v) has a non-Gaussian
form and R(r) is not linear in r, the result is a PCB with a
non-uniform correlation structure.

With different choices of τα(β)(r), pαβ(v), and R(r), we can
generate a variety of vector PCBs with distinct non-uniform cor-
relations.

In order to demonstrate the extraordinary properties of vector
PCBs with a prescribed non-uniform correlation structure,
we now focus on the particular example of RPHNUC beams.
We introduce a source with τα(r) in the radially polarized form
given in Eq. (9), and take pαβ(v) to have the form

pαβ(v)= Bαβ
(
2v/aαβ

)2m
exp
(
−v2/a2

αβ

)
/
(√
πaαβ

)
, (10)

with constraints on aαβ and Bαβ to be determined.
We further take R(r)= r2. Then, according to Eq. (8), we

obtain

µαβ(r1, r2)= G0 Bαβ exp

[
−
(r2

1 − r2
2)

2

r 4
αβ

]
H2m

(
r2

1 − r2
2

r 2
αβ

)
,

(11)

where r 2
αβ ≡ 2/kaαβ is the coherence length, H2m(x ) denotes

the Hermite polynomial of order 2m, G0 = 1/H2m(0), and
Bαβ = |Bαβ | exp(iφαβ) is the maximum correlation between
the Eα and Eβ field components. Equation (11) shows that the
beam is radially polarized and has a non-uniform correlation of
Hermite function form, and we have consequently labeled this
beams as RPHNUC beams.

For the remainder of this Letter, we focus primarily on
RPHNUC beams. First, we determine the conditions that
RPHNUC beams must satisfy to be a realizable correlation
function. These beams must meet the following three con-
ditions: a) the CSD matrix must be quasi-Hermitian [15],
i.e., Wαβ(r1, r2)=W∗βα(r2, r1); b) the beams must satisfy
the nonnegative conditions given in Eq. (5); and c) the radial
polarization condition must be met: in the source plane, the
field is linearly polarized, and the polarization orientation angle
at any point should satisfy θ(x , y )= arctan(y/x ) [21]. The
SOP of the beams can be characterized with the polarization
ellipse, whose orientation angle θ and degree of ellipticity ε are
expressed as Eqs. (A3) and (A4) in Ref. [21]. In order to satisfy
the above conditions, our RPHNUC beams must additionally
satisfy

Bx y = By x = 1, rx x = r y y = r y x = rc , (12)

where rc is the correlation length.
Paraxial propagation of the CSD of a PCB through a stig-

matic ABC D optical system can be described by the generalized
Collins formula [22]
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Wαβ(ρ1, ρ2, z)

=
1

(λB)2
exp

[
−

ik D
2B

(
ρ2

1 − ρ
2
2

)] ∫∫ ∞
−∞

Wαβ(r1, r2)

× exp

[
ik
B
(r1 · ρ1 − r2 · ρ2)−

ik A
2B

(
r2

1 − r2
2

)]
d2r1d2r2,

(13)

where ρ1 ≡ (ρ1x , ρ1y ) and ρ2 ≡ (ρ2x , ρ2y ) are two arbitrary
transverse position vectors in the output plane; A, B,C , D
are the elements of the transfer matrix for the stigmatic optical
system.

We may calculate the CSD of RPHNUC beams in the target
plane using the above equations. By substituting from Eqs. (3),
(6), and (10) into Eq. (13), and interchanging the order of inte-
gration, we obtain the formula

Wαβ(ρ1, ρ2, z)=
∫

pαβ(v)Pαβ(ρ1, ρ2, v)dv, (14)

where we have obtained

Pαβ(ρ1, ρ2, v)=
k2ρ1αρ2β

64B4w2
0|ξ |

4
exp

[
−

ik D
2B

(
ρ2

1 − ρ2
2

)]

× exp

(
−

k2

4B2ξ
ρ2

1 −
k2

4B2ξ ∗
ρ2

2

)
, (15)

with ξ = 1
4w2

0
− ik(v − A

2B ). Hence, we have obtained the

CSD matrix of RPHNUC beams in the output plane after
propagation by evaluating Eqs. (14) and (15).

Two quantities are of particular interest in beam propagation.
The spectral intensity S(ρ) of the beam in a given plane, usually
the output plane of the optical system, is defined as

S(ρ)=Tr
↔

W
(
ρ1, ρ2

)
=Wx x (ρ, ρ)+Wy y (ρ, ρ). (16)

The DOP in the output plane is given by the expression

P (ρ)=

√
1− 4Det[

↔

W(ρ, ρ)]/{Tr[
↔

W(ρ, ρ)]}2. (17)

Using the expressions we derived above, we next study the
propagation properties of RPHNUC beams in free space. The
transfer matrix for free-space propagation over distance z is
A= 1; B = z; C = 0; D= 1. In the following calculations,
we choose the beam parameters as λ= 632.8 nm, w0 = 1 cm,
rc = 0.6 cm. The correlation length rc is less than the beam
widthw0, but significantly larger than the wavelength; the result
is a partially coherent field that retains beam-like directionality.

We begin by comparing the evolution of the intensity of
RPHNUC beams with conventional RPPC beams, which
possess a Schell-model correlation structure. Figure 1(a) shows
the evolution of the RPPC beam on propagation, which was
studied in detail in Ref. [21]. It can be seen that although the
RPPC beam begins with a dark hollow core in the source plane,
this dark core becomes shallower on propagation and even-
tually degrades to a Gaussian intensity profile. This in turn
indirectly indicates that the radial polarization structure is lost
on propagation, as we will later see.

In contrast, Figs. 1(b) and 1(c) show the evolution of
RPHNUC beams for two different beam orders, m = 0 and

Fig. 1. Density plot of the normalized intensity of (a) RPPC beam
and RPHNUC beams upon propagation in free space at different dis-
tances with different beam orders (b) m = 0 and (c) m = 1.

m = 1. In both cases, it can be seen that the RPHNUC beams
evolve in a non-trivial manner, manifesting rings of different
sizes, sometimes multiple rings, at different intermediate dis-
tances. However, the dark hollow core of the beam is always
maintained, even after propagating several kilometers. Over
short propagation distances, notably in the second and third
images in Figs. 1(b) and 1(c), a new ring manifests in the center
of the beam with an extremely small radius. It is to be noted that
the transverse scales of the figures have been changed to high-
light this feature. This small ring grows in size and intensity on
propagation, while the outside ring diminishes and disappears.

RPHNUC beams also exhibit self-focusing properties typical
of a non-uniformly correlated source. Figure 2(a) shows the
ratio of the maximum intensity in a plane of constant z to the
maximum intensity in the source plane for RPPC beams and
RPHNUC beams of different orders. The most noticeable
feature in the plot is the sharp increase in maximum intensity for
RPHNUC beams, indicative of self-focusing; this feature is not
present for the RPPC beam. This self-focusing becomes more
dramatic as the beam order is increased, which is consistent
with the results for scalar HNUC beams [9,23]. Over longer
distances, the maximum intensity decreases, consistent with
normal diffractive spreading. Over short propagation distances,
as shown in the inset in Fig. 2(a), the maximum intensity first
increases, then decreases; we interpret this as arising from the
interplay between the intensities of the outer ring and inner ring.

We have noted that RPHNUC beams appear to maintain
their dark hollow core on propagation; this is quantified in

Fig. 2. Ratio of (a) maximum intensity in the transverse plane
Smax(ρ, z) to that in the source plane Smax(ρ, 0) and (b) on-axis inten-
sity S(0, z) to the maximum intensity Smax(ρ, z) for different beam
orders.
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Fig. 3. Density plot of the normalized intensity and the SOP of
RPHNUC beams (m = 1) upon propagation in free space at different
distances.

Fig. 4. DOP of RPPC and RPHNUC beams at point (0.5 mm,
0.5 mm) versus the propagation distance z for different beam orders.

Fig. 2(b), in which the ratio of the on-axis intensity to the maxi-
mum intensity in a plane of constant z is plotted. For the RPPC
beam, the ratio quickly goes to unity, indicating that the hollow
core quickly becomes a maximum of intensity; for RPHNUC
beams, the ratio remains zero, indicating that the dark hollow
core is maintained at all propagation distances.

The polarization properties of RPHNUC beams are also
maintained on propagation. Figure 3 again shows the intensity
of a RPHNUC beam with m = 1 for different propagation
distances. Both these figures, and the overlaid vector plot of
the SOP, show that the beam maintains radial polarization
over all propagation distances. This evolution is dramatically
different from the behavior of RPPC beams, which depolarize
on propagation (see Fig. 1 in Ref. [24]). Figure 4 shows the DOP
at the particular point (0.05 mm, 0.05 mm) versus propagation
distance z for different beam types and orders. The RPPC beam
becomes unpolarized as it propagates, as has been previously
noted [21], while the RPHNUC beams remain fully polar-
ized. With RPHNUC beams, then, we have a class of partially
coherent beams that maintain both their DOP and SOP at any
propagation distance in free space.

We may explain these unique beam propagation features
by viewing Eq. (3) as an integral over coherent modes of the
beam [9]. Equation (6) shows that each of the modes possesses
a quadratic phase factor, exp(−ikvr2), which causes them to
individually converge at different focal distances given by the
expression z= 1/2v. At different propagation distances, then,
different modes will dominate. Furthermore, each mode pos-
sesses a dark hollow core, and modes are only focused/defocused
and not shifted; they all maintain their dark core on propaga-
tion. Therefore RPHNUC beams maintain their dark hollow
core and radial polarization and remain fully polarized over long
propagation distances. Conventional RPPC beams, in contrast,
may be interpreted as being created by random tilts of a radially
polarized beam. The dark core of the beam “wanders” in the
ensemble, and on average will not persist on propagation.

In this Letter, we have therefore introduced a general method
for constructing vector PCBs and shown in particular that
RPHNUC beams display unique features on propagation that
are distinct from conventional RPPC beams with a uniform cor-
relation structure. In practice, these beams could be synthesized
by using a pseudo-mode sampling superposition method [25],
weighting them as in Eq. (3).

These beams may prove useful for a number of applications.
Their robustness may allow them to be used as information
carriers in free-space optical communication, where they possess
the benefits of non-uniform polarization and partial coherence.
Their self-focusing and polarization characteristics may prove
useful in optical trapping, where the strength and position of
the trap can be adjusted through the coherence properties.
Finally, the existence of fine structure in space and polarization
may allow them to be used in polarization-sensitive imaging
schemes.
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