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Abstract: A new kind of partially coherent vector beam, named a partially coherent radially
polarized fractional vortex (PCRPFV) beam, is introduced as a natural extension of the recently
introduced scalar partially coherent fractional vortex beams [Zeng et al., Opt. Express, 26,
26830 (2018)]. Realizability conditions and propagation formulas for a PCRPFV beam are
derived. Statistical properties of a focused PCRPFV beam, such as average intensity, degree of
polarization, state of polarization and cross-spectral density matrix, are illustrated in detail and
compared with that of a partially coherent radially polarized integer vortex beam and a scalar
partially coherent fractional vortex beam. It is found that the statistical properties of a PCRPFV
beam are qualitatively different from these simpler beam classes and are strongly determined by
the vortex phase (i.e., fractional topological charge) and initial coherence width. We demonstrate
experimental generation of PCRPFV beams and confirm their behavior. Our results will be useful
for the rotating and trapping of particles, the detection of phase objects, and polarization lidar
systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Polarization is one of the fundamental properties of a light beam. The vector nature of light and
its interactions with matter make possible many optical system designs and optical devices that
are unachievable with scalar beams. Vector beams can be separated into those with a spatially
uniform state of polarization (SOP) and those with a spatially non-uniform SOP [1]. An archetype
of beams with non-uniform SOP, radially polarized beams have found advantages in optical
trapping, laser machining, material processing, electron acceleration, microscopy, lithography,
optical data storage, plasmonic focusing and super-resolution imaging, due to their unique and
interesting focusing properties [1–4]. In high numerical aperture focusing, a radially polarized
field leads to a strong longitudinal electric field component at the focus and it can be focused to a
spot size significantly smaller than is possible for linear polarization.
In past decades, the coherence and polarization of beams were always studied separately. In

2003, however, Wolf formulated an unified theory of coherence and polarization, which indicates
that these properties are interrelated and should be considered together [5]. Wolf characterized the
degree of coherence using the visibility of interference fringes, which depends on both statistics
and polarization. Meanwhile, Tervo et al. gave another definition of the degree of coherence
of a partially coherent vector beam, which can be used to analyze the statistical properties of a
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partially coherent vector beam [6]. After that, it was found that modulating the coherence and
polarization properties of a partially coherent vector beam is useful for beam shaping [7], ghost
imaging [8,9] and reducing turbulence effects [10,11]. Thus, more and more attention has been
paid to partially coherent vector beams [12–23].
It is generally thought that the degree of polarization (DOP) and SOP of a radially polarized

beam are invariant as the beam propagates in free space. However, the above theoretical and
experimental studies have shown that a partially coherent radially polarized beam exhibits unique
statistical and propagation properties. For example, during propagation in free space, a partially
coherent radially polarized beam becomes depolarized (i.e., the DOP decreases on propagation),
while its SOP remains radially polarized [20]. Furthermore, modulating the spatial coherence
width and correlation function results in beam shaping and can be used to flexibly shape the
focused beam spot of the partially coherent radially polarized beam from a Gaussian profile (i.e.,
bright spot) to a hollow profile (i.e, dark spot) [21,22]. The bright spot required for trapping
particles with refractive indices higher than that of the background and the dark spot required
for trapping particles with refractive indices less than that of the background can be formed,
respectively, in one optical trap system [2]. A partially coherent radially polarized beam can
effectively reduce scintillation in turbulence compared to a linearly polarized partially coherent
beam [23].

In addition to polarization and coherence, phase is another fundamental property of a light beam.
Recently, considerable attention has been paid to beams which possess a vortex phase because of
their great potential application in optical micromanipulations, free-space optical communications,
optical trapping, optical imaging, deep microstructure topography characterization and optical
measurement [24–31]. Quite recently, Fang et al. implemented orbital angular momentum
holography for high security encryption by using a vortex beam [32]. The vortex phase is
determined by the topological charge (TC) carried by a vortex beam [33,34]. The introduction of
vortex phase can not only improve the image resolution [35], but also further reduce turbulence
effects [36]. In addition, a partially coherent beam embedded with a vortex phase has unique
physical effects that beams without a vortex phase do not possess, such as coherence singularities
[37,38], which can be used for optical measurement [39]. In 2016, Guo et al. introduced a
vortex phase into a partially coherent radially polarized beam, and found that the vortex phase
plays a role in resisting the coherence-induced degradation of the intensity distribution and the
coherence-induced depolarization [40].
The aforementioned research considers beams with an integer topological charge, and the

topological charge of a vortex beam is always constrained to be integer valued. However, it is
possible to design optical elements that would in principle produce a beam with a fractional
TC, and the resulting fields possess some special optical properties that are quiet different from
integer vortex beams [41–43]. For example, a fractional vortex beam possesses radial lines of
low intensity in its annular intensity ring and the phase changes rapidly at this radial gap; in
addition, beams of light with orbital angular momentum such as Laguerre-Gaussian beams are
characterized by a central phase singularity, and the number of phase singularities carried by a
fractional vortex beam is no longer simply equal to the value of TC, but is determined by the
relationship between the value of carried TC and the nearest half-integer. In contrast with an
integer vortex beam, a fractional vortex beam has unique advantages in practical applications. For
example, the fractional vortex beam’s radial opening gap in the intensity can be used for guiding
and transporting particles [44] as well as optical sorting [45]. Due to its asymmetric intensity
profile, the fractional vortex beam can be applied to achieve anisotropic edge enhancement in
imaging [46]. Based on its fractional orbital angular momentum, the fractional vortex beam can
be used to increase the degree of entanglement of photons in quantum information processing
[47]. Therefore, numerous efforts on a fractional vortex beam have been reported in the last two
years [48–54].
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The advantages of fractional vortex beams can be combined with the advantages of partial
coherence and those of vector beams. In 2018, Zeng et al. [53] first introduced a fractional vortex
phase into a partially coherent scalar beam and found that the partially coherent fractional vortex
beam exhibits unique propagation properties from those of a partially coherent integer vortex
beam.
Recently, Gu et al. used the collinear superposition principle to generate a fractional ellipse

perfect vector beam [54], however, the light source they used was fully coherent. In addition,
the selected beam model (note that the perfect beam model can only be generated in the focal
field) determines that they can only study its focal field characteristics, but not its propagation
characteristics, in general, the study of such beams is very limited. A combination of fractional
vortices, partially coherence, and vector effects has not yet been done.

In this paper, we introduce a new kind of partially coherent vector beam called a partially
coherent radially polarized fractional vortex (PCRPFV) beam, and discuss its realizability and
beam conditions. In particular, we analyze the average intensity, degree of polarization, state of
polarization and cross-spectral density matrix of a PCRPFV beam on propagation in detail, and
we also report experimental generation of such beams. We discuss unusual effects associated
with such beams and their possible uses.

2. Theoretical model and realizability conditions for a PCRPFV beam

According to the unified theory of optical coherence and polarization [55], the statistical properties
of a partially coherent vector beam-like field, propagating along the z-axis, can be characterized
by the cross-spectral density (CSD) matrix←→W (r1, r2) in the space-frequency domain, where r1
and r2 are two arbitrary position vectors in a plane of constant z, perpendicular to the propagation
axis. In the source plane (z = 0), the elements of its CSD matrix are expressed as

Wαβ (r1, r2) =
〈
E∗α (r1)Eβ (r2)

〉
, (α, β = x, y) , (1)

where Ex (r) and Ey (r) represent two orthogonal stochastic electric field components along the x
and y axis, respectively. The asterisks represent the complex conjugate and the angular brackets
denote an ensemble average.
As a natural extension of a scalar partially coherent vortex beam with tunable topological

charge [53], we define the elements of the CSD matrix of a partially coherent radially polarized
beam with Gaussian correlation function and vortex phase exp(ilϕ) in the source plane (z = 0) in
following form

Wαβ (r1, r2) =
αβ

w2
0

exp(−
r21 + r22

w2
0
) exp[−il (ϕ1 − ϕ2)]µαβ (r1 − r2) , (α, β = x, y) , (2)

with

µαβ (r1 − r2) = Bαβ exp

[
−
(r1 − r2)2

2σ2
αβ

]
, (α, β = x, y), (3)

where w0 is the beam width of the source, σαβ are the coherence widths of the correlation
functions with α − β components. The quantity l denotes the TC and can be determined by a
path integral of the gradient of the wavefield phase ψ (r) with the following expression [33]

l =
1
2π

∮
C
∇ψ (r) · dr, (4)

where C denotes a closed path around the singularity and dr represents an infinitesmal vector
path element. Originally, the definition of l was only for the case where the TC is an integer, but
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in 2004 Berry suggested how it could be formally introduced for non-integer cases [41]. The
quantity ϕ is the azimuthal (angle) coordinate, Bαβ =

��Bαβ

�� exp(iφαβ) is the complex correlation
coefficient between the α and β components of the electric field with φαβ being the phase
difference. By choosing a fractional value of l, the beam source whose CSD matrix is given by
Eq. (2) is termed a PCRPFV beam. When the value of l is equal to a non-zero integer, the beam
source reduces to a partially coherent radially polarized integer vortex beam [40]. In particular,
when l = 0, the beam source reduces to a partially coherent radially polarized beam [20,22,23].

A fundamental difference between optical beam modes with integer TCs, and beams with
fractional TCs is that the latter are not self-similar on propagation, and the propagation dynamics
are therefore more complex. For integer l values, the phase fronts for a given phase exp (ilϕ)
comprise l intertwined helical surfaces giving a screw dislocation along the beam axis, and a
resulting annular intensity cross-section. However, for non-integer l values, there is a phase
discontinuity, in our case, radially along the ϕ = 0 direction, which on propagation gives rise to a
line of low intensity.
Now, let us discuss the realizability conditions of a PCRPFV beam, as not every choice of

parameters in Eqs. (2) and (3) can be physically achieved. Firstly, the CSD matrix must be
Hermitian conjugate, as seen from its definition shown in Eq. (1) [56]. Hence, the following
conditions must be met ��Bαβ

�� = 1, φαβ = 0, (α = β) ,��Bαβ

�� ≤ 1,
��Bxy

�� = ��Byx
�� , φxy = φyx, (α , β) ,

σxy = σyx.
(5)

Secondly, to be a physically realizable CSD matrix [57], it is sufficient to have a representation
of the following integral form

Wαβ (r1, r2) =
∫

pαβ (v)H∗α (r1, v)Hβ (r2, v) d2v, (6)

where Hx (r, v) and Hy (r, v) are two arbitrary functions, and pαβ (v) are the elements of the
following weighting matrix

pαβ (v) =
©«
pxx (v) pxy (v)

pyx (v) pyy (v)
ª®¬ . (7)

The elements of the weighting matrix should satisfy the non-negative definiteness conditions
[57]

pxx (v) ≥ 0, pyy (v) ≥ 0, pxx (v) pyy (v) − pxy (v) pyx (v) ≥ 0. (8)

The functions Hx (r, v), Hy (r, v) and pαβ (v) for a PCRPFV beam are given as follows [53]

Hα (r, v) =
α

w0
exp(−

r2

w2
0
) exp(ilϕ) exp(−ikr · v), (α = x, y), (9)

pαβ (v) =
k2Bαβσ

2
αβ

2π
exp(−k2σ2

αβv2/2), (10)

where k = π/λ is the wavenumber. It follows from Eq. (10) that the elements pxx (v) and pyy (v)
are non-negative functions because exp(−k2σ2

αβv2/2) is larger than zero for any value v. Thus,
the first and the second inequalities in Eq. (8) are always true. Substituting Eq. (10) into the
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third inequality in Eq. (8), we obtain

BxxByyσ
2
xxσ

2
yy exp[−

k2
(
σ2

xx + σ
2
yy

)
v2

2
] ≥

��Bxy
��2 σ4

xy exp(−k2σ2
xyv2). (11)

Equation (11) has to be met for any v. Since the functions on the left-hand side and right-hand
side of Eq. (11) decrease monotonically with v, on considering the inequality for the limiting
cases v = 0 and v→∞, the following v-independent inequality is found:√

σ2
xx + σ

2
yy

2
≤ σxy ≤

√
σxxσyy��Bxy

�� , (12)

and therefore the modulus of Bxy has to fulfill the following condition:��Bxy
�� ≤ 2σxxσyy

σ2
xx + σ

2
yy
. (13)

For a PCRPFV beam generated by a Schell-model source, besides the restrictions on the
parameters Bxy, σxx, σyy and σxy shown in Eq. (13), the following two additional conditions
should be satisfied:

(A) Any point of the beam in the source plane is linearly polarized, which means that the minor
semi-axes of the polarization ellipse equals to zero;

(B) The orientation angle of the polarization at any point in the source plane should satisfy
θ (r) = arctan(y/x).

According to [55], the major and minor semi-axes of the polarization ellipse, A1 and A2, as
well as its degree of ellipticity ε and its orientation angle θ of the completely polarized part of a
PCRPFV beam in the source plane are expressed as

A1,2 (r) =
1
√
2

{√[
Wxx (r, r) −Wyy (r, r)

]2
+ 4

��Wxy (r, r)
��2

±

√[
Wxx (r, r) −Wyy (r, r)

]2
+ 4

��Re[Wxy (r, r)]
��2}1/2 , (14)

ε (r) = A2 (r) /A1 (r) , (15)

θ(r) =
1
2

arctan

{
2Re

[
Wxy(r, r)

]
Wxx(r, r) −Wyy(r, r)

}
. (16)

Substituting Eq. (2) into Eqs. (14)–(16), we obtain the following expressions

tan[2θ(r)] = Re
[
Bxy

] 2y/x
1 − (y/x)2

. (17)

The additional condition (A) requires that A1 = 0, and applying Eqs. (2) and (14), one can
obtain the following restriction on Bxy

Im
[
Bxy

]
= 0. (18)

With the requirements of the additional condition (B), and applying Eq. (17), one can obtain
the following expression

Re
[
Bxy

]
= 1. (19)
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It follows from Eqs. (18)–(19) that Bxy = 1. Under this condition and combining Eq. (13), one
can easily obtain

σxx = σyy = σxy = σyx. (20)

Finally, the realizability conditions of a PCRPFV beam can be expressed together as

Bxx = Byy = Bxy = Byx = 1,σxx = σyy = σxy = σyx = σg. (21)

Then applying Eqs. (2) and (21), the CSD matrix of a PCRPFV beam in the source plane can
be obtained as follows

Wαβ (r1, r2) =
αβ

w2
0

exp

(
−

r21 + r22
w2
0

)
exp [−il (ϕ1 − ϕ2)] exp

[
−
(r1 − r2)2

2σ2
g

]
, (α, β = x, y). (22)

3. Statistical properties of a PCRPFV beam on propagation

3.1. Propagation formulas of a PCRPFV beam

In this section, we will derive the propagation formulas for a PCRPFV beam passing through a
stigmatic ABCD optical system and analyze the statistical properties of such a beam focused by a
thin lens. It is to be noted that a beam can only possess a fractional TC in the generation plane,
and this beam can be decomposed in terms of beams with integer TCs. On propagation, the light
field must be continuous in space, and therefore has an integer topological charge [58]. Thus,
the propagation of a PCRPFV beam can be regarded as the superimposed evolution of different
partially coherent radially polarized integer vortex beams with different integer TCs. Here we
use the convolution method to avoid complicated superposition calculations.
Within the validity of the paraxial approximation, propagation of the elements of the CSD

matrix of a partially coherent vector beam through a stigmatic ABCD optical system can be
studied with the help of the extended Collins formula [56]

Wαβ (ρ1, ρ2) =
k2

4π2B2

∫ ∫
Wαβ (r1, r2) exp

(
−

ikA
2B

r21 +
ik
B

r1 · ρ1 −
ikD
2B

ρ2
1

)
× exp

(
ikA
2B

r22 −
ik
B

r2 · ρ2 +
ikD
2B

ρ2
2

)
d2r1d2r2,

(23)

where ρ1 and ρ2 are transverse position vectors in the output plane. A, B, C and D denote optical
system transfer matrix elements.

Substituting Eq. (22) into Eq. (23), one obtains the following expressions for specific elements
of the CSD matrix of a PCRPFV beam with the help of the convolution method [53],

Wxx (ρ, ρ) = Ix (ρ) = λ
2 k2

4π2B2

∫ ∫ ���Ãx

( v
λ
+

ρ

λB

)���2 p
( v
λ

)
d2 v
λ
, (24)

Wyy (ρ, ρ) = Iy (ρ) = λ
2 k2

4π2B2

∫ ∫ ���Ãy

( v
λ
+

ρ

λB

)���2 p
( v
λ

)
d2 v
λ
, (25)

Wxy (ρ, ρ) = λ2
k2

4π2B2

∫ ∫
Ã∗x

( v
λ
+

ρ

λB

)
Ãy

( v
λ
+

ρ

λB

)
p
( v
λ

)
d2

v
λ
, (26)

Wyx (ρ, ρ) = λ2
k2

4π2B2

∫ ∫
Ã∗y

( v
λ
+

ρ

λB

)
Ãx

( v
λ
+

ρ

λB

)
p
( v
λ

)
d2

v
λ

(27)

Wxx (0, ρ) =
1
B2 exp

[
iπλBD

( ρ

λB

)2] ∫ ∫
Ã∗x

( v
λ

)
p
( v
λ

)
Ãx

( v
λ
+

ρ

λB

)
d2

v
λ
, (28)
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Wyy (0, ρ) =
1
B2 exp

[
iπλBD

( ρ

λB

)2] ∫ ∫
Ã∗y

( v
λ

)
p
( v
λ

)
Ãy

( v
λ
+

ρ

λB

)
d2

v
λ
, (29)

Wxy (0, ρ) =
1
B2 exp

[
iπλBD

( ρ

λB

)2] ∫ ∫
Ã∗x

( v
λ

)
p
( v
λ

)
Ãy

( v
λ
+

ρ

λB

)
d2

v
λ
, (30)

Wyx (0, ρ) =
1
B2 exp

[
iπλBD

( ρ

λB

)2] ∫ ∫
Ã∗y

( v
λ

)
p
( v
λ

)
Ãx

( v
λ
+

ρ

λB

)
d2

v
λ
, (31)

with

Ax(r) =
x

w0
exp

(
−

x2 + y2

w2
0

)
exp (ilϕ) exp

(
ikAr2/2B

)
, (32)

Ay(r) =
y

w0
exp

(
−

x2 + y2

w2
0

)
exp (ilϕ) exp

(
ikAr2/2B

)
, (33)

p(v) =
k2σ2

g

2π
exp

(
−k2σ2

g v2/2
)
, (34)

where Ãγ (γ = x, y) denotes the Fourier-transform operation of Ãγ.
The average intensity and the DOP at point ρ in the output plane are given as

I (ρ) = Wxx (ρ, ρ) +Wyy (ρ, ρ) , (35)

P (ρ) =

√√√√√√√
1 −

4Det
[
←→
W (ρ, ρ)

]
{
Tr

[
←→
W (ρ, ρ)

]}2 , (36)

where Det and Tr denote the determinant and the trace of the matrix, respectively.
The CSD matrix of a PCRPFV beam can be represented as a sum of a polarized part and a

unpolarized part [59]
←→W (ρ, ρ) =←→W p (ρ, ρ) +←→W u (ρ, ρ) , (37)

←→
W p (ρ, ρ) = ©«

B (ρ, ρ) D (ρ, ρ)

D∗ (ρ, ρ) C (ρ, ρ)
ª®¬ , (38)

←→
W u (ρ, ρ) = ©«

A (ρ, ρ) 0

0 A (ρ, ρ)
ª®¬ , (39)

with

A (ρ, ρ) =
1
2

[
Wxx (ρ, ρ) +Wyy (ρ, ρ) −

√[
Wxx (ρ, ρ) −Wyy (ρ, ρ)

]2
+ 4

��Wxy (ρ, ρ)
��2] , (40)

B (ρ, ρ) =
1
2

[
Wxx (ρ, ρ) −Wyy (ρ, ρ) +

√[
Wxx (ρ, ρ) −Wyy (ρ, ρ)

]2
+ 4

��Wxy (ρ, ρ)
��2] , (41)

C (ρ, ρ) =
1
2

[
Wyy (ρ, ρ) −Wxx (ρ, ρ) +

√[
Wxx (ρ, ρ) −Wyy (ρ, ρ)

]2
+ 4

��Wxy (ρ, ρ)
��2] , (42)

D (ρ, ρ)=Wxy (ρ, ρ) . (43)
The spectral intensities of the polarized part Ip (ρ) and unpolarized part Iu (ρ) are expressed

respectively as follows
Ip (ρ) = Wp

xx (ρ, ρ) +Wp
yy (ρ, ρ) , (44)

Iu (ρ) = Wu
xx (ρ, ρ) +Wu

yy (ρ, ρ) . (45)
The SOP of the polarized portion can be characterized by the polarization ellipse, whose

major and minor semi-axes of the ellipse, A1 (ρ) and A2 (ρ), as well as its degree of ellipticity,
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ε (ρ), and its orientation angle, θ (ρ), can be related directly to the elements of the cross-spectral
density matrix←→W (ρ, ρ) by the relations given in Eqs. (13)–(15). Note that it is necessary to
replace the source plane parameters in Eqs. (14)–(16) with the output plane parameters.

3.2. Intensity distribution of a PCRPFV beam

As an example, we will study the propagation of a PCRPFV beam which passes through a thin
lens with focal length f and then arrives at an output plane. The distances from the source to the
thin lens and from the thin lens to the output plane are f and z, respectively. The transfer matrix
between the source plane and the output plane reads as

©«
A B

C D
ª®¬ = ©«

1 z

0 1
ª®¬ ©«

1 0

−1/f 1
ª®¬ = ©«

1 − z/f z

−1/f 1
ª®¬ . (46)

Applying Eqs. (24)–(25) and (35), we calculate in Figs. 1 and 2 the average intensity distribution
I and its components Ix and Iy of a focused PCRPFV beam by a thin lens at several propagation
distances z for different values of the coherence width σg. The parameters used in the calculation
are taken to be λ = 632.8nm, w0 = 1mm, l = 1.5 and f = 400mm. We infer from Figs. 1–2 that
a PCRPFV beam is distinguished from a partially coherent radially polarized integer vortex
beam and a partially coherent radially polarized beam [40] in terms of the intensity pattern,
which initially (z = 0.1f ) possesses a radial opening in the annular ring encompassing the dark
core. This opening arises due to the discontinuity of the phase in the source plane. It is to be
noted that the intensity of the proposed PCRPFV beam in the source plane is independent of TC,
according to Eq. (22), and the vortex phase is only exhibited in the intensity after propagation.
The opening gap rotates clockwise as z increases (or rotates anticlockwise for negative l , which
is not shown here), and up to 90 degrees at the focal plane (z = f ). This rotation characteristic
therefore originates from the handedness of the beam’s azimuthal phase twist, which combines
with the propagation phase. With a decrease of the coherence width, the opening gap profile at
the focal plane disappears gradually and it finally becomes a Gaussian profile [Fig. 2(e1)], which
is same behavior as that of a scalar partially coherent fractional vortex beam [53]. In addition,
due the introduction of fractional vortex phase, the intensity distributions of the components Ix
and Iy are different, i.e., the beam spot of the Ix of a focused PCRPFV beam possesses an opening

Fig. 1. Average intensity distribution I and its component Ix and Iy of a focused PCRPFV
beam with l = 1.5 in the x − y plane at several propagation distances z with σg = 3mm.
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gap profile similar to the average intensity I, while the beam spot of the Iy does not exhibit such a
property. This phenomenon of coherence-induced as well as vortex phase-induced beam shaping
and the vortex phase-induced rotation of the beam spot can be used for manipulating particles
which can only be trapped with special intensity distributions.

Fig. 2. Average intensity distribution I and its component Ix and Iy of a focused PCRPFV
beam with l = 1.5 in the x − y plane at several propagation distances z with σg = 0.8mm.

3.3. Degree of polarization of a PCRPFV beam

Now we analyze the polarization properties of a focused PCRPFV beam on propagation. We
calculate in Fig. 3 the DOP (cross line y = 0) of partially coherent radially polarized vortex
beams with different TCs in the focal plane. One finds from Fig. 3 that DOP of a PCRPFV beam
is much different from that of a partially coherent radially polarized integer vortex beam. For a
partially coherent radially polarized integer vortex beam (l = 1 and l = 2), the DOP near the point
(0,0) increases as the value of TC increases [40], while for a PCRPFV beam (l = 1.2, l = 1.5 and
l = 1.7), the DOP first decreases and then increase as TC increases.

Fig. 3. Degree of polarization of a focused partially coherent radially polarized vortex
beam (cross line y = 0) in the focal plane for different values of the topological charge l with
σg = 0.8mm.
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In Fig. 4we calculate the cross lines of the normalized intensity distribution Ip (x, 0) /max [I (x, 0)]
(solid black line), Iu (x, 0) /max [I (x, 0)] (short dashed red line), I (x, 0) /max [I (x, 0)] (long
dashed blue line) of the focused PCRP vortex beam at several propagation distances for different
values of topological charge l with f = 400mm, λ = 632.8nm, and σg = 0.2mm. Here Ip, Iu

and I represent the intensity distribution of the polarized part, the intensity distribution of the
unpolarized part and the total intensity distribution, respectively. From Fig. 4 we know that
the total intensity distribution is determined by the polarized part and the unpolarized part
together. When the propagation distance is short (z = 150mm), the contribution of the polarized
parts plays a dominant role, thus the total intensity distribution is close to the polarized part
[see Figs. 4(a) and 4(d)]. With the incease of the propagation distance, the contribution of the
unpolarized part gradually increases. For the case of l = 1, when z = 290mm, the contribution
of the unpolarized part is the same as the that of the polarized part, thus the total intensity
distribution exhibits a flat-topped beam profile [see Fig. 4(b)]. When the propagation distance is
long enough (z = 400mm), the contribution of the unpolarized parts plays a dominant role, thus
the total intensity distribution is close to the unpolarized part [see Fig. 4(c)]. In addition, we
found that due to the introduction of fractional topological charge, the symmetry of intensity
distribution in the transmission process was broken [see Figs. 4(d) and 4(e)], but the symmetry
was restored at the focal plane [see Fig. 4(f)].

Fig. 4. Cross lines of the normalized intensity distributions Ip (x, 0) /max [I (x, 0)] (solid
black line), Iu (x, 0) /max [I (x, 0)] (short dashed red line), I (x, 0) /max [I (x, 0)] (long dashed
blue line) of a focused partially coherent radially polarized vortex beam at several propagation
distances for different values of topological charge l.

To understand better about the transition of power from the polarized part to the unpolarized
part on propagation, we now study the evolution properties of the integrated normalized intensities
of the polarized part and unpolarized part, which are defined as [21]

ηm =

∫
Im (ρ) d2ρ∫
I (ρ) d2ρ

, (m = p, u) , (47)

where ηp and ηu denote the integrated normalized intensities of the polarized part and the
unpolarized part, respectively.
We calculate in Figs. 5 (a) and 5(b) the variation of ηp and ηu of a focused partially coherent

radially polarized vortex beam with different values of the topological charge l versus the
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Fig. 5. Variation of the integrated normalized intensities of the polarized part (ηp) and the
unpolarized part (ηu) of a focused partially coherent radially polarized vortex beam for (a-b)
different values of the topological charge l with σg = 0.6mm versus the propagation distance
z, (c-d) different values of the initial coherence width σg versus the propagation distance z
and (e-f) different propagation distance z versus the topological charge l.

propagation distance l with σg = 0.6mm. From Figs. 5 (a) and 5(b), we find that regardless of
whether the topological charge is an integer or a fraction, ηp decreases on propagation, while the
ηu increases, which means that the beam becomes depolarized (i.e., the power transits from the
polarized part to the unpolarized part on propagation). This is also supported by the results in
Fig. 4 and the behavior is quite different from that of a coherent beam.
Figures 5(a) and 5(b) also show, however, that this depolarization can be mitigated by

increasing the topological charge. This is because that the vortex phase improves resistance to the
coherence-induced degradation of the intensity distribution and results in the anti-depolarization
effect. The distance as which ηp = ηu is the position at which the unpolarized part of the field
becomes stronger than the polarized part. This distance increases with l, and for sufficiently large
topological charge (in this case l = 4), this crossing never occurs and the polarized part of the
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field always remains dominant. Evidently, the vortex phase plays an anti-depolarization role for
this class of beams. Figures 5(c) and 5(d) show, in contrast, that a decrease in coherence reduces
the distance at which ηp = ηu; partial coherence has a depolarizing effect.
Figures 5(e) and (f) show how the integrated normalized intensities vary with topological

charge for several propagation distances, for a fixed coherence width σg = 0.6mm. Although
ηp increases monotonously with TC (regardless of an integer or a fraction) at near-focal plane
(z = 400mm), but it is worth noting the different effects of the integer vortex phase and the
fractional vortex phase at far-focal plane (z = 300mm). With the increment of l, ηp (or ηu) of a
partially coherent radially polarized integer vortex beam (e.g., l = 1, 2, 3, 4) is monotonically
decreasing (or increasing)(see insets), which means that the integer vortex phase plays a role of
anti-depolarization, while for a PCRPFV beam (i.e., l is fractional), ηp first decreases (e.g., from
1.1 to 1.5) and then increases (e.g, from 1.5-1.9) between two integers, which means that the
fractional vortex phase first plays a role of depolarization and then plays a role anti-depolarization
between two integers.

3.4. State of polarization of a PCRPFV beam

We calculate in Fig. 6 the variation of the state of polarization of a focused partially coherent
radially polarized vortex beam with different values of the topological charge l at several
propagation distances for σg = 0.8mm. One finds from Figs. 6(a1)-(a4) that the SOP of a focused
partially coherent radially polarized beam with no-vortex phase (l = 0) remains invariant on
propagation and always displays radial polarization as expected [20]. While by introducing
the vortex phase into the partially coherent radially polarized beam (i.e., a partially coherent
radially polarized vortex beam) [Figs. 6(b1)-(c4)], we find that the radial polarization disappears
and elliptical polarization appears on propagation. The SOP displays right-handed elliptical

Fig. 6. Variation of the state of polarization of a focused partially coherent radially polarized
vortex beam with different values of the topological charge l at several propagation distances
for σg = 0.8mm.
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polarization around the beam center and left-handed elliptical polarization outside of the beam
center with positive TC (the handedness of the polarization ellipse is reversed for negative TC,
which is not shown here). Furthermore, in contrast with the SOP distribution of a partially
coherent radially polarized integer vortex beam (l = 2), that of a PCRPFV beam (l = 1.5) is
less symmetric due to its asymmetric intensity distribution, especially at the non-focal plane
[Figs. 6(b1)-(b3)]. With the increase of z, the SOP distribution of a PCRPFV beam evolves from
the messy distribution to bilateral symmetry [Figs. 6(b1)-(b4)].
To learn more about the influence of TC and coherence width on the SOP, we calculate in

Fig. 7 the variation of the SOP of a focused partially coherent radially polarized vortex beam
with different values of the TC l at focal plane for different values of σg. One finds that as l
varies, the SOP varies, and the closer the value of the TC is to an integer, the more symmetric the
SOP distribution is. Moreover, with the decrease of σg, the SOP distribution of a PCRPFV beam
becomes more symmetric.

Fig. 7. Variation of the state of polarization of a focused partially coherent radially polarized
vortex beam with different values of the topological charge l at focal plane for different
values of σg.

3.5. Cross-spectral density matrix of a PCRPFV beam

In spite of their complex structure, it is possible to experimentally characterize some aspects
of PCRPFV beam with relatively simple measurements. Fig. 8 shows the density plot of the
modulus of the trace of the CSD matrix |Tr [W (0, ρ)]| of PCRPFV beams in the focal plane
with both different l values and different values of σg. The quantity |Tr [W (0, ρ)]| is calculated
from two matrix elements of the polarization matrix, which is used for describing the coherence
and the polarization phenomena of a vector beam [60] and can be measured by the fourth-order
correlation function method introduced in [61]. Regardless of the choice of coherence width,
one finds that beams with different values of l have distinct patterns of |Tr [W (0, ρ)]|. It is to
be noted that this pattern is not present in the intensity distribution of the beam, as all beams
reduce to a Gaussian intensity profile in the low coherence limit. Fig. 8 suggests that it is
possible to measure the TC of our PCRPFV beams by measuring |Tr [W (0, ρ)]| due to the fact
that the distribution of |Tr [W (0, ρ)]| varies depending on TC. In particular, the distribution of
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Fig. 8. Density plot of the modulus of the trace of the CSD matrix |Tr [W (0, ρ)]| of a
partially coherent radially polarized vortex beam with different l (both integral and fractional)
focused by a lens at focal plane for different values of σg.

|Tr [W (0, ρ)]| of a PCRPFV beam with l = 1.5 evolves from bilateral symmetry to rectangular
symmetry on decreasing σg.

To further study the vector characteristics of a PCRPFV beam (namely, possessing directional
components) and to learn more about the influence of coherence width on the CSD distribution
of a PCRPFV beam, we calculate in Fig. 9 the density plot of the modulus of the trace of
the CSD matrix |Tr [W (0, ρ)]|, together with the modulus of the elements of the CSD matrix
|Wxx (0, ρ)|,

��Wyy (0, ρ)
�� and ��Wxy (0, ρ)

�� of a partially coherent radially polarized vortex beam
with different l (l = 2 and l = 1.5) focused by a lens at focal plane for different values of σg.
In contrast with a partially coherent radially polarized vortex beam with integer TC, whose
pattern of |Tr [W (0, ρ)]| is independent of the coherence width, the pattern of |Tr [W (0, ρ)]| of a
PCRPFV beam (l = 1.5) will split and become more symmetric by decreasing σg. In addition,
regardless of the integer TC or fractional TC, the distributions of |Wxx (0, ρ)|,

��Wyy (0, ρ)
�� and��Wxy (0, ρ)

�� can be split by decreasing σg. It is to be noted that patterns of |Wxx (0, ρ)|,
��Wyy (0, ρ)

��
and

��Wxy (0, ρ)
�� of a partially coherent radially polarized vortex beam with integer TC are always

of rectangular symmetry regardless of the coherence width, while the symmetry of those of
a PCRPFV beam (l = 1.5) will change and evolves from bilateral symmetry to rectangular
symmetry with decreasing σg.
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Fig. 9. Density plot of the modulus of the trace of the CSD matrix |Tr [W (0, ρ)]|, toghther
with the modulus of the elements of the CSD matrix |Wxx (0, ρ)|,

��Wyy (0, ρ)
�� and ��Wxy (0, ρ)

��
of a partially coherent radially polarized vortex beam with different l (l = 2 and l = 1.5)
focused by a lens at focal plane for different values of σg.

4. Experimental generation of a PCRPFV beam

In this section, we report the experimental generation of a PCRPFV beam. From Eqs. (2) and
(3), it can be seen that the core challenges in generating PCRPFV beams lie in the introduction of
partial coherence and the loading of a fractional vortex phase. In physical terms, a fractional
vortex phase can be considered as a special phase containing a mixed screw-edge dislocation, in
analogy with a crystal defect. In this paper, we employ a spiral phase plate (SPP) to load the
fractional vortex phase, which was created in 1992 [62]. The SPP is a transparent plate with a
polymer replicated on a glass substrate (Type: RPC Photonics u6243E), and its thickness varies
azimuthally. Generally a SPP is designed especially for a specific wavelength λ0 to load a vortex
phase with a fixed integer TC l0, and the phase delay imprinted by the SPP can be written as
(n − 1) h/λ0 · mod (l0ψ, 2π), where "mod" represents modulus after division, n is the index of
refraction of material, h is the thickness of SPP and l0 = (n − 1)h/λ0 is the generated integer TC
in product design. Thus we can exploit dispersion to produce a fractional vortex phase with a
laser source of wavelength λ but using a SPP with integer TC l0 designed for another wavelength
λ0, and the generated fractional TC for laser source λ is l = l0λ0/λ.
Figure 10 shows our experimental setup for generating a PCRPFV beam and measuring its

focused intensity. A laser beam emitted from a He-Ne laser (λ = 632.8nm) first passes through a
linear polarizer (LP) and a beam expander (BE), then is reflected by a reflecting mirror (RM).
The reflected beam focused by a thin lens L1 (f1 = 150mm) illuminates a rotating ground-glass
disk (RGGD), generating an incoherent beam. Based on the Van Cittert-Zernike theorem [63],
by passing through a collimation lens L2 (f2 = 250mm) and a Gaussian amplitude filter (GAF),
the generated beam becomes a partially coherent with Gaussian statistics.
The generated partially coherent Gaussian beam goes towards the SPP. Here, we employ

our laser source λ = 632.8nm instead to illuminate the SPP (l = 1) designed for the wavelength
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Fig. 10. Experimental setup for generating a PCRPFV beam and measuring its focused
intensity. LASER, He-Ne laser; LP, linear polarizer; BE, beam expander; RM, reflecting
mirror; L1, L2, L3, thin lenses; RGGD, rotating ground-glass disk; GAF, Gaussian amplitude
filter; RPC, radial polarization converter; SPP, spiral phase plate; CCD, charge-coupled
device.

λ0 = 959.8nm to generate screw-edge dislocations with fractional TC l = 1.5, the detail generation
principle of fractional TC can be found in [64]. It is to be noted that, although Spatial Light
Modulation is more flexible than SPP in generating and tuning beams with TC, SLMs have a
complex response to polarization and possible technical collimation problems; we chose a SPP to
load the vortex phase here. The coherence width of the generated PCRPFV beam is controlled by
the focused beam spot on the RGGD and the roughness of the RGGD together. In our experiment,
the roughness of the RGGD is fixed, so we mainly modulate the coherence width by varying the
focused beam spot size on the RGGD. We have chosen two different beam spots on the RGGD
to generate the PCRPFV beam with two different spatial coherence widths (σg = 3mm amd
σg = 0.8mm). The detailed measurement method of coherence width can be found in [65]. The
generated PCRPFV beam passes through a thin lens L3 (f3 = 400mm) , and then arrives at a
charge coupled device (CCD). The CCD is used to measure not only the intensity distribution but
also DOP with the help of a polarizer as well as quarter-wave plate [60].
Figures 11–12 show our experimental results of the average intensity distribution I and its

component Ix and Iy of a focused PCRPFV beam with l = 1.5, at several propagation distances
z with w0 = 1mm, σg = 3mm and σg = 0.8mm, respectively. To measure Ix and Iy, we just
put a linear polarizer whose transmission axis forms an angle ϕ = 0 or ϕ = 90◦ with x-axis.
From Figs. 11–12, one finds that our experimental results clearly demonstrate the existence of
the opening gap in average intensity as well as in its component Ix and the clockwise rotation
(l = 1.5) of the opening gap, and the rotation angle of the opening gap becomes 90 degrees
at the focal plane. In addition, decreasing the coherence width makes the intensity become a
Gaussian profile, which agrees well with the numerical results in Figs. 1–2. Figure 13 shows our
experimental results (red dotted curves) of the DOP of a focused PCRPFV beam with w0 = 1mm
and σg = 0.8mm versus the coordinate x in the focal plane. The black solid curve in Fig. 13
denotes the theoretical results. The detailed principle and process for measuring the DOP can be
found in [60]. One finds from Fig. 13 that our experiment result agrees well with the theoretical
result, and only a slight difference between experimental results and numerical results exists,
which may be caused by the fluctuation of the source beam, non-ideal optical elements, and the
resolution limits of the RPC and CCD.
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Fig. 11. Experimental results of the average intensity distribution I and its component Ix
and Iy of a focused PCRPFV beam with l = 1.5, w0 = 1mm and σg = 3mm in the x − y
plane at several propagation distances z.

Fig. 12. Experimental results of the average intensity distribution I and its component Ix
and Iy of a focused PCRPFV beam with l = 1.5, w0 = 1mm and σg = 0.8mm in the x − y
plane at several propagation distances z.
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Fig. 13. Experimental results (red dotted curve) of the degree of polarization of a focused
PCRPFV beam with w0 = 1mm and σg = 0.8mm versus the coordinate x in the focal plane.

5. Summary

We have introduced a new kind of partially coherent vector beam with radial polarization, as well
as a fractional vortex phase, named partially coherent radially polarized fractional vortex beam,
and discussed its realizability and beam conditions. Propagation formulae for the elements of the
CSD matrix of a PCRPFV beam propagating through a stigmatic ABCD optical system have
been derived, and the statistical properties of a PCRPFV beam focused by a thin lens have been
studied numerically and compared with that of a partially coherent radially polarized integer
vortex beam. We found that the topological charge and coherence width strogly determine the
statistical properties of a PCRPFV beam. By introducing a fractional topological charge, the
PCRPFV beam exhibits an intensity distribution that possesses a radial opening in the annular
intensity ring encompassing the dark core, and the opening gap rotates gradually up to 90 degrees
as the propagation distance increases.

The topological charge embedded in a PCRPFV beam brings different polarization characteris-
tics at different propagation distances, e.g., at near-focal plane, the vortex phase plays a role of
anti-depolarization, while at far-focal plane, with an increase of the topological charge, the vortex
phase first plays a role of depolarization, and then plays a role of anti-depolarization. Furthermore,
the PCRPFV beam exhibits a more symmetric SOP distribution and |Tr [W (0, ρ)]| distribution
depending on the magnitude of coherence width; in addition, decreasing the coherence width
can make the distribution of |Wxx (0, ρ)|,

��Wyy (0, ρ)
�� and ��Wxy (0, ρ)

�� split. We have carried out
experimental generation of a PCRPFV beam and verified our theoretical predictions.
The combined modulation of fractional vortex phase, polarization direction and coherence

width enriches the structure of the intensity distribution of a PCRPFV beam. The Gaussian profile
spot and profile spot with dark nucleus can be used for trapping particles with high refractive
indices and low refractive indices, respectively. Thus, a PCRPFV beam can be used to trap
particles with different refractive indices simply by suitably varying the spatial coherence width
in one optical trap system. This provides significantly more flexibility than a coherent beams.

In addition, guiding particles and optical sorting can be realized by using intensity profile with
fixed gap and self-rotating characteristic.

Furthermore, it was revealed that the vortex phasewill induce changes of the state of polarization
and the CSD distribution, and this phenomenon may be useful for detection of phase objects.
Last but not least, the polarization lidar system is an effective tool to study the morphology
of the shape of sand aerosol and other atmospheric non-spherical particles by measuring the
depolarization ratio of backscattering light of non-spherical particles. In this paper, it is found
that fractional-order vortex phase can induce different polarization characteristics at different
propagation distances, so it has potential applications in polarization lidar systems.
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