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We demonstrate that the orbital angular momentum (OAM) flux density of a paraxial light beam can change
on propagation in free space. These changes are entirely due to the spatial coherence state of the source, and the
effect is analogous to correlation-induced changes in the intensity, spectrum, and polarization of a beam. The
use of the source coherence state to control the width, shape, and transverse shifts of the OAM flux density is
demonstrated with numerical examples.
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I. INTRODUCTION

Over the development of the theory of optical coherence,
it has been increasingly appreciated that the state of spatial
coherence can influence a number of fundamental properties
of a light beam on propagation in free space, without any
interactions with a medium. The earliest example of this was
introduced in work by Collett and Wolf in 1978, in which they
demonstrated that the diffraction rate of a partially coherent
beam can be controlled by the source coherence state [1]. In
the late 1980s, Wolf and colleagues caused a scientific furor
when they showed that the spectrum of light can be changed
on propagation due to source coherence [2,3], and can even
under special circumstances mimic cosmological redshifts
[4]. This revelation led to searches for other correlation-
induced changes in light beams. In 1994, James demonstrated
that source coherence may be responsible for changes in the
degree of polarization [5], and in 2005 Korotkova and Wolf
showed that the state of polarization may be similarly affected
[6]. In this paper, we introduce another effect related to the
source spatial coherence: correlation-induced changes in the
orbital angular momentum flux density of light.

In recent years, there has been significant interest in the
development of singular optics, as a relatively unexplored
area of classical electromagnetism, for use in innovative tech-
nologies [7–9]. This research area largely focuses on optical
vortices (singularities of wavefield phase), such as those
which appear in Laguerre-Gauss beams of nonzero azimuthal
order. These vortex beams are now known to possess orbital
angular momentum (OAM), which is connected to the cir-
culating phase of the vortex [10,11]. The OAM of light has
already been applied to a number of applications, including
optical trapping and rotation [12], the design of light-driven
machines [13], and free-space optical communication [14,15].
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The relationship between partial coherence and OAM has
only recently been explored in significant detail. Early work
demonstrated that optical vortices turn into vortices of the
two-point correlation functions as the spatial coherence is de-
creased [16–18], suggesting that such structures are relatively
robust. The OAM of partially coherent vortex beams, in par-
ticular the distribution of OAM flux in a beam’s cross-section,
was only investigated in 2012 [19], and it was shown that it
generally manifests a Rankine vortex structure [20], with a
core rotating like a rigid body and outskirts rotating like a
fluid. In 2018, Gbur showed that there exist three fundamen-
tal classes of partially coherent vortex beams, characterized
by their OAM distribution: rigid rotators, fluid rotators, and
Rankine rotators [21].

In this paper, we show that one can use source correlations
to change the OAM flux density of a beam on propaga-
tion in free space. These correlation-induced OAM changes
can be significant and can be controlled by an appropri-
ate choice of source correlations. Since the earlier work on
correlation-induced spectral changes and polarization was
done, coherence theory itself has evolved considerably, with
alternative classes of correlation functions providing alterna-
tive effects and tunability. For example, it has been shown that
structuring of the amplitude [22] or phase [23] of the source
coherence state can result in controllable beam profiles, tilts,
radial acceleration, or asymmetric splitting of a propagating
beam. Here we derive the basic theory showing how source
coherence results in unusual distributions of OAM flux den-
sity on propagation, and illustrate such changes with a number
of source coherence models.

II. COHERENCE AND OAM

A scalar partially coherent beam in a plane perpendicular
to the direction of propagation can be characterized by the
cross-spectral density (CSD) function (see [24], Chap. 4),

W (r1, r2) = 〈U ∗(r1)U (r2)〉ω, (1)
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where U (r) is the field at frequency ω, r1 and r2 are the
transverse position vectors, and the angular brackets 〈· · · 〉ω
represent averaging over a space-frequency ensemble (see
[24], Chap. 4).

The average OAM flux density Ld (r) of such a beam can
be shown to be related to the CSD by the expression [19]

Ld (r) = −ε0

k
Im

[(
y1∂x2 − x1∂y2

)
W (r1, r2)

]
r1=r2=r, (2)

where k = 2π/λ is the wave number of the light, with λ being
the wavelength, and ε0 is the free-space permittivity. Here
∂α2 represents the partial derivative with respect to α2, with
α = x, y.

The magnitude of the OAM flux density at a particular
point in space arises from two distinct effects: the average
OAM per photon and the density of photons in space, i.e.,
the intensity. We isolate the OAM of individual photons
by considering the average normalized OAM flux density,
defined as

ld (r) = h̄ωLd (r)

S(r)
, (3)

where

S(r) = k

μ0ω
W (r, r) (4)

is the z component of the Poynting vector. The dimensions of
ld (r) are angular momentum per photon; the quantity there-
fore represents the average OAM of a photon measured at
the particular position r. For any Laguerre-Gauss mode of
azimuthal order l , we have ld (r) = l h̄, a constant.

We may also introduce the total OAM per photon td by the
related formula

td = h̄ω
∫

Ld (r)d2r∫
S(r)d2r

. (5)

The quantity td remains constant on propagation, as total
OAM is conserved; the quantity ld (r), however, may in gen-
eral exhibit changes on propagation. We now demonstrate via
example that it is possible to have OAM flux density changes
that are entirely due to changes in the source coherence.

The CSD of a source in the plane z = 0 propagates in free
space to a distance z via Fresnel diffraction:

W (ρ1, ρ2, z) = 1

(λz)2

∫∫
W (r1, r2)

× exp

{
− ik

2z
[(r1 − ρ1)2 − (r2 − ρ2)2]

}

× d2r1d2r2, (6)

where ρ1 and ρ2 are the transverse position vectors at
distance z.

We begin by considering isotropic Schell-model sources
with a definite topological charge, of the form

W (r1, r2) = U ∗
l (r1)Ul (r2)μ0(|r2 − r1|), (7)

where μ0(|r2 − r1|) is the spectral degree of coherence of the
field with charge l , and the function Ul (r) represents a vortex
beam of radial order zero and azimuthal order l , expressed in

polar coordinates (r, φ) as

Ul (r) = Clr
|l| exp[ilφ] exp

[
− r2

w2

]
. (8)

In this expression, we have

Cl ≡
√

2

πw2|l|!
(√

2

w

)|l|
, (9)

with r = (r, φ), and w is the initial beam width.
It is important to note that the spectral degree of coher-

ence has no effect on the total OAM td = l h̄ or the source
distribution of OAM, i.e., ld (r) = l h̄, as it is a homogeneous
and isotropic function. If the field were fully coherent, ld (r)
would also remain constant on propagation, but when the spa-
tial coherence is changed ld (r) changes as well—any change
observed in a partially coherent beam of the form of Eq. (7) is
therefore entirely due to the effects of partial coherence.

III. EXAMPLES

To show the variety of changes possible, we consider a
multi-Gaussian Schell-model vortex (MGSMV) source [22]
with a source spectral degree of coherence

μ0(|r2 − r1|) = 1

C0

∞∑
m=1

(−1)m−1

m

(
M
m

)
exp

[
−|r1 − r2|2

δ2
m

]
,

(10)
where

C0 ≡
∞∑

m=1

(−1)m−1

m

(
M
m

)
(11)

is a normalization factor, (M
m ) is a generalized binomial coef-

ficient which can take integer or fractional values of M [25],
and δm = √

mδ are the correlation widths of the constituent
Gaussian functions. For M > 1, this degree of coherence pro-
duces a flat-topped beam profile; for M < 1, it produces a
cusped beam profile. For M = 1, this reduces to the traditional
Gaussian Schell-model case, i.e.,

μ0(|r2 − r1|) = exp

[
−|r1 − r2|2

δ2

]
, (12)

where δ is the correlation width.
We consider the case l = 1; on substitution from Eq. (7)

into Eq. (6), we can analytically evaluate the CSD at any
propagation distance; expressions for the CSD, the OAM flux
density, and the Poynting vector of an individual Gaussian
Schell-model vortex beam are given in the Appendix.

Figure 1 shows the evolution of the normalized OAM flux
density ld of such MGSMV beams on propagation, for dif-
ferent orders M and different correlation widths δ. We take
λ = 632.8 nm and w = 1 mm for the remainder of the paper.
Figures 1(a) and 1(b) illustrate the effects of correlation width
δ, with M = 1, the case of a Gaussian Schell-model beam. At
small propagation distances, the beams act largely like fluid
rotators—with near-constant ld (r) and a very small rigid body
region in the core—and the rigid body region expands as it
propagates. A beam with lower spatial coherence (smaller δ)
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FIG. 1. The normalized OAM flux density of multi-Gaussian
Schell-model beams on propagation, for different orders M and dif-
ferent correlation widths δ.

will exhibit this rigid body behavior at a shorter propagation
distance. These figures demonstrate how the correlation width
dramatically affects the distribution of OAM on propagation.

Figures 1(c) and 1(d) show examples of the normalized
OAM flux density for M > 1 and M < 1; it can be seen
that this flux density takes on flat-topped or cusped profiles,
respectively. The former case represents an OAM “dead zone”
in the center of the beam, in which there is no circulation.

These latter examples, curiously, mimic the spectral den-
sity profiles of their respective beams: a beam with a
flat-topped spectral density, for instance, results in a flat-
bottomed “dead zone” in the OAM. The OAM flux densities
and corresponding spectral densities S(r) = W (r, r) are illus-
trated for MGSM beams at a fixed propagation distance in
Fig. 2. It is to be noted that the most dramatic changes in the
OAM flux density occur in regions where the spectral density

FIG. 2. The normalized OAM flux density and spectral density of
MGSMV beams with M = 1 and z = 5 m (a), (b) and δ = 0.5 mm
and z = 5 m (c), (d).

FIG. 3. The normalized spectral density of MGSMV beams at
z = 0.5 m (a), (c) and z = 1 m (b), (d), with M = 1 (a), (b) and δ =
0.5 mm (c), (d).

is still high: these OAM changes are not confined to regions
with few or no photons.

The propagation distances in Fig. 2 were chosen to high-
light the most dramatic OAM flux changes; however, this
does not clearly show the evolution of the spectral density
for the different cases. In Fig. 3 the spectral densities of all
cases are shown at z = 0.5 and 1.0 m. It can be seen that
all beams maintain a low intensity core at short propagation
distances, which becomes less prominent and eventually van-
ishes at large propagation distances. This demonstrates that
the OAM flux density changes are not simply an artifact of the
distribution of spectral density: the OAM flux density remains
low in the beam’s core even when the spectral density in the
core increases.

Even more extreme changes in the distribution of OAM
can be achieved with partial coherence, even the creation
of counter-rotating regions. To illustrate this, we consider a
source which is an incoherent superposition of GSMV beams
with equal and opposite topological charges but different cor-
relation widths δn, i.e.,

W (r1, r2) =
∑

n=+l,−l

U ∗
n (r1)Un(r2) exp

[
−|r2 − r1|2

δ2
n

]
. (13)

Because the intensity profiles of the two contributions are the
same, td = 0 and the normalized OAM flux density ld (r) = 0

FIG. 4. The normalized OAM flux density of an incoherent su-
perposition of GSMV beams with |l| = 1 and δ+ = 1 mm.
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FIG. 5. The (a) normalized OAM flux density and (b) spectral
density of an incoherent superposition of GSMV beams with |l| = 1,
δ+ = 1 mm, and z = 1 m.

in the source plane. But if the correlation widths of the two
components are different they will propagate differently, re-
sulting in a nonconstant normalized OAM flux density away
from the source. The continuous evolution of ld (r) as a func-
tion of z is shown in Fig. 4, for two different values of δ−,
with |l| = 1, δ+ = 1 mm. For both values of δ−, one can see
a “dent” in the curve near ρ = 0. To highlight this, we plot
the OAM flux density for several values of δ− in Fig. 5(a) at
z = 1 m. We can see that there exist counter-rotating (positive
and negative) regions of OAM flux density in the beam when
δ+ and δ− are significantly different from each other, and
that the radial locations of these regions can be “flipped”
by changing the value of δ−. The spectral densities for the
examples are shown in Fig. 5(b).

IV. DISCUSSION

It is natural to ask how one might generate and measure
these OAM changes experimentally. A source of the form
of Eq. (13) is the incoherent superposition of two partially
coherent vortex beams. Such beams can be generated from
independent lasers and then combined in an optical system.
The individual beams can be generated using a pair of digital
micromirror devices (DMDs). Alternatively, a single DMD

can be used to generate frames which alternate between re-
alizations of the two independent vortex beams; this strategy
was discussed in [26] and a description of how to generate
the desired realizations is given in [27]. To measure OAM
changes, the most straightforward possibility would be to
measure the motion of microscopic particles in the path of the
beam, deducing the strength and handedness of the rotation
by the direction the particle moves. Small particles can be
put into orbital motion by OAM beams; this was impres-
sively demonstrated some years ago when microspheres were
used in a sequence of counter-rotating vortex beams to create
a micro-optomechanical fluid pump [13]. A beam such as
that described by Eq. (13), which produces counter-rotating
regions from a beam that starts with no net OAM, would
provide a clear qualitative indication of correlation-induced
OAM changes.

We have therefore demonstrated the existence of
correlation-induced OAM changes, which join spectral
changes and polarization changes in a family of coherence-
influenced propagation phenomena. The examples shown here
are illustrative of the phenomenon, but not exhaustive—it
is expected that other choices of the source coherence can
result in different types of changes, and the creation of
more prominent counter-rotating regions. This paper, which
highlights a previously unexplored physical phenomenon,
also provides an additional degree of freedom for the control
and trapping of microscopic particles.
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APPENDIX: THE OAM OF A GAUSSIAN SCHELL-MODEL VORTEX BEAM

We evaluate the cross-spectral density and OAM properties of a Gaussian Schell-model partially coherent vortex beam; in the
source plane z = 0, the cross-spectral density has the form

W (r1, r2) = U ∗
l (r1)Ul (r2) exp

[
−|r1 − r2|2

δ2

]
, (A1)

with Ul (r) given by Eq. (8), and δ represents the correlation width.
The cross-spectral density function of a partially coherent beam after propagating in free space a distance z can be calculated

by Fresnel propagation:

W (ρ1, ρ2, z) = 1

(λz)2

∫∫
W (r1, r2) exp

{
− ik

2z
[(r1 − ρ1)2 − (r2 − ρ2)2]

}
d2r1d2r2. (A2)

Substituting from Eq. (A1) into Eq. (A2), the integrals can be evaluated analytically. The result for l = 1 is given by

W (ρ1, ρ2, z) = |C1|2
λ2z2

π2

2A2
2M2

exp

[
− ik

2z

(
ρ2

1 − ρ2
2

)]
exp

[
− k2ρ2

2

4z2A2
− k2

4z2M

(
ρ1 − ρ2

A2δ2

)2
]

×
[

2

δ2
− k2

2z2Mδ2

(
ρ1 − ρ2

A2δ2

)2
− k2

2z2

(
ρ2

2

A2δ2
− ρ∗

1 · ρ2

)]
, (A3)
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with

A1 = 1

w2
+ 1

δ2
+ ik

2z
, (A4)

A2 = 1

w2
+ 1

δ2
− ik

2z
, (A5)

M = A1 − 1

A2δ4
. (A6)

The OAM flux density may then be derived through the use of Eq. (2). On substitution, we find that this flux density is of the
form

Ld (ρ, z) = Im

( |C1|2π2kε0ρ
2

4λ2z4

i

A2M2
exp

{
−k2ρ2

4z2

[
1

A2
+ 1

M

(
1 − 1

A2δ2

)2]})
. (A7)

With this formula, the normalized OAM flux density can be calculated using Eq. (3).
The other two examples in the paper, MGSMV beams and the incoherent superposition beam, can be constructed by

superpositions of the solution above with different widths δ.
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