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ABSTRACT

Traditional fractional vortex beams are well-known “jump” beams: that is, their net topological charge jumps by unity as the effective
topological charge of the source passes a half-integer value. Here, we propose an anomalous multi-ramp fractional vortex (AMRFV) beam.
Unlike the traditional fractional vortex beams, an AMRFV beam can be designed to have arbitrary jumps in topological charge at any critical
threshold of the source charge. We walk through some examples of AMRFV beams using simulations and present a clear interpretation of
the multi-jump characteristic based on the evolution of phase singularities.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0028490

The study and application of beams with helical wavefronts and
the associated singularity of phase at their core have become an impor-
tant aspect of the field now known as singular optics.1 In 1992, such
vortex beams with an azimuthal order l were shown by Allen et al.2 to
possess an orbital angular momentum (OAM) of l�h per photon. In
fact, the phase in a counterclockwise path around every vortex in a
general wavefield changes by 2pl, where l is referred to as the topologi-
cal charge (TC) of the vortex and always takes on an integer value.
The discrete nature of topological charge has generated much interest
in its use as an information carrier in optical communications,3 among
other applications.

Though the topological charge can only take on integer values, it
is possible to formally generate a “fractional vortex beam” by the use
of a fractional spiral phase plate that induces only a fraction of a 2p
phase circulation around the beam axis. This was studied in detail by
Berry in 20044 (though an early look at such possibilities appeared in
19955) who also showed how the topological charge of a modified
plane wave jumps by unity when the effective charge of the fractional
plate takes on a half-integer value. This result was demonstrated exper-
imentally soon after.6 Since Berry’s pioneering work, considerable
attention has been paid to such fractional vortex beams, both coherent
and partially coherent cases.7–15 These studies show that the most
obvious change induced by the introduction of fractional topological

charges is to create a radial opening in the intensity distribution, which
can be used to guide and transport particles.7 In particular, unidirec-
tional notch arrays formed by fractional vortex arrays have been used
for particle sorting.8

Early work on fractional beams imagined creating them with a
conventional spiral phase plate,16 with a single adjustable spiral ramp
in the azimuthal direction providing the fractional phase twist and an
effective fractional topological charge at the source. However, in a
demonstration that fractional vortex beams create new topological
charge through a “Hilbert Hotel” mechanism, Gbur17 showed that an
adjustable multi-ramp spiral phase plate, with m ramps in the azi-
muthal direction instead of one, could create a jump of m in topologi-
cal charge as the source charge is increased, corresponding tom rooms
being simultaneously freed in Hilbert’s Hotel. This hinted at the possi-
bility that even more sophisticated fractional spiral phase plates could
be designed, which generate an arbitrary jump of topological charge
with an increase in the fractional source charge. It is reasonable to
believe that the future requirements for vortex beams with the TC
structure will develop toward diversity and richness, especially for par-
ticle trapping,8 information security,18 and optical communication.19

For example, Ma et al.20 realized optical vortex shaping with a control-
lable OAM distribution by introducing a phase jump factor, and
Tkachenko et al.21 realized a more uniform micro-manipulation by
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evenly distributing the phase jump of a fractional vortex beam into
multiple parts. Therefore, the generation and modulation of vortex
beams with complex and diverse TC structures will be a topic of con-
stant attention.

In this Letter, we modify the transmission function of the spiral
phase plates from Ref. 17 to design an anomalous multi-ramp spiral
phase plate (AMRSPP), which generates an anomalous multi-ramp
fractional vortex (AMRFV) beam, and demonstrate its rich and varied
TC jump characteristics with simulations. We show that it is possible
to design a plate with a single tunable parameter—the effective source
charge—that will have topological charge jumps of arbitrary size that
appear in any order desired.

Figure 1 shows a designed AMRSPP involving three types of
adjustable parameters, including the number of multi-ramp sections
m, the input fractional topological charge a, and the fractional phase
control coefficients bpðp ¼ 0; 1; 2;…;m� 1Þ in each ramp section.
The transmission function of an AMRSPP is then given by

T hð Þ ¼ exp
ia h� 2pp=mð Þ

bp

" #
;

2pp
m
� h <

2p pþ 1ð Þ
m

; (1)

where h denotes the azimuthal angle.
In analogy with a conventional spiral phase plate, we envision the

AMRSPP as a transparent plate with a polymer replicated on a glass
substrate, and the thickness of each ramp section varies azimuthally.
Here, the phase increases by 2pa=mbp in each ramp section, which is
quite different from the simple design in Ref. 16 and that possessing
the same phase change rate in each ramp section in Ref. 17.
Using such an AMRSPP, we can attach a specific phase twist to the
beam and generate an AMRFV beam with complex and diverse TC
structures. When m¼ 1 and b0 ¼ 1, the model designed by Eq. (1)
reduces to a conventional spiral phase plate, which is used to generate
a traditional fractional vortex beam. For m � 2 and all bp ¼ 1, the
model designed by Eq. (1) reduces to a multi-ramp spiral phase plate,
which is used to realize a fractional vortex beam with a multi-unit
(i.e.,m-unit) TC jump.17

It is to be noted that we can generalize our spiral phase plate even
further: the ramp sections can be taken to have different azimuthal
widths, and the height of each ramp section can be taken to vary inde-
pendently. Here, we primarily consider plates with a single variable
parameter—the “source charge”—and demonstrate that we can create
Hilbert Hotel style jumps of topological charge in any order and any
degree even under this restricted case.

For mathematical convenience, we consider the illumination of
such a phase plate by a normally incident plane wave. According to
the Fresnel diffraction principle and the Collins formula,22 the field of
a monochromatic plane wave with unit amplitude passing through a
spiral phase plate of integer topological charge n [designed to have a
transmission function T0ðhÞ ¼ exp ðinhÞ] is expressed as

En q; h; zð Þ ¼
ffiffiffiffiffiffiffiffi
pq2

2

r
exp ikzð Þexp inhð Þexp iq2

� �
ð�iÞjnj=2

� Jjnj�1
2

q2
� �

� iJjnjþ1
2

q2
� �h i

; (2)

with

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
; n ¼

ffiffiffiffiffiffiffiffiffiffi
k=4z

p
x; and g ¼

ffiffiffiffiffiffiffiffiffiffi
k=4z

p
y; (3)

where z and r ¼ ðx; yÞ denote the distance from the phase plate and
the transverse position vector in a plane of z, respectively. k is the
wavenumber and q is the scaled dimensionless variable. Jnð�Þ denotes
the nth order Bessel function of the first kind.

Following Berry4 and Gbur,17 the transmission function of the
AMRSPP can be expanded into the Fourier series of integer order

T hð Þ ¼
X1

n¼�1
Cn exp inhð Þ; (4)

with

Cn ¼
1
2p

Xm�1
p¼0

exp �i2ppn=mð Þ
i a=bp � n
� � exp i

2p
m

a
bp
� n

� �" #
� 1

( )
: (5)

Thus, by applying Eq. (2), the field of an AMRFV beam can be
obtained as follows:

Ea q; h; zð Þ ¼
X1

n¼�1
CnEn q; h; zð Þ: (6)

This expression describes the field characteristics of an AMRFV
beam of any fractional charge a and at any propagation distance z.

To study the topological behavior of AMRFV beams, we consider
the net topological charge (also called total vortex strength) within a
particular integral radius q0, defined as

4

t ¼ lim
q!q0

1
2p

ð2p
0
dh � @

@h
arg Ea q; h; zð Þ½ �

¼ lim
q!q0

1
2p

ð2p
0
dh � Re �i � @Ea q; h; zð Þ=@h

Ea q; h; zð Þ

� �
: (7)

To illustrate the possibilities in controlling the TC jump in
AMRFV beams, we limit our investigation to three special cases,
m¼ 5,m¼ 6, andm¼ 7, and consider how the net topological charge
depends on the other beam parameters, namely, a and bp.

Figure 2 shows how the jump in topological charge depends on
the choice of the fractional phase control coefficients bp. From the fig-
ure, it is clear that the topological charge jumps at values of a such that

a ¼ 0:5 2j� 1ð Þmbp j ¼ 1; 2; 3;…ð Þ; (8)

for every value of p, where j is a positive integer and denotes the cycle
ordinal. Obviously, the emergence of the jump has certain periodic

FIG. 1. (a) Illustration of an AMRSPP with m¼ 5 and (b) the top view of (a) with
detailed structural distribution.
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characteristics. It is to be noted that this periodicity is not always sym-
metrical (simply repeating the previous cycle), and the specific period-
icity is determined by the values of bp andm. For example, Fig. 2(a) is
a typical repeatable cycle and the period is 5, while Figs. 2(b)–2(d) are
not. To give a clear and quantifiable description, we only focus on the
situation in the first period (e.g., 0 � a � 5) below, and the cases in
other periods (larger a) can be deduced by analogy. In the first period
(i.e., the left side of the green line), the number of distinct jumps that
occur and the size of each jump are equal to the number of different
values of bp and the multiplicity of bp, respectively. The number of dif-
ferent values of bp, for instance, in Figs. 2(a)–2(d) are 1 (i.e., 1), 2 (i.e.,
1 and 1.5), 3 (i.e., 1, 1.5, and 1.75), and 4 (i.e., 1, 1.25, 1.5, and 1.75),
respectively. Thus, the number of jumps that occur are 1, 2, 3, and 4,
respectively. For Fig. 2(a), there are five identical values of bp, and so
the single jump unit is 5 (which occurs at a1 ¼ 2:5). For Fig. 2(b), the
multiplicities of bp ¼ 1 and bp ¼ 1:5 are 3 and 2, respectively; thus,
the first jump amount (at a1 ¼ 2:5) is 3 and the second jump amount
(at a2 ¼ 3:75) is 2. In a similar fashion, a1–a3 in Fig. 2(c) and a1–a4
in Fig. 2(d), as well as the jump amounts, can be determined.

Figure 3 shows how the topological charge jump can be adjusted
by adjusting the number m of multi-ramp sections. Comparing Figs.
2(b) and 3, we find that although both figures have only two values of
bp (i.e., 1 and 1.5), the choice of different m leads to different jump
locations and different jump units.

From Figs. 2 and 3, it can be concluded that

t ¼
Xm�1
p¼0

Int
a

mbp
þ 1
2

" #
; (9)

where Int denotes the integer arithmetic. This formula is surprisingly
straightforward and makes it relatively easy to choose the number of
ramps m and the values bp to produce any evolution of topological
charge desired.

The means by which the topological charge jumps may be seen to
be a Hilbert Hotel evolution of the number of singularities in the system,
as first noted in Ref. 17. In Fig. 4, we calculate the phase evolution of an
AMRFV beam with the same parameters as in Fig. 2(c). An optical vor-
tex is represented by a point where all the colors converge—a singularity
of phase. Left- and right-handed vortices (corresponding to positive and
negative TCs) are represented by the phase increasing or decreasing in a
counterclockwise path around the singularity, respectively.

As a increases from zero to a1 ¼ 0:5mb0 ¼ 2:5, pairs of vortices
with equal and opposite TCs begin to appear, with additional pairs
appearing along two lines extending away from the origin [Fig. 4(a)].
These pairs contribute nothing to the net topological charge t, which
remains t¼ 0. For a ¼ a1 ¼ 2:5, two infinite lines of vortex pairs
(labeled ‹ and ›) have appeared, corresponding to the two values
b0 ¼ b2 ¼ 1, as seen in Fig. 4(b). As a increases past a ¼ a1 ¼ 2:5, the
negatively charged vortices annihilate with their more distant positive
neighbor, leaving the net topological charge t¼ 2 [Fig. 4(c)]. At the same
time, two new finite vortex chains (i.e., fi and fl) begin to grow due to

FIG. 2. Net topological charge t of an AMRFV beam as a function of a with different fractional phase control coefficients bp for m¼ 5, calculated by numerically evaluating the
integral of Eq. (7) with q0 ¼ 20. (a) One distinct phase control coefficient, (b) two coefficients, (c) three coefficients, and (d) four coefficients.
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the two values b1 ¼ b3 ¼ 1:5 [Fig. 4(d)]. As a increases from
a2 ¼ 0:5mb1 ¼ 3:75 to a3 ¼ 0:5mb4 ¼ 4:375 [Fig. 4(e)], vortex
chains fi and fl contribute two vortices with positive TC and we finally
have t¼ 4. Again during the annihilation of vortex chains fi and fl, a
new vortex chain � is created due to the ramp with b4 ¼ 1:75. Finally,
as a increases past a ¼ a3 ¼ 4:375 [Fig. 4(f)], all the annihilations are
done and the net topological charge t¼ 5. Through the above analysis,
we know that the evolution process in Fig. 4 is in complete agreement
with that in Fig. 2(c) and Eq. (9).

More specifically, Eq. (9) can be further explained by the evolu-
tion of vortices, namely, as the equivalent TC a=bp in each ramp

section gradually approaches the values of m=2, a line of vortices in
each ramp section is created, for instance, as can be seen in Figs. 4(a)
and 4(b) for the evolution of the vortex chain ‹ or ›. After
a=bp ¼ m=2, we are left with an unbalanced vortex with positive TC
in each corresponding ramp section, which leads to the TC jump, for
instance, as can be seen in Fig. 4(d) for the remaining individual vortex
after the annihilation of ‹ or ›.

Each discontinuity of an AMRSPP results in a corresponding line
of low intensity along the radial direction that is most intense when
Eq. (8) is satisfied, but which exists for a range of neighboring a values.
AMRFV beams can, therefore, be designed to have any number of

FIG. 3. Net topological charge t of an AMRFV beam as a function of a with different m for q0 ¼ 20. (a) Six ramp sections and (b) seven ramp sections.

FIG. 4. Phase evolution of an AMRFV beam with m¼ 5 and ½b0;b1; b2; b3; b4� ¼ ½1; 1:5; 1; 1:5; 1:75�. The symbols “þ”and “�” denote unit left- and right-handed vortices,
respectively. (a) a ¼ 1:99, (b) a ¼ 2:5, (c) a ¼ 2:75, (d) a ¼ 2:9, (e) a ¼ 4:3, and (f) a ¼ 5:8.
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low-intensity “spokes” radiating out from the origin over particular
ranges of a. This result is qualitatively different from the conven-
tional fractional vortex beam4 that possesses only one spoke. In
Fig. 5, the intensity profiles corresponding to the phase profiles of
Fig. 4 are shown. In Fig. 5(a), with a ¼ 1:99, there are two distinct
low intensity spokes, arising from the influence of ramps p¼ 0
and p¼ 2, whereas for Figs. 5(b)–5(d) there are five spokes, as all
ramps affect the intensity profile. In Fig. 5(e), a is large enough
that the original two low-intensity spokes have vanished, leaving
only the three corresponding to p¼ 1, 3, and 4. As a increases fur-
ther, in Fig. 5(f), we can see that the two spokes corresponding to
p¼ 1, 3 have started to diminish, leaving only the single spoke for
p¼ 4.

It is to be noted that our results apply to an ideal plane wave or a
beam that is effectively wide enough to be approximated as a plane
wave. It has been shown recently for both traditional fractional vortex
sources12 and multi-ramp fractional vortex sources23 that for narrow
width beams, the jumps in topological charge occur at integer, and not
half-integer, source values. The implications for AMRV beams of finite
width will be considered in separate work.

It should be further noted that the infinite chain of vortices
will not be seen in a practical experiment, due to the finite size of
the beam. However, as seen theoretically in Ref. 17 and experimen-
tally in Ref. 6, one will see an extended line of vortices, which will
inevitably be lost in the darkness in the outskirts of the beam. It
may be said that we see the “signature” of the infinite mathematics
in the finite system.

The intensity profiles of AMRFV beams have been verified exper-
imentally. The experimental setup for generating an AMRFV beam is
shown in Fig. 6. After passing through a beam expander, the laser
beam is modified using the phase mask displayed in a SLM. Then, the
modified beam passes through a 4� f system and circular aperture,
which only chooses the þ1st order. The generated AMRFV beams are
recorded by the CCD.

A comparison of the experimental intensity patterns and theoret-
ical intensity patterns is shown in Fig. 7. Excellent agreement can be
seen in the position of the darkest spokes, and good agreement in the

FIG. 5. Intensity evolution of an AMRFV beam with m¼ 5 and ½b0;b1; b2; b3; b4� ¼ ½1; 1:5; 1; 1:5; 1:75�. (a) a ¼ 1:99, (b) a ¼ 2:5, (c) a ¼ 2:75, (d) a ¼ 2:9, (e) a ¼ 4:3,
and (f) a ¼ 5:8.

FIG. 6. Experimental setup for generating an AMRFV beam. (a) Phase mask writ-
ten into the SLM. BE, beam expander; SLM, spatial light modulator; CA, circular
aperture; 4f: 4� f system; and CCD, charge coupled device.
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shape of the beam core, indicating that our theoretical analysis is a reli-
able indicator of the actual intensity patterns produced in practice.

In this Letter, we have shown how even an optical element with a
single tunable parameter can be used to generate rich topological behav-
ior; if one considers an AMRSPP withm sections, each with an indepen-
dently tunable ramp charge ap, Eq. (9) can be generalized to the form

t ¼
Xm�1
p¼0

Int
ap
m
þ 1
2

	 

: (10)

If we further allow the azimuthal width of the m sections to
vary, with the constraint that the total equals 2p, it seems clear that
we can then also adjust the azimuthal positions of the vortex
chains, which will roughly coincide with the discontinuity lines
between sections. By generalizing Eqs. (1)–(6) to take into account
m azimuthal sections of width 2p=mp, we may further generalize
Eq. (10) to the form

t ¼
Xm�1
p¼0

Int
ap
mp
þ 1
2

	 

: (11)

Both the azimuthal positions of the vortex chains, as well as their
evolution as a function of ap, will depend on the choice ofmp.

This Letter, therefore, shows that it is possible to generalize
the Hilbert Hotel vortex creation of Ref. 17 through the use of an
anomalous multi-ramp spiral phase plate, allowing an arbitrary
number of vortices to be created at any value of the source charge
a. These results show that we have great flexibility in controlling
the topological charge of an AMRFV beam and can readily predict
and plan the appearance of new vortices. We have revealed the
relationships between the value where the jump appears, the

number of jumps that occur, the unit of each jump of an AMRFV
beam, and beam parameters.

Similar to the strategy discussed in Ref. 7, we foresee the applica-
tion of the above low intensity spokes to trap, guide, and sort particles.
Particles with a high refractive index tend to be drawn into high inten-
sity regions due to the gradient force and low intensity regions serve
effectively as a barrier. Because an AMRFV beam possesses multiple
low-intensity spokes that can be designed to appear or disappear in
any order, the spokes can be used to collect particles in different
regions and then combine groups of particles in sequence. Several
rotating AMRFV beams could be combined to make an assembly line
of particle organization. Thus, compared with the conventional frac-
tional vortex beam with single radial opening for single-particle trap-
ping, an AMRFV beam possessing multiple low-intensity spokes has
an advantage in the ability to simultaneously manipulate multiple
particles.

In addition to the aforementioned applications, the diversity of
TC jumps can greatly improve the information capacity of quantum
information systems and makes a new OAM multiplication/division
functional transformation integrated device possible.24 Thus, our work
may be useful in multi-particle trapping, quantum computing, and
optical device manufacturing and highlights the richness of possibili-
ties in vortex creation.
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