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We introduce an effective method for measuring the refrac-
tive indices of a uniaxial crystal based on the independent
self-focusing property of non-uniformly correlated beams
along the x and y directions. We demonstrate how the posi-
tions of the independent foci can be changed by adjusting
coherence lengths to determine the characteristic coher-
ence lengths of the beams in a uniaxial crystal, and how this
information can be used to determine the refractive indices
by relating the propagation characteristics of the beam
in free space and in the crystal. Furthermore, it is demon-
strated that, by choosing a high beam order, one can reduce
the measuring error caused by CCD detection precision.
These results present an example of how non-uniformly
correlated beams can be used for applications in anisotropic
materials. © 2021 Optical Society of America

https://doi.org/10.1364/OL.424259

It is well known that interesting and practical effects can be
achieved by manipulating the amplitude, polarization, and
phase of light beams. In recent years, the manipulation of spatial
coherence has been recognized as another method to produce
many peculiar physical phenomena [1,2]. Light beams with
decreased spatial coherence are referred to as partially coher-
ent beams (PCBs), and they often have advantages over their
coherent counterparts [3]. PCBs are usually divided into con-
ventional PCBs and non-conventional PCBs, according to
whether or not the form of their degree of coherence (DOC)
has a homogeneous Gaussian distribution [2]. Compared with
conventional PCBs, non-conventional PCBs display much
more extraordinary and versatile properties [2]. However, at
the beginning of the 21st century, the difficulty of proving
that a particular function was actually a mathematically valid
correlation function limited investigations of non-conventional
PCBs.

In 2007, Gori and Santarsiero derived sufficiency conditions
for genuine correlation functions of scalar PCBs [4]. Their
approach allows a wide variety of novel PCBs to be devised

and generated that possess prescribed correlation properties.
Since that discovery, researchers have studied the propagation
properties of many new types of PCBs. It has been demonstrated
that PCBs with prescribed correlation functions can exhibit
behaviors such as self-focusing, self-shifting, self-splitting, as
well as far fields with pre-established beam self-shaping [5–10].
It has also been verified that such beams maintain these unusual
propagation characteristics in turbulent media [5,6,11,12].
Therefore, it is reasonable to believe that non-conventional
PCBs can also exhibit peculiar propagation properties in other
complex media.

Uniaxial anisotropic crystals have played an important role
in designing wave plates, polarizing prisms, switches, and com-
pensators due to their birefringent properties [13]. In 2001,
Ciattnoi and his co-workers developed a simple vector theory
for the paraxial propagation of beams in a uniaxial crystal [14].
Two years later, paraxial and non-paraxial conditions for light
beams propagating along a direction perpendicular to the opti-
cal axis in a uniaxial crystal were studied [15]. The researchers
found that, under the paraxial approximation, light beams with
polarization parallel and perpendicular to the axis direction are
independent, and they derived propagation expressions for vec-
tor light beams propagating perpendicular to the optical axis in a
uniaxial crystal. Based on this, the propagation of various beams
in a uniaxial crystal have been studied, and it has been confirmed
that ordinary and extrordinary light beams will have different
propagation velocities and the same propagation direction when
light beams propagate perpendicular to the optical axis.

We can infer that the combination of the peculiar prop-
erties of non-conventional PCBs and a uniaxial crystal will
lead to novel effects. Non-conventional PCBs will exhibit
extraordinary propagation properties in a uniaxial crystal due
to the interaction between the coherence properties and the
anisotropy. So it is natural to wonder if we can take advantage
of partial coherence to measure properties of a uniaxial crystal,
such as refractive indices.
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Fig. 1. Geometry of laser beam propagation in a uniaxial crystal
orthogonal to the optical axis.

In this Letter, we focus on the intensity evolution of one class
of non-conventional PCBs with a prescribed non-uniform cor-
relation structure in a uniaxial crystal. The beams, rectangular
Hermite non-uniformly correlated (RHNUC) beams, possess
independent self-focusing properties in the x and y directions
in the crystal. We demonstrate how to adjust the correlation
structure of such beams to control the self-focusing property in a
uniaxial crystal and then use the measured results to deduce the
refractive indices of the crystal. These results are an example of
how non-uniformly correlated PCBs can be used in applications
in anisotropic media.

We start by discussing the paraxial propagation of laser beams
in a uniaxial crystal in a direction orthogonal to the optical axis.
The geometry is shown in Fig. 1, and with the optical axis of the
crystal taken to coincide with the x axis, the dielectric tensor of a
uniaxial crystal can be expressed as [13]

ε=

n2
e 0 0

0 n2
o 0

0 0 n2
o

 , (1)

where ne and no denote the extraordinary and ordinary
refractive indices of the crystal, respectively.

Under the paraxial approximation, the transverse compo-
nents of the electric field propagating in a uniaxial crystal are
shown in Eq. (9) in Ref. [15], and it can be readily concluded
that the diffraction properties of the y component of the electric
field are the same as a field propagating in an isotropic media,
but the x component of the electric field undergoes a diffraction
spreading asymmetry in the x and y directions. Therefore, in
our work, we study laser beams with linear polarization in the x
direction.

We will focus on using PCBs as a tool to measure the refrac-
tive indices of a uniaxial crystal. The paraxial propagation of the
cross-spectral density (CSD) of PCBs in a direction perpendicu-
lar to the optical axis can be evaluated with the integral expres-
sion [16],
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(2)
where W(r1, r2) and W(ρ1, ρ2) denote the CSD of PCBs
in the source and target plane, respectively. r = (x , y ) and
ρ = (ρx , ρy ) are the position vectors at the input and target
planes, and k = 2π/λ is the free space wavenumber. We now
focus specifically on the propagation of RHNUC beams in the
crystal. The CSD of such beams in the source plane is expressed
in Cartesian coordinates as [5]

W(r1, r2)= exp
(
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2
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0

)
µx (x1, x2)µy (y1, y2), (3)

whereω0 is the beam width. The quantitiesµx andµy represent
the DOCs of the RHNUC beam along the x and y directions,
and can be expressed by the formula
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where the subscript ξ = x , y and δξ is the coherence length
in the ξ direction. The quantity Gξ = 1/H2m(0), where H2m
denotes the Hermite polynomial of order 2m; m also denotes
the beam order of the RHNUC beam.

When a RHNUC source is located in the plane z= 0 and
radiates directly into a uniaxial crystal, we may calculate the
CSD of RHNUC beams in the target plane of the crystal by
substituting from Eqs. (3) and (4) into Eq. (2). However, there
are higher-order terms in the CSD of RHNUC beams that make
it difficult to calculate directly by integrating Eq. (2). Instead,
we express the beam model in the form of a nonnegative definite
kernel in two-dimensional integral form, as introduced in Ref.
[5] [see Eq. (7)]. We then interchange the orders of the integrals
and obtain the formula

W(ρ1, ρ2)=

∫
p(v)P (ρ1, ρ2, v, z)d2v, (5)

where p(v), shown in Eq. (10) in Ref. [5], is the weighting func-
tion of the different beam modes that are contained in RHNUC
beams and P (ρ1, ρ2, v, z) represents these different beam
modes propagated to the target plane. This latter function can
be written in a separated form,
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, (7)

where zcξ denotes the component of propagation distance in a
uniaxial crystal in the ξ direction.

We obtain the propagated CSD of RHNUC beams in a uni-
axial crystal by evaluating the integral of Eq. (5), and we obtain
the spectral intensity of a RHNUC beam in the target plane
from the usual definition,

S(ρ, z)=W(ρ, ρ, z). (8)

With the above formulas, the propagation properties of
RHNUC beams in a uniaxial crystal can be explored. Under
the condition of ne = no = 1, our formulas reduce to those
of RHNUC beams propagating in free space, which we have
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Fig. 2. The normalized intensity evolution of RHNUC beams at
different propagation distances in a uniaxial crystal.

discussed in Ref. [5]. Let us define zfs as the propagation distance
in free space, and zfsx and zfsy are the x and y components of
zfs. Then, through Eq. (7), we can get the following expression
relating the propagation distances in a uniaxial crystal and in free
space,

zcx

zfsx
=

n2
o

ne
;

zcy

zfsy
= ne . (9)

Therefore, if we can determine the propagation distances of
RHNUC beams in a uniaxial crystal (zcx; zcy) and in free space
(zfsx; zfsy) with the same initial beam parameters, we can calcu-
late the extraordinary refractive index ne and ordinary refractive
index no of the crystal.

The next key question is, however, how do we determine the
components of propagation distance in a uniaxial crystal and in
free space under the same conditions? To answer this question,
we first need to explore the propagation properties of RHNUC
beams in a uniaxial crystal.

Let us explore the evolution of the spectral intensity of
RHNUC beams propagating in a uniaxial crystal by numerical
simulations. The beam parameters are set as λ= 632.8 nm,
ω0 = 0.15 mm, m = 1, δx = δ y = 0.03 mm; the refrac-
tive indices of the uniaxial crystal are taken as no = 1.2 and
ne = 1.8no . The refractive indices here are arbitrary and chosen
just to show the validity of the method.

Figure 2 shows the density plot of the normalized spectral
intensity of RHNUC beams propagating in a uniaxial crystal
at different propagation distances. From the evolution of the
spectral intensity, we see that RHNUC beams display their self-
focusing property in a uniaxial crystal, similar to the behavior
in free space discussed in Ref. [5]. Furthermore, we can confirm
that there is a quantitative difference in the crystal: RHNUC
beams possess astigmatic focusing due to the effects of the uni-
axial crystal. The extraordinary and ordinary refractive indices
affect the positions of the foci, and, importantly, the same wave-
front can be represented by the positions of the foci. Thus, we
can deduce the extraordinary and ordinary refractive indices
from these focal positions.

In order to show the position of the focus clearly, we plot
the normalized intensity on-axis of RHNUC beams on propa-
gation in a uniaxial crystal in Fig. 3. First, let us consider the
total intensity (St , black line; St = Sx × Sy ); we observe there
are two peaks of the normalized intensity of such beams on
propagation, which means RHNUC beams have been focused
astigmatically, as we can see from Fig. 2 or the red dashed–dotted
line (Sx , the normalized component intensity in x direction)
and blue dotted line (Sy , the normalized component intensity in
y direction) in Fig. 3; these two foci are from the foci in x and y
directions, respectively. Therefore, we can get the components
of propagation distance zcx and zcy in a uniaxial crystal from
Fig. 3, zcx = 1.135 mm and zcy = 3.684 mm. If we want to
deduce the refractive indices of the uniaxial crystal, we also need
the value of the corresponding propagation distance zfs in free

Fig. 3. Normalized intensity on-axis of RHNUC beams on propa-
gation in a uniaxial crystal.

Fig. 4. Normalized intensity on-axis of RHNUC beams on propa-
gation in a uniaxial crystal for different coherence lengths.

space. Fortunately, we can get it by using Eqs. (5)–(8) and set-
ting no = ne = 1; from this, we get zfsx = zfsy = zfs = 1.705 mm
readily.

We, therefore, can determine that the extraordinary and
ordinary refractive indices of the crystal are ne = 2.16 and
no = 1.2, using the values of zcx, zcy, zfsx, and zfsy and Eq. (9).
Here, we need to make a statement, in the above context, that
the value of ne is arbitrary, so we write it as ne = 1.8no . And we
calculated here ne = 2.16 (ne = 1.8no = 2.16), which shows
the correctness of our method.

The method as described so far is not convenient for experi-
mental measurements because the components of propagation
distance zcx and zcy are typically inside the crystal. We now refine
our method for experimental convenience.

Let us continue to explore the spectral intensity evolution of
RHNUC beams in a uniaxial crystal. Figure 4 shows the nor-
malized intensity on-axis of RHNUC beams on propagation in
a uniaxial crystal for different components of coherence lengths
δx and δ y . We can confirm from this figure that the positions of
the two peaks can be moved by adjusting the coherence lengths.
For example, adjusting δx (δ y ) can move the left (right) peak,
and increasing the value of either coherence length can move the
corresponding peaks to the right side. Therefore, through this
extraordinary propagation property of RHNUC beams, we can
“shift” the components of propagation distance zcx and zcy to the
output surface plane of the crystal.

In a practical case, when we take a uniaxial crystal with
unknown refractive indices, what we can measure directly is the
crystal length. Let us assume that a uniaxial crystal of refractive
indices to be measured is 3 mm long. We plot the normalized
on-axis intensity of RHNUC beams propagating in the uniaxial
crystal in Fig. 5(a). The black dashed line represents the output
surface of the crystal. In order to better show the trend of the
normalized intensity on-axis, we extended the propagation



Letter Vol. 46, No. 10 / 15May 2021 /Optics Letters 2271

Fig. 5. Shifted normalized intensity on-axis of RHNUC beams on
propagation in a uniaxial crystal.

distance appropriately in Fig. 5(a). The black solid line repre-
sents the normalized intensity on-axis before the “shifting” of
RHNUC beams with coherence lengths δx = δ y = 0.03 mm.
Its two peaks appear inside the crystal, making it hard to measure
the exact component of propagation distance zcx and zcy. The
pink dashed–dotted line represents the normalized intensity of
RHNUC beams on-axis after adjusting the coherence lengths.
The red dashed line and blue dotted line represent the normal-
ized intensity components in x and y directions, respectively.
Coherence lengths δx and δ y are adjusted to move the two com-
ponent peaks to z= 3 mm, i.e., the output surface of the crystal.
The intensity on-axis we measure now is at its maximum. Let
us define the coherence lengths at this time as “characteristic
coherence lengths” (CCLs) (δxc; δyc) of such beams. According
to the determined CCL (δxc; δyc) and Eqs. (5)–(8), and setting
no = ne = 1, we can get the corresponding value of the propa-
gation distances in free space zfsx and zfsy. So we can get the value
of the extraordinary and ordinary refractive indices of the crystal
based on the values of zcx, zcy, zfsx, and zfsy and the relational
expression Eq. (9).

Let us concisely summarize the measurement process. First,
a crystal with unknown refractive index is placed with one of
the surfaces of the crystal in the source plane. Second, a CCD
is placed to monitor the on-axis intensity of the output plane.
Third, the coherence length components δx and δ y of RHNUC
beams are adjusted until the CCD detects the maximum inten-
sity, providing CCL δx and δ y . The propagation distance
components zfsx and zfsy of such beams in free space under the
CCL are calculated. Finally, from the values of zfsx, zfsy, zcx, and
zcy (i.e., length of crystal), we can get the extraordinary and
ordinary refractive indices of the crystal to be measured.

One practical concern is the measurement accuracy of the
CCD: because the intensity peaks are of finite width, there will
naturally be uncertainty in the measurement of their positions.
Fortunately, it has been discussed in Ref. [5] that a RHNUC
beam with large beam order has a more dramatic self-focusing
property, producing a narrower intensity peak. This property
can reduce the measuring error caused by CCD detection preci-
sion. Figure 5(b) shows the shifted normalized intensity on-axis
of RHNUC beams on propagation in a uniaxial crystal with
different beam orders. One confirms that the peak becomes
narrower with increasing beam order, which can reduce the
measuring error by the CCD. Assuming the CCD cannot
resolve intensity greater than 99% of the maximum intensity,
we determine the dependence of the measuring error of the
maximum with the beam order in Fig. 6. One confirms that the
maximum measurement error decreases with the increase of

Fig. 6. The maximum measuring error of ne and no with different
beam order.

the beam order, and the extraordinary refractive index ne mea-
surement error is smaller than the ordinary refractive index no ;
because the latter is measured based on the former [see Eq. (9)],
the measurement error of ne will be counted into that of no .

In conclusion, we have studied the intensity evolution of
RHNUC beams propagating in a uniaxial crystal, and we
demonstrated how the refractive indices of the crystal can be
measured by coherence techniques. This technique shows the
potential of non-uniformly correlated beams in applications
involving the propagation of light through anisotropic media.
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