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We introduce a matrix-based approach for characterization
of local interactions of optical beams with devices that result
in changes of their orbital angular momentum (OAM) con-
tent. For deterministic interactions, a method similar to the
Jones calculus is developed, while for interactions involving
random beams and/or devices, its generalization based on
the coherence-OAM matrix is suggested. Applications of
the new, to the best of our knowledge, calculus to a spiral
plate, a trigonometric grating, and a diffuser are considered.
An alternative formulation similar to the Stokes–Mueller
calculus is also outlined. ©2021Optical Society of America

https://doi.org/10.1364/OL.424618

In dealing with interactions of electromagnetic beams with
polarization-sensitive optical devices, the classic or the general-
ized Stokes–Mueller calculus is typically employed, depending
on whether single-point or double-point transformations are of
interest [1]. One-point interactions between deterministic light
and polarization-changing devices can be characterized by the
Jones calculus [2], while cases when either the incident light or
the device, or both, are random, can be dealt with by the Stokes–
Mueller calculus [3,4]. The classic Stokes–Mueller calculus
has a generalization to two-point interactions [5,6], which uses
the two-point Stokes vectors and Mueller matrices [7]. These
formalisms are key to accurately and efficiently analyzing the
behavior of polarization-sensitive optical systems.

The purpose of this Letter is to introduce the counterpart of
the Stokes–Mueller calculus for transformations of one-point
and two-point orbital angular momentum (OAM) states of
scalar stationary light [8] that can be described by a coherence-
OAM (COAM) matrix [9]. As the spin angular momentum
(SAM) state of light is characterized by the polarization matrix,
we expect there to be some analogies between the OAM and
polarization calculi, and note the similarities when appropriate.
The OAM case, however, is much richer in its possibilities.

We consider first the interaction of a deterministic device
with transmission function o(r) and a monochromatic field
U i (r) at frequencyω (omitted), producing a transmitted field:

U t(r)= o(r)U i (r). (1)

We then decompose the optical fields and the transmission func-
tion into their spiral Fourier spectra,

U i (r)=
∞∑

l=−∞

U i
l (ρ)e

ilφ, U t(r)=
∞∑

k=−∞

U t
k(ρ)e

ikφ, (2)

o(r)=
∞∑

m=−∞

om(ρ)e imφ, (3)

where

U i
l (ρ)=

1

2π

2π∫
0

U i (r)e−ilφdφ, U t
k(ρ)=

1

2π

2π∫
0

U t(r)e−ikφdφ,

(4)

om(ρ)=
1

2π

2π∫
0

o(r)e−imφdφ. (5)

Then substitution from Eqs. (2) and (3) into Eq. (1) yields

∞∑
k=−∞

U t
k(ρ)e

ikφ
=

∞∑
m=−∞

∞∑
l=−∞

om(ρ)U i
l (ρ)e

i(l+m)φ . (6)

Matching the Fourier series terms on the two sides of Eq. (6)
with m = k − l implies that

U t
k(ρ)=

∞∑
l=−∞

ok−l (ρ)U i
l (ρ). (7)

Vectors with components U i
l and U t

k can be considered as
analogs of the Jones vectors of polarization optics [2]. Equa-
tion (7) is a linear transformation relating the components of the
incident and transmitted fields. In matrix form, Eq. (7) becomes

−→
U t(ρ)=

↔

o (ρ)
−→
U i (ρ), (8)

where
↔

o (ρ) is the analog of the Jones matrix, with elements
o lk(ρ)mapping component U i

l (ρ) of the incident field to com-
ponent U t

k(ρ) of the transmitted field (see Fig. 1 for notations).
We note, however, that for devices introducing local (point-
by-point) transformations, the o -matrix is homogeneous, i.e., its
elements depend only on the difference of indices k and l . This
therefore mathematically excludes the possibility of designing
a local transformation OAM sensitive device that can affect an
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Fig. 1. Transformation of U -vector by o -matrix.

individual mode or any finite combination, e.g., mode sorters or
switchers. This includes devices such as fork gratings, which use
propagation to diffract and separate modes. We defer the more
complicated general case for arbitrary o lk(ρ) for another paper.

The identity transformation for Eq. (7) takes the form:

o(r)= 1, o lk(ρ)=

{
1, k = l
0, k 6= l , or

↔

o (ρ)=
↔

I
(∞)

, (9)

i.e., being the infinitely dimensional identity matrix.
If the optical system consists of Q tightly placed devices, then

the field transmitted by the last device becomes

−→
U t(ρ)=

Q∏
q=1

↔

o q (ρ)
−→
U i (ρ). (10)

A spiral plate with topological charge n (whole num-
ber) is the most familiar device producing a local OAM
transformation. Its transmission matrix takes the form
o(r)= e inφ, o lk(ρ)= δn,k−l , and, hence, Eq. (7) reduces
to U t

k(ρ)=U i
k−n(ρ), implying that all OAM components of

the incident beam are shifted by n units. Matrix
↔

o (ρ) has ones
on nth upper or lower diagonal for n > 0 or n < 0, respectively,
and zeroes elsewhere. It reduces to the identity transformation
if n = 0. Linear combinations of the spiral plates can also be
treated, for example, the cosine and sine trigonometric gratings,
o(r)= cos(nφ), o(r)= sin(nφ). Euler’s formula implies the
cosine grating splits each incident OAM component, say l , into
two equal parts and assigns them to the components of trans-
mitted field having charges l ± n. This effect is similar to that
of a polarizing beam splitter. The matrix

↔

o then has 1/2 on the
upper and lower nth diagonals and zeros otherwise. The action
of a sine grating is similar.

All the devices above are functionally independent of ρ and,
hence, have constant coefficients om(ρ)= om . Radially varying
devices can also be constructed, either with continuous or piece-
wise continuous ρ-dependence. For instance, one can combine
a grating forρ < ρ0 and a spiral plate forρ > ρ0.

We consider next the transformation of the COAM matrix by
a deterministic OAM transparency. For stationary fields, Eq. (1)
can be generalized as:

W t(r1, r2)= O(r1, r2)W i (r1, r2), (11)

where W t ,W i are cross-spectral density matrices and
O(r1, r2)= o∗(r1)o(r2), where star denotes complex conjugate
and we decompose W i and W t as [9]

W i (r1, r2)=

∞∑
l=−∞

∞∑
l ′=−∞

W i
l l ′(ρ1, ρ2)e−ilφ1e il ′φ2 , (12)

W t(r1, r2)=

∞∑
k=−∞

∞∑
k′=−∞

W t
kk′(ρ1, ρ2)e−ikφ1e ik′φ2 , (13)

as well as the transparency transmission function O as

O(r1, r2)=

∞∑
m=−∞

∞∑
m′=−∞

Omm′(ρ1, ρ2)e−imφ1e im′φ2 . (14)

Here the COAM matrix elements are given by

W i
l l ′(ρ1, ρ2)=

1

4π2

2π∫
0

2π∫
0

W i (r1, r2)e−ilφ1e il ′φ2dφ1dφ2,

(15)

W t
kk′(ρ1, ρ2)=

1

4π2

2π∫
0

2π∫
0

W t(r1, r2)e−ikφ1e ik′φ2dφ1dφ2,

(16)

Omm′(ρ1, ρ2)=
1

4π2

2π∫
0

2π∫
0

O(r1, r2)e−imφ1e im′φ2dφ1dφ2.

(17)
On substituting W i

l l ′ , W t
kk′ , and Omm′ into Eq. (14), we get

∞∑
k=−∞

∞∑
k′=−∞

W t
kk′(ρ1, ρ2)e−ikφe ik′φ

=

∞∑
m=−∞

∞∑
l=−∞

∞∑
m′=−∞

∞∑
l ′=−∞

Omm′(ρ1, ρ2)

×W i
l l ′(ρ1, ρ2)e−i(l+m)φe i(l ′+m′)φ . (18)

Matching terms by letting m = k − l , m′ = k′ − l ′, we get

W t
kk′(ρ1, ρ2)=

∞∑
l=−∞

∞∑
l ′=−∞

Ok−l ,k′−l ′(ρ1, ρ2)W i
l ,l ′(ρ1, ρ2).

(19)
The COAM matrix elements shift k units to left and k′

units up and are weighted by Ok−l ,k′−l ′ , and all contribu-
tions are added. The homogeneity of elements Ok−l ,k′−l ′ is
preserved.

In matrix notation, Eq. (19) can be expressed as

↔

W
t
(ρ1, ρ2)=

↔

o
∗

(ρ1)
↔

W
i
(ρ1, ρ2)

↔

o
T
(ρ2), (20)

where T denotes matrix transpose.
The identity transformation for Eq. (19) takes form of an

infinite-dimensional identity matrix:

Ok−l ,k′−l ′(ρ1, ρ2)=

{
1, k = l , k′ = l ′,
0, k 6= l , k′ 6= l ′. (21)

For the spiral plate, the whole COAM matrix shifts n units
along the main diagonal:

W t
kk′(ρ1, ρ2)=W i

k−n,k′−n(ρ1, ρ2). (22)
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In the case when the COAM matrix interacts with a random,
stationary transparency, we use the same transformation law as
in Eq. (11) but now have the transmission function,

O(r1, r2)= 〈o∗(r1)o(r2)〉d . (23)

Here the angular brackets with subscript d denote an aver-
age over the ensemble of transparencies, obtained under the
assumption that the statistics of the field and the random trans-
parency are independent. The same steps can be made as in
deriving Eq. (19), except the products of the transparency
coefficients become scalar correlation functions:

Ok−l ,k′−l ′(ρ1, ρ2)= 〈o∗k−l (ρ1)ok′−l ′(ρ2)〉d . (24)

A ground-glass diffuser specified by a stationary process
with zero mean and having a Gaussian two-point correlation
function is a simple yet illustrative example:

O(r1, r2)= exp

[
−
|r1 − r2|

2

2δ2

]
, (25)

where δ is the correlation width. It may be written as

O(r1, r2)=

∞∑
m=−∞

Omm(ρ1, ρ2)e−im(φ1−φ2), (26)

with

Omn(ρ1, ρ2)= exp

[
−
ρ2

1 + ρ
2
2

2δ2

]
Im

(ρ1ρ2

δ2

)
δmn, (27)

whereIm is the the first kind, modified Bessel function and δmn is
the Kronecker delta. Inserting Eq. (27) into Eq. (19) yields

W t
kk′(ρ1, ρ2)= exp

[
−
ρ2

1 + ρ
2
2

2δ2

] ∞∑
n=−∞

In

(ρ1ρ2

δ2

)
×W i

k−n,k′−n(ρ1, ρ2). (28)

If the incident field is in a pure OAM state (single-element
COAM matrix), then a COAM matrix with infinitely many
diagonal elements is produced, though the number of modes
of significant amplitude will depend on δ. If the incident field
is not in a pure state and contains off-diagonal elements, then
both diagonal and off-diagonal elements will be spread across
infinitely many modes. It is worth noting that only a finite num-
ber of OAM states can be measured experimentally, making the
COAM matrix finite size in practice.

For instance, if the incident field is a Laguerre–Gaussian
beam with radial order 0 and azimuthal order l , then

U i
m(ρ)=Cmρ

|m| exp

[
−
ρ2

w2

]
δlm, Cm =

2(1+|m|)/2

w|m|+1/2
√
π |m|!

.

(29)
Then the incident COAM matrix has a single diagonal element,

W i
mm′(ρ1, ρ2)=CmCm′ρ

|m|
1 ρ

|m′|
2 exp

[
−
ρ2

1 + ρ
2
2

w2

]
δlmδlm′ .

(30)
The incident spectral density then has elements S i

mm′(ρ)=

W i
mm′(ρ, ρ). Substituting Eq. (30) into Eq. (28) yields

(a) (b)

Fig. 2. COAM matrix elements, incident (with w= 1) and trans-
mitted through the diffuser with (a) δ = 1.2; (b) δ = 0.8.

W t
kk′(ρ1, ρ2)= exp

[
−
ρ2

1 + ρ
2
2

w2
d

] ∞∑
n=−∞

In

(ρ1ρ2

δ2

)
×Ck−nCk′−nρ

|k−n|
1 ρ

|k′−n|
2 δl ,k−nδl ,k′−n (31)

with 1/w2
d = 1/(2δ2)+ 1/w2. Setting k − n = l leads to

W t
kk′(ρ1, ρ2)= exp

[
−
ρ2

1 + ρ
2
2

w2
d

]
Ik−l

(ρ1ρ2

δ2

)
×Cl Ck′−k+lρ

|l |
1 ρ
|k′−k+l |
2 δl ,k′−k+l , (32)

or, alternatively,

W t
kk′(ρ1, ρ2)= exp

[
−
ρ2

1 + ρ
2
2

w2
d

]
Ik−l

(ρ1ρ2

δ2

)
C 2

l (ρ1ρ2)
|l |δk,k′ .

(33)
Then the spectral density becomes as S t

kk′(ρ)=W t
kk′(ρ, ρ).

Figure 2 shows the transmission of the single-element
COAM matrix S i

33(ρ) through a diffuser with two values of δ.
For larger/smaller δ [Figs. 2(a)/2(b)] the transmitted element
S t

33(ρ) retains more/less of the incident beam’s power while
giving off less/more power to the other transmitted elements.

If, instead, the incident field is a superposition of two OAM
modes, say l A and lB , then

U i
m(ρ)=Cmρ

|m| exp

[
−
ρ2

w2

]
(δml A + δml B ). (34)

Hence, the incident COAM matrix becomes

W i
mm′ (ρ1, ρ2)=CmCm′ρ

|m|
1 ρ

|m′ |
2 exp

[
−
ρ2

1 + ρ
2
2

w2

]
(δml A δm′l A

+ δml A δm′l B + δml B δml A + δml B δm′l B ). (35)

Substituting the equation above into Eq. (32) yields,

W t
kk′(ρ1, ρ2)= exp

[
−
ρ2

1 + ρ
2
2

w2
d

] [
Ik−l A

(ρ1ρ2

δ2

)
C 2

l A

× (ρ1ρ2)
|l A |δk′−k,0 + Ik−l A

(ρ1ρ2

δ2

)
Cl A Cl Bρ

|l A |
1 ρ

|l B |
2

× δk′−k,l B−l A + Ik−l B

(ρ1ρ2

δ2

)
C 2

l B
(ρ1ρ2)

|l B |δk′−k,0

+Ik−l B

(ρ1ρ2

δ2

)
Cl A Cl Bρ

|l B |
1 ρ

|l A |
2 δk′−k,l A−l B

]
.

(36)
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While for a single-mode incident field S t
kk′ represents an infi-

nitely dimensional diagonal matrix, for a two-mode incident
field, S t

kk′ is an infinitely dimensional three-diagonal matrix,
including the major diagonal (k = k′) and two minor diagonals
being apart from the major diagonal by±(l A − lB )units.

Although the obtained laws can fully characterize the trans-
formation of a deterministic field or the COAM matrix, it
appears rather impractical to apply it as in Eq. (23) with coef-
ficients as given in Eq. (28). Indeed, as a similar calculation
in polarization optics shows [5] that even with two field and
two transparency components, the handling of 16 separate
correlations is required. Therefore, it appears useful to intro-
duce an equivalent transformation that is analogous to the
Stokes–Mueller calculus. Indeed, following Ref. [10], the
N-dimensional COAM matrix can be expressed as a linear
combination of N2 parameters S(α)(ρ1, ρ2):

↔

W(ρ1, ρ2)=
1

N

[
N−1∑
α=0

S(α)(ρ1, ρ2)
↔

σ α

]
, (37)

where N2 generalized Pauli matrices↔σ α have forms

↔

σ 0 =
↔I
σ ;

↔

σ α =
↔D
σα, α = 1, . . . , N − 1;

↔

σ α =
↔S
σ α, α = N, . . . , N + (N − 1)/2;

↔

σ α =
↔A
σ α, α = N + 1+ N(N − 1)/2, . . . , N2. (38)

Here matrices with superscripts I (identity), D (diagonal), S
(symmetric), and A (antisymmetric) are defined as follows. Let

↔

E j k =

{
1, j = k,
0, j 6= k, (39)

and then form N × N matrices as

↔

σ
I

=

{
1, j = k,
0, j 6= k,

↔D
σ α =

√
2

α(α + 1)

(
α∑

j=1

↔

E j j − α
↔

E α+1,α+1

)
,

↔S
σα =

↔

E j k +
↔

E k j ,
↔A
σα =−i(

↔

E j k −
↔

E k j ). (40)

Conversely,

S(α)(ρ1, ρ2)= Tr
[
↔

σ α
↔

W(ρ1, ρ2)
]

. (41)

This implies that one can express the transformation law

between the incident and the transmitted vectors
−→
S i ,
−→
S t as

−→
S t(ρ1, ρ2)=

↔

M(ρ1, ρ2)
−→
S i (ρ1, ρ2). (42)

Here the N2
× N2 matrix M can be found as a linear com-

bination of correlation matrices with elements Omm′ . Matrix

↔

M(ρ1, ρ2) can be regarded as the OAM analog of the two-point
Mueller matrix of polarization optics [5].

A transformation by a cascaded system of Q devices that
change OAM can be then conveniently expressed as

−→
S t(ρ1, ρ2)=

Q∏
q=1

↔

Mq (ρ1, ρ2)
−→
S i (ρ1, ρ2), (43)

where
↔

Mq is the transformation matrix of the q th device while
the matrix multiplication is performed from the right to left. Of
course, at coinciding vectors ρ1 = ρ2 = ρ, the two-point OAM
calculus reduces to single-point, being the counterpart of the
classic Stokes–Mueller calculus.

The measurement of vector
−→
S (ρ1, ρ2) with components

expressed via those of matrix
↔

W(ρ1, ρ2) can be based on the
procedure as suggested in Ref. [9]. The measurement of matrices
↔

o (ρ),
↔

O(ρ1, ρ2), and
↔

M(ρ1, ρ2) can be done using the same
approach as in polarization optics: by generating and filtering
a sufficient number of basic, mutually orthogonal OAM states
and then solving the inverse problem of finding the linear maps
from the pairs of entering and resulting vectors.

In this Letter, we have introduced a calculus to describe
OAM-transforming elements analogous to the Jones and
Mueller calculus for polarization-transforming elements, and
noted similarities and significant differences between the two
cases. This work can form the basis for a complete description of
OAM-transforming optics using the COAM matrix formalism.
In concluding, we note that, although the transmission laws
are developed for the COAM matrix, they can be also deduced
for the other important beam properties, such as the OAM
spectrum, flux, and degree of purity [9].
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