
1. Introduction
Fresh water at Earth's surface is critical for all terrestrial life, including human life. Therefore, reports of anthropo-
genic climate change effects on terrestrial water scarcity (as cited in, e.g., Douville et al. (2021) and Seneviratne 
et al. (2021)) are of fundamental interest. At the global scale, such studies generally employ one of two common 
methodologies.

On one hand, the complex land-surface models embedded in Earth System Models (ESMs; Eyring et al., 2016) 
are used to perform explicit but difficult-to-parse simulations of the effects of climate and CO2 changes on 
particular terrestrial water fluxes (e.g., runoff) or stocks (e.g., soil moisture). Recent studies using this approach 
include Berg and Sheffield (2018), Lemordant et al. (2018), and Cook et al. (2020).

On the other hand, simple, widely-used theories for general terrestrial water abundance based on precipitation 
(P) and potential evaporation (E0), such as the Aridity Index (P/E0; Transeau, 1905; Budyko & Miller, 1974), 
the Palmer Drought Severity Index (PDSI; Palmer, 1965), and the Standardized Precipitation-Evapotranspiration 

Abstract Earth System Models’ complex land components simulate a patchwork of increases and 
decreases in surface water availability when driven by projected future climate changes. Yet, commonly-used 
simple theories for surface water availability, such as the Aridity Index (P/E0) and Palmer Drought Severity 
Index (PDSI), obtain severe, globally dominant drying when driven by those same climate changes, leading 
to disagreement among published studies. In this work, we use a common modeling framework to show that 
Earth System Model (ESM) simulated runoff-ratio and soil-moisture responses become much more consistent 
with the P/E0 and PDSI responses when several previously known factors that the latter do not account for 
are cut out of the simulations. This reconciles the disagreement and makes the full ESM responses more 
understandable. For ESM runoff ratio, the most important factor causing the more positive global response 
compared to P/E0 is the concentration of precipitation in time with greenhouse warming. For ESM soil 
moisture, the most important factor causing the more positive global response compared to PDSI is the effect of 
increasing carbon dioxide on plant physiology, which also drives most of the spatial variation in the runoff ratio 
enhancement. The effect of increasing vapor-pressure deficit on plant physiology is a key secondary factor for 
both. Future work will assess the utility of both the ESMs and the simple indices for understanding observed, 
historical trends.

Plain Language Summary Rivers and groundwater provide almost all water used by humans, 
and soil moisture is critical for vegetation and crops worldwide. Supercomputer model simulations of rivers, 
groundwater and soil moisture under future global warming routinely project that some world regions will 
experience increases in the availability of these resources, while others will experience decreases. Yet the 
simple formulas that scientists have traditionally relied on to measure climatic “drought” and “aridity” 
obtain large future decreases in water availability (drying) almost everywhere. This has led to confusion 
in prior studies and reports. In this study, we resolve this apparent paradox by pinpointing exactly why the 
supercomputer simulations are less pessimistic than the simple formulas. For rivers and groundwater, the most 
important reason is that precipitation gets “flashier” and more intense with global warming. For soil moisture, 
the most important reason is that increasing carbon dioxide allows vegetation to use less water, keeping more 
water in the soil. Both of these processes are included in the computer models, but not in the simple formulas. 
This new understanding gives us greater confidence that the computer models are behaving reasonably.
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Index (SPEI; Vicente-Serrano et  al.,  2010), are used to assess projected global warming impacts on future 
water availability. Recent studies using this approach include Naumann et al. (2018), Dai et al. (2018), Wang 
et al. (2020), Vicente-Serrano et al. (2020), and Qi et al. (2022).

In recent years, however, it has become clear (Berg & Sheffield,  2018; Greve et  al.,  2019; Milly & 
Dunne,  2016,  2017; Roderick et  al.,  2015; Scheff,  2018; Scheff et  al.,  2017; Swann et  al.,  2016; Y. Yang 
et al., 2019, 2020; Zhao & Dai, 2015) that these two approaches yield fundamentally conflicting results at the 
global scale. The ESM land-surface outputs, especially those of runoff, precipitation-minus-evapotranspiration, 
and root-zone soil moisture, generally depict a regional patchwork of increases and decreases in water availability. 
Yet P/E0, PDSI, and SPEI, when driven by the same ESMs' climate outputs, usually obtain near-global drying 
equatorward of ≈55° (with just a few regional exceptions). These apparent contradictions, which we have termed 
“dryness index-impact gaps” (Scheff et al., 2021), call into question the reliability of both the ESM land models 
and the simple theories. They are often apparent in Tables 11.3–11.21 of Seneviratne et al. (2021), where they 
lead to difficulty in assessing the sign of climate change effects on drought.

Many of the studies cited above argue that the index-impact gaps arise primarily because the ESM land models 
account for the closure of leaf stomates by elevated CO2, counteracting the warming-driven evapotranspiration 
increase that drives the global drying response in the simple theories. However, we have found in prior work that 
though this effect largely explains the gap between ESM vegetation responses and the simple theories, it does not 
explain many of the gaps between ESM hydrologic responses and the simple theories (Scheff et al., 2021). Even 
in special multi-ESM experiments in which CO2-plant effects are completely turned off (Jones et al., 2016), the 
runoff ratio still responds much more positively than P/E0, PDSI or SPEI to global warming, despite the theoret-
ical idea that P/E0 is the main control on the runoff ratio (Budyko & Miller, 1974; Gentine et al., 2012). Simi-
larly, in those experiments, the SPEI still responds much more negatively than root-zone soil moisture (Scheff 
et al., 2021), despite its goal of quantifying the effect of climate change on water availability (Vicente-Serrano 
et al., 2010).

Therefore, in this study, we use the Community Land Model (CLM; Lawrence et al., 2019), a widely-adopted land 
ESM, to test several alternative reasons for the hydrologic index-impact gaps other than CO2-plant effects. These 
include closure of leaf stomates by elevated vapor-pressure deficits (Massmann et al., 2019; Novick et al., 2016), 
concentration of precipitation into shorter, more intense events with warming (Mankin et al., 2019; Pendergrass 
& Hartmann, 2014; H. Yang et al., 2018; Zhao & Dai, 2015), and concentration of precipitation into the existing 
wet season (Chou et al., 2013; R. J. Allen & Anderson, 2018). All of these have been previously hypothesized 
to alter surface water availability. However, they have largely been untested in a modeling framework, though H. 
Yang et al. (2018) did show a key role for the concentration of P using a statistical method.

2. Methods
2.1. Model and Experiments

To perform these experiments, we use CLM5.0, which is the edition of the CLM used in the Community ESM 
version 2 (CESM2; G. Danabasoglu et al., 2020) that participated in the Coupled Model Intercomparison Project 
Phase 6 (CMIP6; Eyring et al., 2016). We run CLM5.0 on the Cheyenne system (Computational and Information 
Systems Laboratory, 2019). CLM5.0's innovations (Lawrence et al., 2019) relative to CLM4.5 include updated 
hydrologic and snow parameterizations with spatially varying soil depth, a plant-hydraulic parameterization to 
more realistically account for vegetation water stress, and a new stomatal scheme that uses the model of Medlyn 
et al. (2011).

We drive CLM5.0 using stored CESM2 atmospheric coupler history from the CMIP6 historical and “SSP5-8.5” 
(high-emission future) experiments, rather than running coupled CESM2 simulations. This saves computational 
time, simplifies the problem by focusing on the hydrologic response to atmospheric change, and, critically, allows 
us to test hypotheses by manipulating the driving data more easily (see below). However, this decision also 
disables land-atmosphere feedback, which may drive a key part of these responses (e.g., Berg et al., 2016; Zhou 
et al., 2021). Therefore, future work should expand these questions to fully-coupled simulations so as to quantify 
the feedback-driven component.
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For our default present experiment, we drive CLM5.0 using years 1965–2014 of the b.e21.BHIST.f09_
g17.CMIP6-historical.011 run's coupler history, discarding 1965–1984 for spinup and only analyzing 
1985–2014. For our default future experiment, we drive CLM5.0 using years 2051–2100 of the b.e21.BSSP-
585cmip6.f09_g17.CMIP6-SSP5-8.5.102 run's coupler history, discarding 2051–2070 for spinup and 
only analyzing 2071–2100. We set CLM5.0 to read the diagnostic CO2 from the coupler history, so that these 
runs “see” the CO2 changes in addition to the climate changes. The difference between these future and present 
outputs is termed “default.” The driving files are all available in the National Center for Atmospheric Research's 
Campaign Storage system under /glade/campaign/collections/cmip/CMIP6/cpl_hist/, and 
include daily (“1d”), 3-hourly (“3h”), and two types of hourly (“1h” and “1hi”) files.

We then perform a series of alternative runs, listed in Table 1, to test the role of each proposed factor in creating 
the index-impact gaps. Again, a couple of these factors (CO2-plant effects and P temporal concentration) have 
been tested with modeling and/or statistical techniques in prior studies, but they have never been tested together 
or compared using a common modeling framework.

To isolate the role of CO2-plant effects as in Scheff et al. (2021), we run present and future experiments in which 
CLM5.0's CO2 is fixed to 370 ppm (a representative value for 1985–2014) rather than read in diagnostically. The 
difference between these is termed “fixedCO2.” To isolate the role of vapor pressure deficit (VPD)-stomatal 
effects as in Novick et al. (2016), we run present and future experiments in which the VPD input to the Medlyn 
stomatal code is fixed to a constant 1.5 kPa. The difference between these is termed “medlynconst.” Of course, 
these values would never be fixed in nature; our goal in fixing them is to deliberately cut out or disable the process 
in question (e.g., Kim et al., 2011), so that simulations with and without the process can be compared in Section 3.

To isolate the role of the concentration of precipitation in time with warming as in Pendergrass and Hartmann (2014) 
and H. Yang et al. (2018), we create a “pseudo-SSP5-8.5” driving data set with the climate properties of SSP5-8.5 
but the temporal weather characteristics of the historical data set. First, for each driving variable, day of year, 
and (for sub-daily variables) time of day, historical (1985–2014) and SSP5-8.5 (2071–2100) climatology fields 
are computed. At each time of day (so as not to smooth across the diurnal cycle), these climatologies are further 
smoothed with a 31-day running mean. They are then divided (subtracted, in the case of temperature and pressure) 
to form a seasonally and diurnally varying perturbation field for each variable. This perturbation field is finally 
multiplied by (added to) all 50 years of the time-varying historical driving data to create the pseudo-SSP5-8.5 
data, which then drives our “pseudofuture” run. The difference between the pseudofuture and the default present 
is then termed “noflash” (the effect of global warming and CO2 increase without the “flashier” precipitation).

The reason we create and use this pseudo-SSP5-8.5 data for every driving variable, is that setting precipitation 
alone to pseudo-SSP5-8.5 (i.e., historical weather history) while keeping other variables SSP5-8.5 (i.e., future 
weather history) would destroy the short-term correlations between precipitation and other variables, introducing 
an additional change. However, at the rare times and locations where a variable's perturbation factor is greater 
than 5, the original SSP5-8.5 data for that variable is used to avoid unrealistic values.

Also, certain closely-related variables from the coupler are immediately combined by CLM5.0 to create 
“macro-variables,” which it then uses in place of the original variables. Specifically, CLM5.0 adds the convec-
tive rain, large-scale rain, convective snow, and large-scale snow fluxes from the coupler before imposing its 
own partitioning, so we also add these four fluxes before computing the climatology, and we apply the resulting 
perturbation to each flux. This avoids large artificial total-precipitation changes caused by, for example, snow 

Present (1965–2014) Future (2051–2100) Difference

Default Default “default”

CLM5.0 CO2 = 370 ppm CLM5.0 CO2 = 370 ppm “fixedCO2”

Medlyn VPD = 1.5 kPa Medlyn VPD = 1.5 kPa “medlynconst”

Default pseudofuture “noflash”

Default pseudofuture2 “noflashnoseas”

370 ppm and 1.5 kPa pseudofuture2 with 370 ppm and 1.5 kPa “allelim”

Table 1 
CLM5.0 Experiments in This Study
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changing to rain. Similarly, CLM5.0 adds the wet and dry deposition rates for each aerosol species that has wet 
and dry deposition, so we do the same. Finally, CLM5.0's surface turbulence scheme only depends on the wind 
speed and not the u and v components, so we convert the u and v components into wind speed before computing 
our wind climatology and perturbation, which we then apply to both u and v.

To isolate the role of changing precipitation seasonality as in Chou et al. (2013), we also run a “pseudofuture2” 
experiment that is identical to pseudofuture except that the above precipitation perturbation is based only on the 
annual-mean climatologies at each location and time of day. Our time-varying pseudofuture2 precipitation thus 
has the annual-mean climatology of SSP5-8.5, but the weather and seasonality of the historical. Since in this 
case there is no danger of ruining the synoptic-scale correlations, only the precipitation is altered in this way, for 
simplicity. The difference between the pseudofuture2 and the default present is termed “noflashnoseas.” Again, 
our purpose here is to compare “noflash” and “noflashnoseas” to the default simulation, so as to quantify the 
contributions of weather and P seasonality changes to the default simulation.

Last, we run a pair of experiments like the present and pseudofuture2 runs, but with CO2 fixed to 370 ppm and the 
Medlyn code's VPD fixed to 1.5 kPa (for both). These test the effects of making all of the above simplifications 
at once, and allow us to check for any nonlinear interactions between them. The difference between this pair is 
termed “allelim” (i.e., the effect of climate change with the complicating factors all eliminated).

2.2. Deriving Monthly Hydroclimate Variables

Since CLM5.0 outputs its key driving fluxes and near-surface meteorological fields in addition to the usual 
land-surface output, we read in or compute all of our required monthly land and atmospheric variables from the 
CLM5.0 output, for simplicity.

We compute monthly precipitation P as the sum of RAIN_FROM_ATM and SNOW_FROM_ATM, and read in 
evapotranspiration E from QFLUX_EVAP_TOT and total runoff Q from QRUNOFF. With these definitions, each 
run's annual-mean climatology of Q is essentially identical to that of P − E (not shown), so CLM5.0 is defining Q 
correctly and conserving water. We compute raw monthly layer-by-layer soil moisture (in mm) as SOILLIQ plus 
SOILICE, and then define surface soil moisture SMs to be the sum of the first 3 layers (12 cm) of soil moisture, 
and deep or root-zone soil moisture SMd to be the sum of the first 11 layers (≈2 m) of soil moisture.

We then compute monthly FAO-56 (Food and Agriculture Organization; R. G. Allen et al., 1998) Penman-Monteith 
potential evapotranspiration E0 as in Scheff et al. (2021). We use EFLX_LH_TOT (latent heat flux) plus FSH 
(sensible heat flux) for the available energy (LH + SH) = Rn − G. We use TSA for the air temperature, PBOT for 
the air pressure, Q2M for the air humidity, and U10 for the wind speed. Using the monthly P and E0 series, we 
compute the PDSI and 12-month SPEI each month, also as in Scheff et al. (2021). For each experiment, the PDSI 
and SPEI reference period is years 1985–2014 of that experiment (Table 1).

2.3. Annual Series and Statistics

Assessing the statistical significance of any present-future changes using monthly series would be difficult, 
because most of these variables have strong annual cycles of both mean and variance, and many have significant 
month-to-month memory. Therefore, we carefully construct annual series from each 50-year run's monthly series, 
as follows.

First, at each gridpoint, for each of P, Q, SMs, SMd, PDSI, and (LH + SH), we define that variable's “water year” 
(for LH + SH, “energy year”) to end on the calendar month with the least interannual variance of that variable. 
For example, if at some gridpoint July has the least interannual variance of SMd out of all 12 calendar months, the 
SMd water year at that gridpoint is defined to begin in August and end in July. This ensures that most of the inter-
annual differences do not straddle consecutive years. We then average each aforementioned variable's monthly 
series over its respective 49 water years to obtain 49 annual values (though we only analyze the last 29 below, for 
spinup reasons as stated in Section 2.1). Where the water year is January through December (yielding 50 water 
years), we average over the last 49.

Other key variables' annual values are computed as follows. For P/E0, we average E0 over the P water years, and 
then divide the annual-mean P and annual-mean E0 series to form annual P/E0 series. For 12-month SPEI, we 
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simply choose the values that correspond to the P water years, and discard the rest, forming annual SPEI series. 
For evaporative fraction EF, we average LH over the (LH + SH) “energy years,” and then divide the annual LH 
and annual (LH + SH) series to form annual series of EF. Similarly, for runoff ratio Q/P, we average P over the 
Q water years, and divide the Q series by the resulting P series to obtain annual Q/P series. (This is not perfect 
since P that falls in one water year can become Q in a subsequent one, but it still seems reasonable to assume that 
most of a water year's Q comes from P that fell during that time).

To quantify interannual variability, we take the standard deviation of each of the above annual series over the last 
29 water years (1985–2014) of each present run. To quantify the mean hydroclimate of each epoch, we similarly 
take the mean of each of the above annual series over the last 29 water years of each present (1985–2014) and 
(pseudo)future (2071–2100) run, for most variables. However, we define mean P/E0 as mean P over mean E0, 
mean EF as mean LH over mean (LH + SH), and mean Q/P as mean Q over mean P, consistent with prior liter-
ature (e.g., Budyko & Miller, 1974).

Finally, we subtract the future and present means for each pair of runs in Table 1, and divide by the present inter-
annual variability, to obtain standardized changes in each variable for each experiment. We also compute differ-
ences in standardized changes between index and impact variables, so as to quantify the qualitative index-impact 
gaps discussed in Section 1. For example, wherever variable A significantly declines from present to future but 
variable B only insignificantly declines from present to future, variable B's standardized change is less negative 
than variable A's standardized change, so their difference (gap) is positive.

3. Results
3.1. Aridity Index Versus Runoff Ratio

We first address the long-standing gap between simulated P/E0 and Q/P responses to climate change, which 
is surprising given that P/E0 is theorized and observed to be the main control on Q/P worldwide (Budyko & 
Miller, 1974; Gentine et al., 2012).

Figure 1 (left) shows that in the default CLM5.0 experiment, Q/P indeed decreases less extensively and signif-
icantly than one would think from the map of P/E0 change. The standardized-change gap between the two in 
Figure 1e is strongly positive (median +0.56), with just a few regional exceptions. To be fair, we would not 
expect a P/E0 change to cause a Q/P change of similar strength everywhere, since Q/P saturates at 0 in extremely 
dry regions and at 1 in extremely wet regions; but the positive gaps in Figure 1e extend far beyond such regions.

In any case, Figure 1 (right) shows that in the “allelim” experiment in which CO2-plant effects, VPD-stomatal 
effects, and P temporal-pattern changes are eliminated, the CLM5.0-simulated Q/P change becomes much more 
negative, resembling the driving P/E0 change quite closely. The gap becomes a mottled mix of positive and nega-
tive (median −0.07). Thus, the strong positivity of the gap in the default simulation (left) must stem from some 
combination of the above eliminated factors, rather than an inherent problem with P/E0 as a runoff-ratio predictor.

Figure 2 explores what this combination could be, by plotting differences in the above Q/P - P/E0 response gap 
between the default simulation and the various simplified simulations in Table 1. To be clear, these differences 
are almost entirely made up of differences in the Q/P response (Figures 1c and 1d), rather than the P/E0 response 
which is largely set by the driving data (Figures 1a and 1b).

Figure 2a shows that the difference between the default and “allelim” gaps from Figures 1e and 1f (i.e., the effect 
on Q/P or on the Q/P - P/E0 gap of all four targeted processes combined) is indeed large and positive, with a 
median of +0.57. A modest (median +0.09) but persistently positive portion of this difference comes from the 
closure of leaf stomates by elevated VPD (Novick et al., 2016) in the Medlyn parameterization, as shown in 
Figure 2b. The effect of CO2-plant interactions in Figure 2c is much larger in absolute value and is clearly the 
main driver of the spatial pattern of the full difference. However, it is almost as likely to be negative (i.e., reduce 
Q/P) as positive, particularly in middle to low latitudes, so its median (+0.13) is only slightly more positive than 
that of the VPD effect. This agrees with the finding of Mankin et al. (2018, 2019) that leaf growth more than 
cancels the positive hydrologic effect of CO2-driven stomatal closure over large regions in CESM1 and CMIP5.

In contrast, the effect of changes in the short-term temporal pattern of P on the Q/P response in Figure 2d is both 
moderately strong, and almost entirely positive, making its median (+0.22) quite a bit more positive than that of 



Earth’s Future

SCHEFF ET AL.

10.1029/2022EF002814

6 of 13

the CO2 effect. We take this to reflect the concentration of P into shorter, more intense bursts (e.g., Pendergrass 
& Hartmann, 2014; H. Yang et al., 2018) that is likely widespread in the default experiment, but by design absent 
in the “noflash” experiment. The effect of P seasonality change in Figure 2e is mostly weak globally (median 
+0.05), but is strongly positive in mid-latitude Eurasia. This is precisely where models tend to project winter P to 
increase but summer P to decline (e.g., figure 4.24 in Lee et al., 2021), which would tend to enhance annual Q/P. 
The residual nonlinear term in Figure 2f is also mostly weak, though it does tend to be negative (median −0.06), 
implying that the whole is slightly less than the sum of the parts.

Figure 2g complements the global medians by mapping which effect is most positive at each gridpoint, that 
is, which effect is the most important local contributor to the global tendency of the Q/P response to be more 
positive than the P/E0 response. Due to its large absolute values, the CO2 effect (Figure 2c) dominates almost 
wherever it is positive: much of the high latitudes, the Tibetan Plateau, and parts of the low latitudes. However, 
over much of tropical and subtropical South America, Africa, South and Southwest Asia, and Australia, the 
concentration of P into shorter events (Figure 2d) is actually the most Q/P-enhancing effect, consistent with its 
more positive median. Furthermore, P seasonality change (Figure 2e) is the most Q/P-enhancing effect through-
out its mid-latitude Eurasian zone of strength.

Thus, all four of the hypothesized processes seem to be at least somewhat important in explaining why CLM5.0's 
Q/P response is less negative than its driving P/E0 response, with P temporal concentration most important in a 
global-median sense, but CO2 and P-seasonality effects also very important regionally. To quantify which effects 
are the most important overall, Figure 3 plots cumulative distribution functions (CDFs) of the P/E0 and Q/P 
standardized change fields over ice-free land in each of the experiments in Table 1.

In the default experiment, the Q/P distribution (very thick blue) plots far to the right of the P/E0 distribution (very 
thick red) in Figure 3, consistent with Figure 1e. However, in “allelim,” the Q/P distribution (less-thick blue) 
plots almost directly on top of the P/E0 distribution. This implies that the qualitative difference between the global 
responses of P/E0 and Q/P almost completely vanishes when the above four processes are eliminated, consistent 
with Figure 1 (right).

Figure 1. Community Land Model 5.0 (CLM5.0) standardized changes from 1985–2014 (historical) to 2071–2100 
(SSP5-8.5) in annual aridity index P/E0 and runoff ratio Q/P, and the difference or gap between those changes. Left: default 
experiment. Right: “allelim” experiment, in which CO2-plant effects, vapor-pressure-deficit effects on leaf physiology, 
and changes to the temporal pattern of precipitation are all disabled. Numbers at lower left of each panel are medians over 
ice-free  land.



Earth’s Future

SCHEFF ET AL.

10.1029/2022EF002814

7 of 13

Strikingly, just turning off changes in the short-term temporal pattern of P brings Q/P ∼half or more of the way 
from the default distribution toward the allelim and P/E0 distributions at most percentiles. This is shown by the 
dash-dotted blue “noflash” distribution in Figure 3. Further eliminating changes in the seasonality of P shifts 
the Q/P distribution yet closer to the P/E0 distribution, as shown by the dotted “noflashnoseas” distribution. 
However, this shift from “noflash” to “noflashnoseas” is markedly smaller than the above shift from default to 
“noflash.” Similarly, the Q/P distribution shifts from default to “medlynconst” (VPD-leaf effects off) and from 
default to “fixedCO2” (CO2-plant effects off) are each relatively small.

Thus, changes in the short-term temporal pattern of P, that is, differences between the default and “noflash” 
distributions in Figure 3, appear to be the single largest contributor to the overall positive tendency of the gap 
between the default Q/P and P/E0 responses, consistent with the spatial-median analysis in Figure 2 and with the 
regression-based results of H. Yang et al. (2018). This is likely because the effect on the gap is both consistently 
positive, and fairly large (Figure 2d). This process had been posited by studies such as Zhao and Dai (2015), 
Mankin et al. (2018), and Dai et al. (2018) to be an important reason why atmospheric dryness metrics like P/E0 
underestimate runoff responses in ESMs, but had not been verified by modeling experiments until now.

The relative similarity of the “fixedCO2” (dashed) and default Q/P distributions is also consistent with the find-
ing of Scheff et al. (2021) that the Q/P - P/E0 response gap only slightly narrows in CMIP runs with no CO2-plant 
effects, contrary to the assumptions of many of the studies in Section 1. In CLM5.0, this change is character-
ized by offsetting local positive and negative effects on Q/P (Figure 2c) and thus a relatively small net effect in 
Figure 3, despite its clear dominance of the spatial pattern. In fact, VPD-leaf effects and P seasonality changes 
each cause ∼equal or greater Q/P distribution shifts in Figure 3, reinforcing the idea that CO2-plant effects are 
only one (small) cause of the positive global tendency.

Figure 2. Q/P - P/E0 standardized change gap differences between (a) “default” minus “allelim” (i.e., the bottom panels of 
Figure 1), (b) “default” minus “medlynconst,” (c) “default” minus “fixedCO2,” (d) “default” minus “noflash,” (e) “noflash” 
minus “noflashnoseas,” and (f) panel a minus the sum of panels (b–e) (see Table 1 for definitions). Each panel quantifies 
the contribution of its title to the Q/P - P/E0 standardized change gap. Panels can also be directly interpreted as Q/P change 
differences, since P/E0 change differences between experiments are very small. Numbers at lower left of each panel are 
medians over ice-free land. (g) Which of panels (b–f) is most positive at each gridpoint.
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3.2. PDSI Versus Root-Zone Soil Moisture

We next analyze the gap between the PDSI and SMd responses, as in Berg 
and Sheffield  (2018). The PDSI is a common and well-used indicator of 
root-zone soil moisture, so qualitative differences between modeled PDSI 
and SMd responses to climate change are also of theoretical and practical 
concern.

Figure 4 (left) shows that in the default warming experiment, CLM5.0 SMd 
(median response −0.29) indeed declines less significantly and systemati-
cally than does PDSI (median response −0.53). Areas of qualitative differ-
ence between Figures  4a and  4c include Australia, the African Sahel and 
Sahara, eastern Asia, parts of Europe and Central Asia, and interior north-
western North America. All of these areas are apparent on the gap plot 
(Figure 4e) as well, which is largely positive outside of the highest latitudes 
(median +0.35).

Analogously to Q/P above, in the “allelim” experiment SMd declines much 
more strongly in several of the above regions (Figure 4d), giving a some-
what more “PDSI-like” impression of dominant drying. In fact, the median 
SMd and PDSI responses become almost identical (−0.63 and −0.67). Like-
wise, the gap plot (Figure 4f) becomes more balanced between positive and 
negative, with a median of 0.00. However, the default-allelim differences are 
more subtle than those in Figure 1, and the local absolute values of the gap 
in allelim on Figure 4f remain quite large. Thus, it seems that the PDSI and 
CLM5.0 models of soil moisture disagree for many reasons beyond the four 
factors tested here.

However, some combination of the four factors must still be responsible for much of the positive tendency of 
the SMd - PDSI gap in Figure 4e, since again there is considerably less of a positive tendency in Figure 4f. 
Figure 5 shows that the greatest apparent contributor to the difference between Figures 4e and 4f (Figure 5a) is 
the CO2 effect on plants, which tends to increase SMd (Figure 5c; median +0.39), more than accounting for the 
total gap. The VPD-leaf effect on SMd (Figure 5b) is more consistently positive than the CO2 effect, but weaker 
(median +0.15). The temporal-pattern effects (Figures 5d and 5e) tend to be negative, presumably because more 

Figure 3. Cumulative distribution functions over ice-free land of the 
standardized responses of P/E0 (red) and Q/P (blue) to SSP5-8.5 climate 
changes, for the default experiment (very thick solid curves), the simplifed 
“allelim” experiment (less-thick solid curves), and the intermediate 
experiments (the various thin curves) in Table 1. (The P/E0 curves plot nearly 
on top of one another, since P/E0 is largely set by the atmospheric driving 
data. Any P/E0 differences stem from slight differences in the near-surface 
meteorological fields used to calculate E0, which the Community Land Model 
computes based on the driving data, but which are not identical to it).

Figure 4. As Figure 1, but for Palmer Drought Severity Index (PDSI) and deep-layer soil moisture SMd.
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temporally concentrated P leads to greater surface runoff but less infiltration (Eekhout et al., 2018). The nonlinear 
term (Figure 5f) also tends to be negative. Thus, the CO2 effect is the most positive contributor at most gridpoints 
(Figure 5g), though the other terms are also locally important.

The PDSI and SMd standardized response distributions in Figure 6 confirm both the modest but real qualitative 
gap in the default simulation (very thick curves) and the closing of this gap in the allelim simulation (less-thick 
curves), particularly in the middle percentiles. Consistent with the discussion of Figure 5, eliminating CO2-plant 

effects is more than sufficient to close the gap: the SMd fixedCO2 curve 
actually plots to the left of the PDSI fixedCO2 curve, which is on top of the 
PDSI default curve. This corroborates the findings of Scheff et al. (2021) and 
Y. Yang et al. (2020) that the SMd - PDSI gap in the full CMIP ensemble can 
largely be explained by CO2-plant effects.

Surprisingly, the elimination of VPD-leaf effects is also nearly sufficient to 
close the SMd - PDSI gap, perhaps because those effects (Figure  5b) are 
so consistently positive. That is, the SMd medlynconst curve in Figure 6 is 
nearly on top of the PDSI medlynconst curve, except at the lowest percen-
tiles. Thus, CO2 and VPD physiological effects would combine to much 
more than account for the SMd - PDSI response gap in CLM5.0. The main 
reason that the gap is not quite closed in allelim in spite of this, appears to 
be the above-discussed negative effects of P temporal pattern change, which 
widen the gap when eliminated in noflashnoseas (both by increasing SMd 
and by decreasing PDSI). The negative nonlinear term (Figure 5f) also likely 
contributes.

In short, the positive SMd - PDSI response gap is caused by CO2 and VPD 
physiological effects (Figures 5b and 5c), which increase the SMd response, 
and is opposed mainly by P temporal pattern changes (Figures 5d and 5e), 
which reduce the SMd response while increasing the PDSI response (compare 

Figure 5. As Figure 2, but for the SMd - Palmer Drought Severity Index (PDSI) gap.

Figure 6. As Figure 3, but for Palmer Drought Severity Index (PDSI) (red) 
and SMd (blue). The PDSI medlynconst and PDSI fixedCO2 curves plot on top 
of the PDSI default curve, and the PDSI noflashnoseas curve plots on top of 
the PDSI allelim curve.
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the noflashnoseas and default curves in Figure 6). This is quite different from 
the Q/P - P/E0 response gap, which is caused by a combination of all factors 
as discussed in Section 3.1.

3.3. Other Gaps

Many other previously noted discrepancies between the responses of differ-
ent hydroclimate variables are not at all (or only somewhat) reduced in the 
“allelim” experiment, implying that they are more fundamental. However, in 
almost all of these cases, there is no theoretical expectation that the responses 
line up in the first place, unlike for Q/P - P/E0 or SMd - PDSI.

For example, Figure  7 shows that the more negative response of surface 
(SMs) than root-zone (SMd) soil moisture found by Berg et  al.  (2017) is 
almost completely invariant to the experimental setup, again unlike for Q/P -  
P/E0 or SMd - PDSI above. Similarly, Figure 8 confirms the finding of Scheff 
et  al.  (2021) that the apparent relevance of the PDSI for surface LH and 
SH flux responses (as quantified by the evaporative fraction EF) is just a 
fortuitous consequence of physiological effects that reduce LH and thus EF 
(Lemordant et al., 2018). When these are turned off, the EF - PDSI response 
gap becomes extremely positive.

Figure 9 compares P/E0 to actual runoff Q rather than runoff ratio Q/P, showing that even in “allelim,” Q responds 
far more positively than P/E0 (or any of the dryness indices). This is to be expected, since P/E0 is a predictor of 
Q/P, but Q = (Q/P) × P, and P has a mostly positive response. Finally, Figure 10 shows that even in “allelim,” 
SPEI responds more negatively than SMd (unlike PDSI, which matches SMd much more closely as described 
in Section 3.2). This also makes sense, since SPEI (Vicente-Serrano et al., 2010) was not explicitly designed as 
a  SM theory, unlike PDSI.

4. Discussion
On the whole, Figures 1–10 bring much-needed clarity to the multiplicity of contrasting terrestrial hydroclimate 
responses to greenhouse warming (Douville et al., 2021; Seneviratne et al., 2021), at least in CLM5.0. The simu-
lated Q/P response can be understood as a P/E0-like, very negative base term (Figure 1d; Q/P allelim curve in 
Figure 3) plus a series of mostly positive temporal and physiological effects (Figure 2) that cause the full Q/P 
response to be much less negative (Figure 1c; Q/P default curve in Figure 3). The Q response (Figure 9) can then 

be understood as a combination of this Q/P response and the largely positive 
P response, since Q = (Q/P) × P.

Similarly, the simulated SMd response can be understood as a fairly PDSI-like, 
negative base term (Figure 4d; SMd allelim curve in Figure 6) plus a series 
of mostly positive physiological (Figures 5b and 5c) and negative temporal 
(Figures 5d and 5e) effects that in total (Figure 5a) lead to a modest positive 
enhancement of SMd compared to PDSI (default curves in Figure 6; Figure 4 
(left)). The main reason that the SMd response is not as positive as the Q/P 
response seems to be that the P temporal changes, which greatly enhance 
Q/P, instead act to slightly decrease SMd.

The simulated surface-flux (EF) response is also somewhat PDSI-like, but 
only because of large negative physiological effects (Figure  8). The SPEI 
response is more negative than the simulated SMd response in all configura-
tions (Figure 10), in turn making it much more negative than the Q/P or Q 
responses.

In this way, the long-disputed hydrological meanings of published trends 
in drought and aridity metrics like P/E0, PDSI, and SPEI are also clarified. 

Figure 7. As Figure 3, but for surface soil moisture SMs (red) and root-zone 
soil moisture SMd (blue).

Figure 8. As Figure 3, but for PDSI (red) and evaporative fraction EF (blue).
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The P/E0 response to climate change can be interpreted (Figure 1, right) as a 
model for expected change in Q/P regime sensu Budyko and Miller (1974) in 
the absence of P temporal and plant physiological effects, which at least in 
CLM5.0 are large. The PDSI response can more tentatively (Figure 4, right) 
be interpreted as a model for expected SMd change in the absence of those 
effects. However, none of the dryness indices can be interpreted as models 
of expected Q or surface-flux change under any assumptions (Figures  8 
and 9). Similarly, the SPEI cannot be interpreted as a model of any expected 
terrestrial water response to climate change, at least on the basis of CLM5.0's 
hydrological scheme.

Will the real world behave similarly to CLM5.0? We should perhaps 
be most confident in the negative “base” (P/E0- and PDSI-predicted) 
portions of the Q/P and SMd responses, since the P/E0 and PDSI 
responses themselves are well-understood (e.g., Dai et  al.,  2018; Fu & 
Feng, 2014) and their relationships to Q/P and SMd are long-established 
(Budyko & Miller,  1974; Palmer,  1965). The plant-physiological and 
P-temporal effects, by contrast, are not described by such fundamental 
theories. However, it seems likely that they will all occur to at least some 
extent (Eekhout et al., 2018; Lemordant et al., 2018; Mankin et al., 2019; 

Novick et al., 2016), so it would be remiss for us to assume that the real-world SMd and (especially) Q/P 
responses will actually be as negative as the PDSI and P/E0 responses, especially in light of the modeling 
results presented here.

Further studies should determine whether other land models, and/or fully-coupled models, agree with CLM5.0's 
simulated physiological and temporal effects on Q/P and SMd. In planned work, we will also use global obser-
vational data to quantify whether real-world long-term trends in Q/P and SMd are as negative as the P/E0 and 
PDSI trends, or whether they more closely resemble full ESM simulations. These investigations will help clarify 
whether the results of this study are particular to CLM5.0, or more generally applicable.

5. Conclusion
In this study, we carried out a series of experiments with CLM5.0, a widely-used ESM land-surface compo-
nent, to test in a common framework several previously studied or postulated reasons that simulated runoff and 

soil moisture responses to climate change tend to be more positive than their 
theorized climatic drivers.

We found that the runoff ratio (Q/P) responds more positively than the aridity 
index (P/E0) mainly due to changes in the short-term temporal pattern of P 
with warming (confirming H. Yang et al., 2018), but also due to changes in P 
seasonality and the effects of rising CO2 and VPD on plant physiology. The 
effect of rising CO2 on plant physiology, in particular, is the key driver of the 
spatial pattern of the Q/P enhancement.

In contrast, we found that root-zone soil moisture (SMd) responds 
somewhat more positively than the PDSI mainly due to the above 
plant-physiological effects (confirming, e.g., Y. Yang et  al.,  2020), and 
does so in spite of the P temporal effects, which for SMd are negative. 
Runoff itself (Q) responds much more positively than all of these quanti-
ties, since Q = (Q/P) × P and the P response tends to be positive. Other 
key gaps are not well explained by any of the examined processes. Further 
work will be needed to quantify the broader validity of these results 
beyond CLM5.0.

Figure 9. As Figure 3, but for P/E0 (red) and runoff Q (blue).

Figure 10. As Figure 3, but for Standardized Precipitation-Evapotranspiration 
Index (SPEI) (red) and SMd (blue).
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Data Availability Statement
The source codes of the versions of the Community Earth System Model and Community Terrestrial Systems 
Model (including CLM5.0) used in this study, are publicly available at Danabasoglu et al.  (2018) and CTSM 
Development Team  (2020) respectively. The derived monthly and annual hydroclimate variables from each 
CLM5.0 run in Table 1, as well as all scripts used to set up the runs and process the variables, are archived in 
Matlab format at Scheff et al. (2022).
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