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Newell and Simon's seminal Human Problem Solving (1972) characterized a problem in

terms of a goal state, a starting state, and a set of transition rules which define

legitimate transitions from one state to another.1  Problem solving thus becomes a

process of searching through a set of alternative states (the "problem space") in an

effort to find a path leading from starting state to the goal state.  The search process

can be guided by heuristic principles which function to reduce the problem space by

judging some alternatives to be more worthy of exploration than others.  This

characterization of a problem and the problem solving process fits well the nature of

deductive proof construction.  Premise(s) and conclusion play the role of starting state

and goal state, and valid rules of transformation serve as rules of legitimate transition

among states.  In fact, Human Problem Solving empirically investigated three particular

problem solving tasks, and one of these is proof construction.... in sentential logic using

an inference-replacement rule set.  This empirical research identifies several strategies

which facilitate problem solving, such as means-ends reasoning, difference reduction,

and working backwards from goal toward starting state.  As detailed below, these

methods have obvious applications to proof construction as taught in logic textbooks.

Newell and Simon's aim was to explain and predict the actual behavior of problem



solvers.  Beyond this, however, their empirical findings have normative consequences

for how problem solvers should behave if they want to be successful.  Moreover, these

findings can have normative pedagogical consequences for the teaching of proof

construction.

Another relevant empirical study of problem solving is Richard Burton's

investigation of children's subtraction errors.2  Burton endeavored to identify precisely

the "bugs" that plagued simple mathematical procedures.  Derek Sleeman built upon

this work in his investigation of  basic algebra errors.3  Previously, little attention had

been paid to errors themselves since they were viewed as inexplicable, random

deviations from given rules.  Sleeman viewed errors quite differently, as being

systematically produced by rules which were, unfortunately, illegitimate versions of the

correct rules.  Viewed in this manner, errors were scrutinized to discover the illegitimate

rule patterns ("mal-rules") which they exemplified.  Hypotheses about what these

patterns might be were formulated and additional errors, which might confirm or

disconfirm these hypotheses, were sought.  Making this determination often required

formulating new problems whose attempted solutions would contribute additional

evidence.  The pedagogical import is that student errors which once were given scant

attention now became a source of insight into the nature of student difficulties.  This

insight can provide a basis for designing problem sets which not only can support the

diagnosis of student difficulties but which can incrementally lead students away from

those difficulties.

Aspects of these cognitive approaches to problem solving are relevant to the

teaching of deductive proof construction.  First, there is an emphasis on empirically

documenting the kinds of errors made by problem solvers.  The same need is evident in

respect to student learning difficulties.  Second, in thinking about problem solving as a

form of searching, strategies which facilitate searching are systematically explicated.



Such clarity can also serve to facilitate the learning of proof finding methods.  Third,

forms of problem representation are seen to influence the process of problem solving.

Consequently, important questions are raised concerning the ways in which proofs and

the processes by which they unfold are represented.  These issues frame much of what

follows; namely, reports on student errors observed during proof construction, a

systematic explication of the working backwards method, and discussion of a graphic

format for representing both the finished proof and the maneuvers made in discovering

it.

Patterns of Student Rule Mis-applications

Newell and Simon based their empirical studies of problem solving on a particular

technique of protocol collection.  While subjects worked problems, an experimenter sat

close by and continuously asked probing questions concerning what the subject was

thinking.  This approach, however, can be somewhat intrusive.  In respect to the

observations reported below, a number of related techniques have been employed to

establish windows on student problem solving efforts.  These techniques have included

sitting beside students and occasionally asking questions about decisions they've

made, observing student work in progress during class, giving surprise assessments,

and recording problem solving efforts as students used instructional computer

programs.  Often, informal observations suggested types of errors that were then more

rigorously sought out in data collected by instructional computer programs.  What has

emerged from these observations are some views about the kinds of difficulties

students commonly have with sentential proof construction.  Some difficulties concern

rule application and others concern the use of the working backwards strategy.



The teaching of deductive proof construction has long recognized a distinction

between two types of tasks: rule application and strategic thinking.  Logic textbooks

observe this distinction by supplying justification exercises designed to inculcate rule

application proficiency prior to the presentation of full proof problems.  When designing

justification exercises, one question is whether some rules are more troublesome than

others and thus deserve more practice.  Another question is whether there are

particular instantiations of rules that are more difficult to recognize and/or work with.

Still another question is whether there are general patterns of rule application errors;

that is, mislearned and systematically applied mal-rules of the type investigated by

Sleeman.  On the first score, there is one class of rules which students find particularly

troublesome.  These are the rules which contain negation signs in their rule forms (rules

such as Disjunctive Syllogism, Modus Tollens, Implication, Transposition, Demorgans,

and Double Negation).  As a class, this set of rules shows a lower rate of successful

application than any other connective-defined set of rules.4  Moreover, negation-related

difficulties can affect rules not containing negations.  For example, students sometimes

attempt to apply Simplification to the expression '~(A & B)', usually trying to extract '~A'

or simply 'A'.  Errors such as these raise an interesting question about what it means to

have learned a rule.  Students who make errors in applying Simplification can almost

always write out the rule form correctly.  To have learned a rule means more than

merely having memorized its rule form.  It also means being able to correctly apply or

withhold application of the rule in a variety of particular cases.

In respect to the existence of mal-rules, the observations presented here differ

from the kind of evidence marshalled by Sleeman.  Sleeman studied the behavior of

individuals and explicated the mal-rules that explained the errors of particular

individuals.  The approach here has been to look at aggregate data from students in

several different logic classes working proof problems from different logic textbooks.5



Patterns which fit a relatively large proportion of rule application errors (both in

justification problems and in full proofs) have thereby been identified, and there do exist

error patterns for particular rules that occur frequently enough to be of pedagogical

interest.  For example, one kind of error for Modus Tollens and Disjunctive Syllogism is

shown in the patterns below.  These errors involve a difficulty with negations which is

relatively easy to diagnose and correct.

  MT                                 DS

p ⊃ ~q                           ~p v q
q                                       p
------                                 ------
~p                                     q

Other errors with negations are shown in the following patterns.

            MT                    MT                   DS                 DS

          p ⊃ q                p ⊃ ~q            ~p v q             p v q
          ~q                    ~q ~p                   p
          -----                  ------                  ------               -----
          p                      ~p                       q                   q

Some relatively frequent error patterns for other rules are shown below.

          ADD                      HS                    IMPL                 TRANS
        p      p ⊃ q        p v q  p ⊃ q
       -----                        r ⊃ s                    ------                   --------
        p & q                     -----                    ~p ⊃ q                 ~p ⊃ ~q
                                     p ⊃ s

The chief pedagogical implication of the existence of frequently observed error patterns

is that students should be forced to confront and demonstrate mastery over such



trouble spots.  Also, students should be alerted to the most frequent errors for each

rule.  The error patterns shown above are put forward as a step in that direction and as

an attempt to encourage others to follow in this vein.  More needs to be done to

empirically discover frequently occurring error patterns and to put these discoveries to

pedagogical use.

The patterns described thus far concern errors made in applying rules of

transformation in a working forwards (top-down) direction.  When confronting a proof

problem, one choice of strategy may involve the decision to work forwards, or to work

backwards (bottom-up), or to work alternately in each direction with the aim of making

these lines of development "meet in the middle."  Newell and Simon's investigations

paid particular attention to the method of working backwards, and cognitive studies

continue to emphasize the importance of this mode of thinking.6  Nevertheless, logic

texts vary greatly in the degree to which the working backwards method is emphasized.

Texts which teach the Intelim rule set (one rule for introducing and one rule for

eliminating each of the five sentential connectives) tend to emphasize the working

backwards method more than texts which teach the inference/replacement rule set.7  In

what follows, an explication of the working backwards method will be put forward as it

applies to inference and replacement rules.  In particular, some difficulties which

students have in using this method will be addressed.

The Concept of Working Backwards.

The general structure of the working backwards process is as follows.  Suppose I am

trying to move from starting state A to goal state Z.  I determine that one way of arriving

at state Z is to first arrive at state Y, from which there is a clear path to state Z.  I can

now focus on moving from state A to state Y.  Further, if I determine that one way of



arriving at state Y is to first arrive at state W, from which there is a clear path to state Y,

I can now concentrate on moving from state A to state W.  This is the general idea

behind the working backwards strategy.  The distance between the starting state A and

the goal state Z is reduced by discovering intermediate states whose connection to the

goal is clear.  The way in which these intermediate states are discovered and the clarity

of their connections to desired goals depends upon the specifics of the problem

formulation and rules of transition.

In proof construction, the general nature of the working backwards method is to

work from the bottom-up, from conclusion back to premises.  One begins with the goal,

the problem's conclusion, and determines what rule might generate it and what premise

expressions are required for that rule.  These premise expressions, if not already

existing within the proof's premise set, become new goals (technically, 'subgoals'), and

one then continues working backwards from these goals in the same way as was done

for the conclusion.  At each step, expressions are introduced which, if ultimately derived

from the problem's premises, will lead directly to a goal or subgoal.  Expressions thus

introduced in the working backwards chain are not themselves justified, nor do they

immediately justify any goal expression to which they lead.  They merely constitute

expressions which, if ultimately justified, will contribute to justifying the proof's

conclusion.

The working backwards method is not merely a means for attacking a proof

problem from a bottom-up direction.  Used appropriately, it also serves as a heuristic

device which reduces the number of alternatives to be considered.  Particularly, this

means that the number of rules one might consider applying in order to produce a

certain expression can be reduced.  More generally, it means that effective heuristics

can restrict the number of branching paths that one might plausibly pursue when trying

to connect premises and conclusion.  To accomplish this, the method should specify in



some manner which rules are suited to what kinds of problem situations.  These

categories vary when considering inference (implicational) rules as opposed to

considering replacement (equivalence) rules.

Working Backwards with Inference Rules

To delineate a more specific procedure for using this method, a close inspection of the

implicational (inference) rules is helpful.8  Each of these inference rules serves either

the function of extraction or construction.  That is, some rules extract subexpressions

which exist within larger expressions.  Examples of these rules are Simplification,

Modus Ponens, and Disjunctive Syllogism.  In each rule form for these rules, the

conclusion generated already exists as some part of the rule's premise set.  Other rules

serve to construct new expressions which do not already exist as part of the rule form's

premise set.  Examples of these rules are Modus Tollens, Conjunction, Addition,

Hypothetical Syllogism, and Constructive Dilemma.  The working backwards method

presented here is centered around this distinction.  When working backwards to

produce a goal expression, the first decision is whether to extract or construct the

expression.  Then, the relevant rule and the particular premise expressions needed for

that rule must be specified.  For each goal expression, these determinations can be

helpfully framed by asking three questions in sequence:

(I)   Extract or construct?

(II)   What rule?

(III)  What premise(s)?

To see how this works consider the following proof problem.

1.  (A v B) ⊃ (C & D)
2.  A           / ∴  C



To work backwards on this problem, one considers the ultimate goal expression and

asks whether it is to be extracted or constructed.  Extraction should be considered first.

In this case, the goal expression, 'C', is found in an extractable position within the first

premise, so extraction is indicated.  (Moreover, construction can never produce a single

letter.)  Next, question (II) requests that the appropriate extraction rule be selected.

This is done by identifying the connective holding the goal expression, which in this

case is '&'.  When determining the appropriate rule, the following tables are helpful.

When EXTRACTING from this connective, use this rule:

                                                    &                       SIMP

                                                    v                        DS

                                                   ⊃                        MP

When CONSTRUCTING this connective, use this rule:

                                                   ~                        MT

                                                   &                        CONJ

                                                   v                         ADD, CD

                                                   ⊃       HS

This chart answers question (II) in favor of Simplification, and answering question (III)

requires that the premise expression for this application be specified.  This can be done

by instantiating the variables in the rule form for Simplification (p&q/p).  The

instantiation for one of these variables ('p') is specified by the goal expression ('C').

Instantiating the remaining variable ('q') is based on the contents of existing

expressions.  In general, the intelligent instantiation of premise expressions is an

important step in working backwards and often involves an estimate of what might



plausibly be derived from existing expressions.  In the current case of Simplification, the

given premises are scanned for a conjunction with 'C' as its left conjunct, and when

found, the right conjunct serves to instantiate the variable 'q'.  So, 'C & D' is postulated

as the instantiated premise, and this expression becomes the new goal to be derived.

In addressing question (I) for this new goal, extraction is once again indicated by the

fact that this goal expression is found in an extractable position, being the consequent

of the conditional in the first given premise.  Since the connective holding this goal

expression is '~', question (II) is answered in favor of Modus Ponens.  When

instantiating this rule pattern on the basis of the goal expression, 'C & D' is substituted

for the variable 'q' in the rule form.  So, one postulated premise must be a conditional

with 'C & D' as its consequent and the other postulated premise must be identical to the

antecedent of that conditional.  By scanning the problem's given premises, the

conditional is located as given in premise 1.  This leaves its antecedent, 'A v C' to be

postulated as the new goal expression.  Care must be taken when addressing question

(I) for this new goal.  Although 'A v C' can be located within the first premise, students

learn that only the consequent of a conditional can be extracted.  Neither the

antecedent as a whole nor any of its components can ever be extracted from a

conditional expression. [Remember that we only Inference rules are used here.]  This

means that 'A v C' must be constructed rather than extracted, and both Addition and

Constructive Dilemma are possible answers to question (II).  This complication can be

handled by scanning the problem's premises and, in the case of Addition, looking for an

opportunity to obtain one of the goal's disjuncts, and in the case of Constructive

Dilemma, looking for conditional expressions which have consequents identical to the

goal's disjuncts.  On these grounds, Addition looks more plausible in the present case.

Since one of the goal's disjuncts, 'A', exists as a given premise, no further working

backwards is required, and the search for a proof is complete.



Some proof problems will complicate the working backwards process.  In such

problems the three working backwards questions can have more than one answer.  In

respect to question (I), for example, opportunities both for extracting and constructing a

goal expression might exist.9  The same complication can apply to question (II) and

question (III). When constructing a disjunctive expression, two rules (Addition and

Constructive Dilemma) may not only be possible but even plausible given the problem's

premise set, and if Addition is selected, there may be two plausible alternatives

depending upon which disjunct is targeted for derivation.  Moreover, proof problems

which have frequently repeated letters, or unnecessary premises which repeat letters

existing in the necessary premises, provide a relatively high number of plausible yet

dead end paths whether working forwards or backwards. It is true that proof problems in

introductory logic texts do not often present problems of this complexity, but when it

does occur search paths can multiply quickly, and some means for backtracking and for

systematically recording one's efforts should be available.  This topic will be taken up

shortly.

Some Observed Student Difficulties with Working Backwards

Two types of errors stand out within students' use of the three step working backwards

method for proofs requiring only inference rules,   One difficulty concerns the extraction-

construction judgment which students are to make in answering question (I).  In one

class of 28 students who constructed proofs with inference rules only, for example, 935

erroneous working backwards steps were examined closely.  It turned out that in nearly

half of these errors students not only selected an inappropriate rule for working

backwards but in addition selected the wrong type of rule.  That is, extraction was being



attempted when construction should have been, or vice versa.  This difficulty should,

perhaps, not be surprising given the nature of the inference/replacement rule set.  The

functions of these rules are not emphasized by their names, as is the case in the Intelim

rule set.  Rather, the rules are often categorized and strategies formulated in terms of

the connectives which exist in the premise(s) and/or conclusion of the rule's form.  This

categorization has its use in proof construction, but it should not be the immediate focus

when determining how to produce a goal expression by working backwards.  In

particular, students must learn that the answer to "extract or construct?" is not

contained in the rules themselves.  When facing this question, students sometimes will

look toward their list of rules.  This is a sure sign that the three step sequence is not

being followed, for the choice of extraction or construction is not determined by anything

in the list of rules.  This choice is determined within the problem itself by comparing the

goal expression with other available expressions in the proof.

Another major difficulty which emerged from examining these working backwards

errors supports the view that students sometimes focus on rule forms and connectives

without first considering what kind of operation is called for.  One recurring error pattern

involves an inversion in the matching of connectives which exist in a problem's goal

expression and the rule form being considered.  Correctly, the main connective in a

goal expression should be matched to the main connective in a rule's conclusion.

However, students sometimes match the main connective in a goal expression to the

main connective in a rule form's premise expression.  For example, when trying to

generate the expression, 'A & B', Simplification would be selected when in fact the goal

should have been constructed via Conjunction.  Or, when trying to produce 'A v B',

Disjunctive Syllogism would be selected when either Addition or Constructive Dilemma

was appropriate.  This kind of error, dubbed "connective inversion," occurred in

approximately one third of the 935 working backwards mistakes examined.  The



existence of connective inversion emphasizes the need for following the three step

working backward sequence.  Students often want to shortcut this process and to focus

immediately upon rule selection without first choosing either extraction or construction.

When students do faithfully follow the three step sequence, errors concerning

extraction/construction judgments and connective inversions virtually disappear.10

Working Backwards with Replacement Rules

This three step working backwards procedure turns out to be extremely powerful.

There are very few inference rule proof problems in introductory texts which this

procedure will not quickly solve.11  When replacement rules are added to the rule set,

this situation changes dramatically.  Question (I) must be expanded to include the

possibility of transforming one expression into another.  Once this question ("extract,

construct, or transform?") is answered in favor of transforming some expression into the

goal, questions (II) and (III) follow as before to provide the appropriate rule and premise

expression.  The selection of an appropriate replacement rule, however, can no longer

be neatly represented in a chart as done for inference rules.  Replacement rules are not

neatly categorized in terms of extraction or construction.  Rule selection must be guided

by careful inspection of the goal expression's connective structure.  With inference rules

only, the three step process serves to keep the search on track and to reduce the

number of alternative paths considered.  With the introduction of replacement rules, the

number of alternative paths increases greatly, and the working backwards procedure in

itself does little to reduce the numerous alternatives spawned.  Working forwards

strategies now contribute more to reducing the number of plausible alternatives.  For

example, several texts suggest means for breaking expressions down into component

parts and for recognizing when this action is possible and desirable.  Another common



suggestion is to learn combinations of steps and to recognize opportunities for their

application.  In doing so, students can better develop a sense of what can be derived

from various kinds of expressions and can better judge when an expression will or will

not lead to some goal.

Once replacement rules are introduced, the search for a connection between

premises and conclusion will usually involve the exploration of multiple paths.  Perhaps

the most fruitful technique for discovering a proof is to alternately work both backwards

and forwards.  Students should be able to do this with both inference and replacement

rules.  Over the years, however, some texts have explicitly prohibited the use of working

backwards with inference rules and have obfuscated the process of working backwards

with replacement rules.  The source of this difficulty appears to reside in the first edition

of Kahane's Logic and Philosophy (1969, p. 60).  There, Kahane warned students

against working backwards with inference rules because these rules are one-

directional.  This view is expressed in each succeeding edition of  Logic an Philosophy

through the sixth edition in 1990.  In this edition, Kahane explained in a footnote that

working backwards with inference rules is possible but that "beginners are apt to

accidentally use the implication forms in the wrong direction."12  His recommendation

was for beginners to avoid working backwards with implication rules and to use the

more reliable working forwards strategies.  However, Kahane has persistently

advocated working backwards with replacement rules.  To do so, the conclusion is

placed in the position of being a premise and new expressions are deduced in a series

of descending steps, each of which results from applying a replacement rule to a

previous line.



(Kahane, 1990)

Problem Working Backwards

1.  A ⊃ B
2.  C ⊃ B /∴ (A v C) ⊃ B i.    (A v C) ⊃ B     Conclusion

ii.   ~(A v C) v B         i, IMPL
iii.  (~A & ~C) v B               ii, DEM
iv.   B v (~A & ~C)               iii, COMM
v.    (B v ~A) & (B v ~C)    iv, DIST

The last expression in this working backwards sequence becomes a target for

derivation from the proof's premises, and work next shifts to deriving expressions from

those premises in a working forwards direction.13

This procedure is abandoned in recent editions of Logic and Philosophy (Kahane

and Tidman,1995; Tidman and Kahane, 1999), but it has been followed closely in

editions of Hurley's A Concise Introduction to Logic.   In fact, Hurley repeats Kahane's

warning against working backwards with inference rules.  ("It is important to realize that

whenever we use this strategy of working backwards from the conclusion, the rules of

replacement are the only rules we may use.  We may not use the rules of implication,

because these rules are one-way rules."14)  Hurley refers to the process of applying

replacement rules to the conclusion as "deconstruction" and characterizes it as a

means for discovering how the conclusion is put together.  Following Kahane,  the

conclusion is temporarily treated as a premise to which replacement rules are applied in

a top-down fashion.



(Hurley, 2000)

Proof Problem Deconstruction

1.  K ⊃ (F v B) (F & G) v (B & G) Conclusion
2.  G & K /∴  (F & G) v (B & G) G & F) v (G & B)     COM, COM

G & (F v B)    DIST

In this example, three replacement rule applications have been used starting with the

conclusion to produce 'G & (F v B)'.  One is now to return to the proof problem and work

forwards toward this expression.15

This procedure is clearly different both from the generic concept of working

backwards and its three step implementation for proofs.  Consistent with those

conceptions, however, is Tidman and Kahane's more recent account of working

backwards.  In their problem below, one considers the conclusion, ' (A v C) ⊃ B', and

postulates the expression, '~(A v C) v B', from which the conclusion can be derived in

one step, and this process continues bottom-up.16

(Kahane and Tidman, 1999)

                         1.  A ⊃ B
                         2.  C ⊃ B /∴ (A v C) ⊃ B
                         .
                         .
                         .
                         (B v ~A) & (B v ~C)
                         B v (~A & ~C) DIST
                         (~A & ~C) v B COMM
                         ~(A v C) v B DEM
                         (A v C) ⊃ B IMPL

The suggestion at this point is to work forwards from the premises toward the

expression, '(B v ~A) & (B v ~C)', and then on to the conclusion filling in the appropriate

line numbers along the way.  Nevertheless, the process of working backwards here



could continue.  The rule of Conjunction could be proposed for producing '(B v ~A) & (B

v ~C)', and the required conjuncts could be postulated in the working backwards chain.

Compare this with the Hurley (2000) example above, and note where Hurley's process

of deconstruction ends and why.  [We would need to use a banned Inference rule.]

Towards a Graphic Representation of Proofs

It is important to appreciate the potential difficulties of working backwards, particularly

as conceived by Hurley and early Kahane. This approach raises a number of potential

difficulties for students.  The first consists of the additional burden of keeping clear

about what rules justify what expressions in the proof.  In the Kahane (1990) example,

notice that the rule justifications cited in the working backwards sequence are on

different lines than they will be in the proof.  That is, the rule justifying line ii (IMPL) will

actually justify the conclusion when the proof is written up.17  The same is true of

Hurley's (2000) example.  Second, the source of fear over the prospects of students

applying inference rules in the wrong direction is now evident.  Students taught to apply

replacement rules from conclusion toward premises might well be tempted to apply

inference rules in this direction as well.  As Tidman and Kahane illustrate, students

should not be taught to apply replacement rules in this fashion, and, once free from this

dangerous procedure, students can indeed be taught to effectively work backwards with

inference rules.  Third, applying replacement rules from conclusion towards premises

runs the risk of confusing students about the fundamental concept of justification within

a proof.  Students must understand that justification flows top-down from premises to

conclusion.  Any explication of the working backwards method must tread carefully

here.  The three step process delineated above and Kahane and Tidman's account also

run this risk since expressions are generated against the flow of justification in the



proof.  That is, one enters expressions into the proof structure which temporarily play

the role of premises rather than conclusions.  Students must remain absolutely clear

about two points.  First, the fact that a rule name has been entered for a given

expression, say for the conclusion when working backwards, does not mean that the

expression is justified.  Second, when entering a working backwards step which will

ultimately serve to justify an expression, nothing at all has been done to justify that

newly entered expression.  The newly entered expression has not been "generated" in

the same way that a new expression has been generated as the result of applying a

rule working forwards.  Students can in fact learn to keep clear about these points if

discussed explicitly.

Scheines and Sieg (1994) found that students who worked both backwards and

forwards completed more proofs than students who worked only forwards or only

backwards.18  If indeed students should acquire the ability to work both backwards and

forwards, a question arises as to how this process should be carried out on paper and

how its results should be represented.  Some indication of how working bottom-up

might occur in a linear proof format emerges from the example provided by Kahane and

Tidman.  An ideal environment would allow work to smoothly unfold in both a top-down

and a bottom-up direction.  Students should be able to explore multiple paths in either

direction while staying clear about which expressions are justified and which are not.

The proposal put forward here is that a graphic proof representation can be useful for

these purposes.  A graphic representation of a proof is shown in Figure 1.

The logical expressions which comprise the problem are written inside of oval

nodes.  Premise nodes are positioned across the top of the working area while the

conclusion is placed near the bottom.  Working forwards proceeds by applying rules to



premise expressions.  The expression nodes which result from those applications are

drawn below with arrows leading from premises to derived expressions.

In Figure 1, Simplification has been applied in a working forwards direction while

Hypothetical Syllogism has been used in working backwards from the conclusion.

Working backwards from the conclusion follows the three-step procedure.  A decision to

extract, construct, or transform is followed by selection of the appropriate rule. The

required premise expressions are determined, and nodes for these expressions are



drawn higher in the proof structure.  The premise expressions for Hypothetical

Syllogism in Figure 1 have been instantiated on the basis of the conclusion and other

expressions contained in the proof's premises.  Also, of importance is the thickness of

the node boundaries.  Justified expressions have thick boundaries while unjustified

expressions have thin boundaries.  As unjustified expressions become justified, their

boundaries are thickened.

Conditional and Indirect Proof: Graphic Representation

Conditional and indirect proof are both rooted in the making and discharging of

assumptions.  It is important that students understand why assumptions can be made,

what must be done to discharge assumptions, and the limitations placed upon the use

of any expression existing within the scope of an assumption.  These restrictions are of

particular significance in the case of nested applications of conditional proof and indirect

proof.  To aid in enforcing these restrictions, many texts augment the linear proof format

with some version of drawn lines or brackets.

1.  (A v B) ⊃ (C & D) /∴ A ⊃ C
2.      A ASP (CP)

   3.      A v B 2, ADD
4.      C & D 1, 3 MP
5.      C       4, SIMP

6.  A ⊃ C 2-5, CP

The indented lines from step 2 to step 5 above are normally bracketed off  to show that

once the assumption is discharged, no other steps of the proof may make use of these

lines.

Within a graphic format, something similar must be done to indicate the scope of

an assumption and the restrictions placed upon the use of any expression derived from



it.  Figure 2 shows a graphic representation of the problem above after a decision to

use conditional proof has been made.  To use conditional proof, one does three things.

First, one draws a box within which the conditional reasoning will unfold.  Next, the

assumption made is drawn at the top of this box along with the rule cited, and the

expression to be produced (the conditional's consequent) is drawn at the bottom of the



box.  Finally, an arrow is drawn leading from the box to the conditional expression to be

generated by conditional proof along with its rule abbreviation.  The restriction which

now governs the execution of conditional proof is as follows: Arrows leading from

justified expressions may cross the boundary into the box, but no new arrows may lead

out of the box from any expression.  The only arrow permitted to issue from the box is

that originally drawn to the ultimate object of conditional proof.  This same restriction, of

course, applies to nested applications of conditional proof which could involve boxes

within boxes.  Figure 3 provides a view of a finished conditional proof.



Whether represented graphically or linearly, indirect proof requires the same sort

of restrictions that apply to conditional proof.  Once an assumption is made, it must be

used only to derive a contradiction within the current scope of the assumption.  In a

graphic format, this derivation occurs within a closed box with only one arrow exiting to

the expression to be proved.  In place of the conditional's consequent as the last step

within the box resides a representation of a contradiction.  Geometric shapes are used

for this purpose, such as '  & ~ , with these squares ultimately being filled in with

some expression.

There are some practical issues to be addressed when using a graphic proof

representation.  For instance, how large should one draw the boxed area when using

conditional proof or indirect proof?  How far down the page should the conclusion be

drawn, i.e., how much space should be allotted for developing the proof?  Judgments

concerning these issues can be made at the outset of proof construction.  With

conditional proof, the need for nested boxes can be assessed by examining the

consequent of the conditional being proved.  When this consequent is or is equivalent

to a conditional, the opportunity for nested applications of conditional proof exists and

should be allowed for.  In general, students should be encouraged to draw the

conclusion at the bottom of the page and to use an entire sheet for constructing a proof.

In addition, enough room should be provided for building more than one working

backwards chain leading up from the conclusion, for example, where more than one

rule can plausibly produce a goal expression.  If one chain reaches a dead end, it can

be abandoned and an alternate line can be pursued.  Such backtracking can be easily

carried off when alternative paths are explicitly represented in the proof.  As already

indicated, intelligent instantiation and simultaneous working forwards can often settle

decisions concerning multiple paths before they are even drawn in the proof structure,

but space for representing these paths should nevertheless be allocated.



A graphic proof representation can provide a medium for carrying out and

documenting the process which generates the final product of the proof.  In presenting

the working backwards method,  Tidman and Kahane remark that students should learn

to work backwards with simple problems in their heads but may need to use a piece of

scrap paper for longer proofs.  This recommendation is consistent with a procedure

sometimes taught by instructors, namely, that of making a diagram or other drawing off

to the side when discovering the proof and then filling in the proof structure which

constitutes the final product.  One advantage of using a graphic proof format is that

there is in principle no difference between the diagram and the completed proof.  The

final proof representation readily emerges from the diagram or "scrap work."

Summary

When teaching proof construction with an inference/replacement rule set, students

should be taught to work backwards with both types of rules.  Students should also be

taught to work forwards and should be able to carry these operations out alternately

when necessary.  As delineated in the three step process above, the working

backwards method can be explicitly formulated and can be presented in more rigor than

is standardly done in texts teaching proof construction using the inference/replacement

rule set.  Moreover, a graphic proof representation can supply a flexible environment,

sans line numbers, in which proofs can be discovered by working both backwards and

forwards.  Students can readily explore multiple paths, backtrack when necessary, and

develop chains of steps which meet in the middle of the proof.  By means of arrow

direction and boundary thickness, students can also stay clear about the flow of

justification within the proof.  Finally, it should be mentioned that a graphic proof

representation is consistent in appearance with natural language argument diagrams



and can provide an interesting basis for discussing the transition from premises to

conclusions as it occurs within proofs and within natural argumentation.
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CURRENT VERSION UPDATES

This article has been made somewhat more accurate since I located and examined a
copy of the first edition of Kahane’s Logic and Philosophy (1969).  The text above now
contains references to this work rather than to the second edition (1973) as previously
published.

Also, in the original article as published in Teaching Philosophy, references were made
to Hurley (1999) which was the date on the book’s page proofs from which I was
working, but the final date of that edition of A Concise Introduction to Logic was 2000.  I
haven’t updated in accordance with the 2002/2003 edition of Hurley, but could easily,
since his position on working backwards hasn’t changed.  Hurley’s position seems
strange since he obviously followed Kahane (one of Hurley’s examples in this respect
changes only the letters in one of Kahane’s proofs.), and yet when Tidman steps in to,
in a sense, set Kahane straight, Hurley seems not to have noticed.


