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ABSTRACT

Lightning is best known as a component of severe weather, but diverse communities of researchers, such as

those in atmospheric chemistry and global fire modeling, have long recognized that lightning plays a signifi-

cant role in many components of the Earth system. Global climate models are unlikely to be able to simulate

lightning from first principles, but the same models do simulate many parameters related to convection,

including total precipitation rate, convective precipitation rate, and convectivemass flux. This study combines

satellite observations of lightning and CMIP5 climate model simulations to derive an empirical parameter-

ization of monthly lightning in terms of monthly simulated convective parameters. Convective mass flux best

captures the spatiotemporal distribution of observed lightning. Derived lightning seasonality is captured with

95% confidence over 69% of land but only 30% of ocean. Spatially, the correlation of derived lightning and

observed lightning is 0.74. Overall, global observations suggest lightning occurs at an annual rate of 47 flashes

per second, while lightning from the parameterization occurs at 44 flashes per second. A robust feature of the

relationship between lightning and climate model convective parameters is that lightning flash rate increases

linearly with increases in convective precipitation rate and in convective mass flux for a significant subset of

the total range of those convective parameters. Namely, this linear proportionality is evident when the

convective precipitation rate is less than 4–5mmday21 and the convective mass flux is less than 15–

16 kgm22 h21, which account for about 90% of the values simulated by the climate models.

1. Introduction

Lightning affects nearly every part of the planet at

varying times of the year. Global lightning flash rates de-

rived from the optical transient detector (OTD) (Christian

et al. 2003) and the lightning imaging sensor (LIS)

(Boccippio et al. 2002;Mach et al. 2007), the latter ofwhich

is on the NASA Tropical Rainfall Measuring Mission

(TRMM) (Kummerow et al. 2000) satellite, average

47 flashes per second (Cecil et al. 2014). About 4 times as

much lightning occurs over land than over the oceans (e.g.,

Allen and Pickering 2002; Cecil et al. 2014), and distinct

peaks in lightning activity occur over land in the deep

tropics (Price 2009; Williams 2005). There is also a sea-

sonal cycle in global lightning activity with a minimum in

February and a maximum in August (Cecil et al. 2014).

In addition to an association with severe weather,

lightning is energetic enough to play a role in atmospheric

chemistry through the nitrogen biogeochemical cycle

(e.g., Levy et al. 1996; Price et al. 1997; Shindell et al.

2006; Wu et al. 2008) and act as essentially the only sig-

nificant natural ignition source for fires (Flannigan et al.

2009; Pechony and Shindell 2009; Price and Rind 1994).

However, while lightning is an important phenomenon in

the Earth system, global climate models do not directly

simulate the process of lightning initiation and discharge

(e.g., Tost et al. 2007). Atmospheric chemistry models,

which are critical components of global climate models

(e.g., Fiore et al. 2012), require lightning to simulate the

natural formation of nitrogen oxides (Grewe et al. 2001;

Price et al. 1997) and rely on climatologies of lightning

fromOTD/LIS or lightning parameterizations (Allen and

Pickering 2002; Grewe et al. 2001;Wu et al. 2008). Global

fire models rely on OTD/LIS climatologies (Kloster et al.

2010; Li et al. 2012; Pechony and Shindell 2009; Thonicke

et al. 2010).

There are strengths and weaknesses in relying on ei-

ther a climatology or a parameterization to incorporate

lightning into a simulation framework. The OTD/LIS

lightning climatology does not capture interannual vari-

ability, but it is accurate and completely based on

Corresponding author address: Brian Magi, Department of Ge-

ography and Earth Sciences, University of North Carolina at

Charlotte, 9201 University City Blvd., Charlotte, NC 28223.

E-mail: brian.magi@uncc.edu

434 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

DOI: 10.1175/JTECH-D-13-00261.1

� 2015 American Meteorological Society

mailto:brian.magi@uncc.edu


observations (Cecil et al. 2014). Lightning that is parame-

terized against observed cloud height (Price and Rind

1992), modeled convective mass fluxes, or convective

precipitation (Allen andPickering 2002;Barthe et al. 2010),

or a combination of these (Grewe et al. 2001) is prone to

large magnitude uncertainty in the number of lightning

flashes or has poor ability to simulate the seasonality in

lightning (Tost et al. 2007) when compared with OTD/

LIS. There is therefore a disconnect between global

models and reality in the sense that global models, es-

pecially global fire models, do not capture or even at-

tempt to capture interannual variability or long-term

secular changes in lightning distributions in response to

modern or past climate changes.

Prior work has highlighted the relationship between

lightning and other thunderstorm-related variables, such

as convective precipitation (Petersen and Rutledge 1998;

Petersen et al. 2005) and ice mass flux (Blyth et al. 2001;

Deierling et al. 2005; Nesbitt et al. 2000). Theory and field

studies (Blyth et al. 2001; Deierling et al. 2008) have re-

peatedly strengthened the idea that the noninductive

charging process (Saunders et al. 1991; Takahashi 1978) is

the dominant mechanism in cloud electrification that is

sufficient to initiate lightning. This charging process in-

volves collisions between larger ice hydrometeors

(graupel) and smaller ice crystals in the presence of su-

percooled water (Blyth et al. 2001; Saunders et al. 1991).

Drawing from this physically based connection be-

tween lightning and convective properties related to ice

and mass flux in thunderstorms, parameterizations of

lightning activity for global modeling have been ex-

plored and discussed (Allen and Pickering 2002; Grewe

et al. 2001; Price and Rind 1992; Tost et al. 2007). These

and other parameterizations (e.g., Barthe et al. 2010)

have been used as a basis for improving weather fore-

casting model simulations of regional precipitation

(Papadopoulos et al. 2005; Pessi and Businger 2009;

Tapia et al. 1998) and have been implemented in global

chemistry models to study lightning-produced nitrogen

oxides (Grewe et al. 2001; Levy et al. 1996; Shindell et al.

2006; Wu et al. 2008).

This study evaluates a global lightning parameteriza-

tion based on a combination of observations and climate

model output at relatively coarse spatiotemporal scales.

Monthly lightning from OTD/LIS (Cecil et al. 2014) is

used as the basis for developing an empirical relation-

ship with monthly output from multiple climate models.

The spatiotemporal scales of the global lightning param-

eterization in this study are well suited to applications in

global modeling of chemistry, fires, and climate, and are

easily adaptable to the particular model configuration.

OTD/LIS data are used to evaluate the strengths and

weaknesses of the lightning derived from the climate

model output. The novel contribution of this work is that

the parameterization is the first to connect global climate

model output to the satellite-based global lightning cli-

matology fromOTD/LIS observations. No prior work has

used multiple climate models to develop a lightning

parameterization.

The datasets and methods used to test the consistency

of observed and simulated convective parameters are

presented in section 2, along with relevant descriptive

statistics. In section 3, linear and nonlinear features of

the relationship between lightning flash rate and the

convective parameters are discussed to make the case for

an empirical polynomial parameterization. The spatio-

temporal distribution of present-day lightning activity de-

rived from that parameterization and a robust linear

feature in the relationship between observed lightning and

climate model convective parameters are discussed in

sections 3 and 4. Section 4 discusses strengths and weak-

nesses in the parameterization, and comparisons with a

previous global lightning parameterization. Section 5

summarizes the results.

2. Methods

a. Datasets

Observations of lightning are from the global OTD/

LIS high-resolution mean monthly climatology dataset

(LISOTD_HRMC_V2.3, 0.58 3 0.58 spatial resolution)
available online (http://thunder.nsstc.nasa.gov/; Cecil

et al. 2014). OTD (available globally from 1995 to

2000) data are combined with LIS (available between

388S and 388N latitude from 1998 to the present) to

create the monthly climatology used in this study,

noting that the combined data product requires cor-

rections to account for the lower sensitivity of OTD

compared to LIS (Cecil et al. 2014). The overall OTD/

LIS mean monthly climatology used in this study is

based on lightning data from OTD and LIS from 1995

to 2012.

Observations of precipitation are from the monthly

Global Precipitation Climatology Project (GPCP) ver-

sion 2.2 (Adler et al. 2003; Huffman et al. 2009), which

merges data from multiple satellite-based sensors and

sounders with ground-based rain gauge data. The

merged data product is available at 2.58 3 2.58 spatial
resolution (at http://precip.gsfc.nasa.gov/). Error as-

sociated with the merged precipitation values are dis-

tributed as a part of the data product (Adler et al.

2003) and the mean error, weighted to precipitation,

varies from 8% over land to 29% over the oceans. In

this study, GPCP is used to evaluate whether climate

models are capturing the spatiotemporal patterns in

total precipitation.
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Simulated total precipitation, convective precipitation,

and convective mass flux are from climate models that

contributed to the Coupled Model Intercomparison Pro-

ject phase 5 (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/)

data archive. CMIP5 (Taylor et al. 2012) is a coordinated

effort among international climate modeling groups to

simulate past, present, and future climate to better un-

derstand the response of the climate system to human and

natural perturbations to energy balance. CMIP5 model

output (Taylor et al. 2012) forms the basis for the In-

tergovernmental Panel on Climate Change Fifth Assess-

mentReport (Stocker et al. 2013)WorkingGroup reports.

The climate models used in this study are listed in

Table 1 according to the CMIP5 protocol described on-

line (http://cmip-pcmdi.llnl.gov/cmip5/terms.html), and

with the model spatial resolution. Every climate model

participating in CMIP5 archived precipitation as an out-

put field, but only 17 climate models that archived both

precipitation and convective precipitation fields were

selected.

Of the 17 climate models, 10 also archived convective

mass flux as a four-dimensional field—there is a vertical

dimension, as well as the two horizontal dimensions and

the time dimension. Convective mass flux is defined by

CMIP5 as the net upward convective mass flux at

a particular pressure level in the model and represents

the difference between the updraft and downdraft mass

fluxes. For this study, the convective mass flux at the

closest hybrid-sigma pressure level to 0.44 is used. This

value serves as an indicator of deep convection (Allen

and Pickering 2002). The individual climatemodels have

varying numbers of pressure levels, so the physical value

of the pressure varies, but on average is ;427 hPa.

Globally averaged values of precipitation, convective

precipitation, and convective mass flux for each climate

model and applicable dataset are listed in Table 1.

The climate model spatial grid (Table 1) is used when

comparisons against that climate model are made. Thus,

GPCP and OTD/LIS data are spatially interpolated to

the model grid (Table 1). Additionally, the land and

ocean masks particular to the individual climate model

grids and available from CMIP5 are applied to the

datasets to investigate land–ocean dependencies. In this

study, an ocean grid cell is defined as a grid cell with land

fraction equal to zero, while land grid cells are defined as

any grid cell with land fraction greater than zero.

The time period of analysis for this study is 1995–2005,

limited partly byOTD/LIS and partly by time bounds on

CMIP5 experiments. Both the OTD/LIS and CMIP5

climate model output are compared using the mean

monthly values, since climate models do not generally

capture year-to-year variability in mesoscale meteorol-

ogy. The start year is chosen because OTD/LIS clima-

tology is based on a combination of OTD data available

TABLE 1. Climate models and datasets, the horizontal spatial resolution, and the globally averaged total precipitation, convective

precipitation, and convective mass flux. Convective mass flux, as described in the text, is from the hybrid-sigma pressure level closest to

0.44, which is ;427 hPa. NCAR CCSM4 convective precipitation is not used in this study, but its average value is included, since total

precipitation and convective mass flux are reasonable. More details about the individual climate models can be found on the CMIP5

website.

Dataset or model

name Lat resolution (8) Lon resolution (8)
Total precipitation

(mmday21)

Convective

precipitation (mmday21)

Convective mass

flux (kgm22 h21)

— OTD/LIS 0.50 0.50 — — —

— GPCP version 2.2 2.50 2.50 2.69 — —

1 MIROC5 1.41 1.41 3.21 1.49 8.61

2 BCC_CSM1.1 2.81 2.81 2.84 1.90 9.79

3 BCC_CSM1.1(m) 1.13 1.13 2.88 1.38 6.68

4 IPSL-CM5A-LR 1.88 3.75 2.73 1.32 4.78

5 IPSL-CM5B-LR 1.88 3.75 2.81 1.44 5.59

6 GFDL CM3 2.00 2.50 2.99 1.88 4.83

7 NCAR CCSM4 0.94 1.25 2.98 1.66 3 1023 9.01

8 INM-CM4.0 1.50 2.00 3.16 2.06 —

9 ACCESS1.3 1.24 1.88 3.16 1.84 —

10 CMCC-CM 0.75 0.75 2.90 1.46 —

11 GISS-E2-H 2.00 2.50 3.22 1.33 7.21

12 GISS-E2-R 2.00 2.50 3.18 1.31 6.88

13 HadGEM2-AO 1.24 1.88 3.10 2.27 —

14 FGOALS-g2.0 3.00 2.81 2.82 1.63 —

15 CNRM-CM5 1.41 1.41 3.06 2.48 —

16 CNRM-CM5.2 1.41 1.41 3.02 2.43 —

17 CSIRO Mk3.6.0 1.88 1.88 2.88 2.18 5.22

Mean 1.67 2.09 3.00 1.78 6.86

Std dev 0.60 0.87 0.16 0.41 1.80
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from 1995 to 2000 and LIS data available from 1998 to

the present (Cecil et al. 2014; Christian et al. 2003). The

end year is chosen based on the final year of the CMIP5

‘‘historical’’ model experiments (Taylor et al. 2012),

which are compiled using observationally based emis-

sions inventories (Lamarque et al. 2010) from the year

1850 to 2005. GPCP data are available from 1979 to the

present (Adler et al. 2003; Huffman et al. 2009), but only

data from 1995 to 2005 are used for any comparison.

OTD/LIS mean monthly data are based on 1995–2012

and are not available for 1995–2005, but there is likely

very little difference from mean monthly values from

1995 to 2005, since there were no significant changes to

lightning distributions from 2006 to 2012 as compared to

1995–2005 (Cecil et al. 2014). The assumption is then

that mean monthly OTD/LIS values from 1995 to 2012

are the same as mean monthly OTD/LIS values from

1995 to 2005.

b. Comparisons with precipitation observations

Comparison of mean annual total precipitation rate

(MAP) from climate models against GPCP are shown in

Fig. 1 for global, land-only, and ocean-only precipitation,

with land and ocean grid cells defined in section 2a. This is

a coarse-scale evaluation of model ability to simulate

precipitation physics (e.g., Randall et al. 2007) in space,

time, and magnitude.

As shown in Fig. 1, all the models are within 20% of

the GPCP global MAP, and 7 of the 17 models are

within 10%.Modeled MAP are, on average, biased high

by 11% (10.31mmday21) compared to GPCP MAP.

The agreement in global MAP (i.e., within 20%) is

a combination of a low bias in land-basedMAP and high

bias in ocean-based MAP. On average, modeled land-

based MAP are biased low by 11% (20.28mmday21)

and modeled ocean-basedMAP are biased high by 22%

(10.63mmday21). Land-basedMAP from eight climate

models agree to within 10%, while the remaining cli-

mate models agree to within 30%. Ocean-based MAP

from the 17 climate models agree to within 31% of

GPCP ocean-basedMAP. The high bias over the oceans

and low bias over land act as compensating errors when

examining global MAP, but the simulations of MAP are

consistently more problematic (higher magnitude biases

and percent differences) over the ocean.

In terms of the spatiotemporal comparison of global

MAP from climate models compared to GPCP, Fig. 1

shows the time and space correlation coefficients. The

spatial correlation is the linear correlation coefficient

calculated by comparing the spatially explicit distribu-

tion of GPCP MAP with that of the individual climate

models, where GPCP MAP is spatially interpolated to

the climate model latitude–longitude grid (Table 1).

FIG. 1. Comparisons of observed precipitation rates from GPCP

and simulated by CMIP5 climate models used in this study for (a) all

grid cells, (b) land grid cells, and (c) ocean grid cells. The filled,

colored circles each represent the absolute value of the difference

between MAP rate from one of the climate models and GPCP: the

larger the circle, the larger the difference from GPCP. The average

difference is shown with a patterned fill, and the size of this circle is

quantified in the inset. The spatial correlation is calculated from

a comparison of theMAP fromGPCP and from each climatemodel.

The temporal correlation is calculated as a comparison of the mean

monthly precipitation from GPCP and from each climate model. A

near-perfectmatch toGPCPwould have a very small circle diameter,

and the circle would be located in the top-right quadrant.
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Figure 1 suggests that, on average, about 58% of the

spatial variability (i.e., mean of the squared linear cor-

relation coefficient) of GPCP MAP is captured by

models, with values ranging from 43% to 74%. Temporal

correlation is the linear correlation coefficient calculated

by comparing the 1995–2005 mean monthly time series

(12 data points) from GPCP to those of the climate

models. On average, about 47% of the seasonal vari-

ability of GPCP is captured, with climate models ranging

from 15% to 70% of variability captured.

The same calculations of spatial and temporal cor-

relations are made for land- and ocean-based MAP

(Figs. 1b,c). Like global MAP, 58% of the spatial

variability from GPCP is captured in land- and ocean-

based MAP, suggesting that most of the modeled

precipitation is simulated in the right place on Earth,

regardless of land or ocean surface. However, ocean-

based seasonal precipitation in the simulations cap-

tures only 7% of the variability suggested by GPCP

compared to 44%–47% for the identical global and

land-based comparisons.

To summarize Fig. 1, climate models, on average,

capture a large fraction (.50%) of the global and land-

based spatiotemporal patterns of precipitation when

compared to GPCP, while magnitude comparisons

suggest MAP is much better captured by climate models

over land than over oceans. Simulations of ocean-based

precipitation are weaker and, in terms of mean monthly

seasonality, quite poor.

Evaluation of modeled precipitation has been dis-

cussed in detail by review studies (e.g., Meehl et al.

2012; Randall et al. 2007) and by individual model de-

scription studies (e.g., Donner et al. 2011; Dufresne

et al. 2013; Gent et al. 2011; Wu et al. 2010). Part of the

difficulty in accurately simulating precipitation in

a global climate model is the sensitivity of precipitation

to subgrid-scale convective dynamics (e.g., Donner

et al. 2011; Tost et al. 2007). Other discrepancies arise

as a result of the coupling of the ocean and atmosphere

components of a climate model (e.g., Donner et al.

2011). A full analysis of physical reasons for strengths

and weaknesses of individual or collective CMIP5

model simulations of precipitation, or uncertainties in

GPCP (Adler et al. 2003; Huffman et al. 2009), is be-

yond the scope of this study.

This study uses the comparisons mentioned above as

a basis for drawing conclusions about the dependence of

lightning on convective variables. Knowing that climate

models are at least capturing where precipitation occurs

(i.e., the spatial correlation) and that timing andmagnitude

are better captured over land facilitates the explanation of

discrepancies that arise after the parameterizations are

discussed below.

c. Comparisons with lightning observations

To make the case that climate model output convec-

tive parameters could be used to establish a relationship

to deduce lightning flash rates, a simple linear model is

derived for lightning as a function of total precipitation,

convective precipitation, and convective mass flux.

These results show that lightning is, to varying degrees,

linearly correlated with modeled convective parame-

ters, but that the linear model is also limited. Thus,

a more complex empirical model is needed to better

capture the variability. Furthermore, GPCP is used to

show that the general relationship between total pre-

cipitation and lightning are similar for climate models.

Figure 2 shows the linear correlation coefficients be-

tween mean monthly total precipitation (P), convective

precipitation (C), and convective mass flux (M) with

mean monthly lightning flash rate distributions (L) from

OTD/LIS (Cecil et al. 2014) over land and ocean, where

P-land, C-land, and M-land are the convective param-

eters over land, and P-ocean,C-ocean, andM-ocean are

the values over ocean.

A comparison of P from GPCP versus L from OTD/

LIS and P from the climate models versus L fromOTD/

LIS serves as a benchmark for how realistically the cli-

mate models capture broad-scale precipitation physics.

FIG. 2. Spatial correlation coefficient between observed lightning

flash rate density from OTD/LIS, observed precipitation from

GPCP, and precipitation, convective precipitation, and convective

mass fluxes simulated by CMIP5 climate models used in this study.

Comparisons are presented for (a) land and (b) ocean grid cells.

High spatial correlation coefficients indicate that the location of

lightning and the corresponding comparison fields are similar.
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From Fig. 2, P-land and P-ocean from GPCP are signif-

icantly correlated with lightning (at greater than 95%

confidence), but while the linear relationship explains

21% of the variance for land, the same relationship ex-

plains only 6% of the variance in the ocean-based data.

Climate model P-land and P-ocean correlations with L

are consistent with GPCP, with 18% of variance ex-

plained over land and 2% over oceans. Thus, P is gen-

erally not linearly related to L, but GPCP and climate

models correlations are similar. This at least suggests that

climate models capture broad-scale precipitation physics.

The expectation is that linear models using C and M

would offer greater explanatory power. At local- and

storm-level scales, C and L are related (Petersen and

Rutledge 1998), so it is reasonable to expect that if

model physics correctly capture large-scale patterns that

emerge from microphysical processes, the correlation

would generally increase for both the land- and ocean-

based comparisons.

Figure 2 shows that, with the exception of NASA

GISS-E2-R and GISS-E2-H over land, linear correla-

tion of C with L is greater than that of P with L. Fur-

thermore, the linear correlation of M with L, for the 10

climate models that archived M at CMIP5, also offers

higher explanatory power than the correlation of P with

L over land and ocean. The only exception to this is the

BCC_CSM1.1(m) climate model.

Overall, the results in Fig. 2 offer some confidence

that even with all the limits of climate models (poor

spatial and temporal resolution compared with thunder-

storm time and space scales, parameterization of physical

processes that are key to lightning formation, etc.), the

simulated physics of the climate models behave in a way

that is consistent with observations fromGPCP and from

the general mechanism for lightning formation (Blyth

et al. 2001; Deierling et al. 2005; Petersen and Rutledge

1998; Petersen et al. 2005). Namely, it appears that C and

M are better predictors ofL thanP. Furthermore, climate

models and GPCP show that while P is not a good pre-

dictor for L, they are similarly inaccurate.

However, the linear model captures less than half of

the variance of L for both C and M (square of the cor-

relation coefficients in Fig. 2). The climate model aver-

age linear correlation coefficients of C-land and M-land

withL-land are 0.52 and 0.58, respectively. These values

translate to 27% and 33% of variance in L-land cap-

tured, respectively. The analogous values for C-ocean

and M-ocean are 4% and 5%, respectively. Thus, while

linear correlation increases for the more convectively

oriented model output, the variance explained by a lin-

ear model is not sufficient for accurate parameteriza-

tion. A more complex empirical model is discussed in

the next section.

3. Results

a. Lightning and convective parameters

Given the results shown in Figs. 1 and 2, this study first

presents the discussion of the relationship between land-

based mean monthly maps of lightning flash rate density

from OTD/LIS (L-land) and land-based mean monthly

maps of total precipitation (P-land), convective pre-

cipitation (C-land), and convective mass flux at the 0.44

hybrid-sigma pressure level (M-land). The relationship

between ocean-based lightning (L-ocean) and convec-

tive parameters (P-ocean, C-ocean, M-ocean) is much

weaker (Fig. 2b), but about 80% of lightning occurs over

land (Allen and Pickering 2002; Cecil et al. 2014). Re-

gardless of the lower accuracy over oceans, the globally

complete results are presented below as well.

P-land, C-land, andM-land are binned, and the mean

and a range of statistical percentiles (5th, 25th, 50th,

75th, 95th) of L-land in those bins are calculated. Bin-

ning is necessary to account for the heavily weighted

frequency of occurrence of small values of all pre-

cipitation types, and to a lesser degree, values ofM-land

and M-ocean (Fig. 3). Figure 3 shows that ;90% of

P-land from GPCP are less than 5.5mmday21, and

consistent with the low P-land climate model bias

(Fig. 1b), ;90% of P-land from models are less than

4mmday21. For C-land, ;90% of the simulated values

are less than 3mmday21, and ;65% of C-land are less

than 0.25mmday21. TheM-land values are more evenly

distributed than P-land and C-land, but they are still

heavily biased (in terms of frequency of occurrence) to

small values (Fig. 3). About 90% of M-land values are

less than 16.5 kgm22 h21, while 50% of M-land values

are less than 1.5 kgm22 h21. Thus, themean and range of

percentiles of values ofL-land in each bin are calculated

FIG. 3.Average cumulative frequency of occurrence for values of

P-land, P-ocean, C-land, C-ocean, M-land, and M-ocean from the

climate models, and P-land and P-ocean from GPCP.
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to understand the variability in L-land in each bin.

Identical analyses are done for L-ocean with P-ocean,

C-ocean, and M-ocean.

The analysis based on the mean values of L-land in

each bin is shown in Fig. 4 for each climate model

(various thinner lines) and for the median of all the

climate model values (thick black lines). GPCP is shown

(red) in Fig. 4a for the L-land dependence on P-land.

The average agreement between GPCP and the multi-

model median is;10%, which is calculated as the mean

percent difference of the thick black line from the thick

red line in Fig. 4a. Climate models in general begin to

diverge at 6–7mmday21, but over 90% of P-land values

are less than 6mmday21 (Fig. 3). Thus, to first order, the

relationship of L-land and P-land is independent of

whether P-land is from observations or climate models

at the monthly time scale. The agreement with GPCP

lends support to the idea that climate models are re-

alistically capturing precipitation physics and that re-

lationships between L and other convective parameters

could be interpreted as realistic as well.

Figure 4b shows howL-land andC-land are related. The

multimodel median value is shown again as a heavy black

line. Several climate models (CMCC-CM, GISS-E2-H,

FIG. 4. The mean relationship between mean monthly L-land (flashes per square kilometer per month) and

binned precipitation for (a) P-land (mmday21), (b) C-land (mmday21), and (c) M-land (kgm22 h21). The mul-

timodel median line (thick black line) is based on the values from the individual climate models listed in the legend.

The mean value from the GPCP observationally based P-land dataset (thick red line) is also shown.

440 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32



GISS-E2-R, and for larger values of C-land, GFDL

CM3) diverge quickly from the multimodel median but

the statistical median is not sensitive to outliers. Also,

NCARCCSM4 values ofC-land were, on average, three

orders of magnitude less than those reported by any

other model (Table 1), so this climate model was ex-

cluded entirely from Fig. 4b. Overall, climate models

tend to capture the physical connection between con-

vection and lightning, as is evidenced by the abrupt rise

in L-land as C-land increases from 0mmday21.

Models tend to behave similarly for C-land

, 5mmday21 (accounting for about 94% of cases) and

then diverge for larger values (the remaining 6%). L-land

increases approximately linearly forC-land, 5mmday21

and then decreases by about 25% for C-land between 5

and 10mmday21. L-land remains relatively constant at

;1.5 flashes per square kilometer per month for larger

(.10mmday21) monthly C-land values, which is similar

to the behavior of L-land versus P-land (Fig. 4a).

Figure 4c shows how L-land and M-land are related.

The relationship is, as the results of the linear model test

in section 2c suggest, more linear than those shown in

Figs. 4a,b. Fewer climate models contribute to the mul-

timodel median value, but only the BCC CSM 1.1, BCC

CSM 1.1m, and NCARCCSM4 seem to exhibit different

behavior of L-land for M-land , 6kgm22 h21, which

account for about 75% of the simulated values ofM-land

(Fig. 3). For M-land . 21kgm22 h21, L-land is roughly

constant at ;2 flashes per square kilometer per month.

The relatively constant (or decreasing) L-land at

larger values of the mean monthly values of P-land and

C-land in Figs. 4a,b is a feature of the model median

curves, and to a lesser degree the model median curve

for M-land. The GPCP relationship with L-land

(Fig. 4a) is nearly the same as the climate model P-land

relationship with L and provides observational support

that this feature is not an artifact of the climate models.

For reasons that are unclear, and perhaps better treated

by a dedicated study, there seems to be a ‘‘threshold’’ of

precipitation or convective precipitation beyond which

lightning flash rate density remains constant. Convective

mass flux seems less prone to this threshold effect, al-

though the model median curve (Fig. 4c) does suggest

nearly constant L-land beyond about 21 kgm22 h21. For

individual climate models in Fig. 4c, there are some

climate models that exhibit a threshold effect [NASA

GISS models, IPSL models, BCC_CSM1.1(m)], while

other models do not exhibit a tapering-off effect at high

values of M-land (CSIRO, GFDL, NCAR, BCC_

CSM1.1, MIROC5). Field studies may be able to sub-

stantiate whether a physical basis for this threshold ef-

fect exists. In all cases, the high values of P-land,C-land,

and M-land that suggest a threshold effect account for

only a small subset (,10%) of the total number of oc-

currences (Fig. 3).

b. Sensitivity of lightning dependence on convective
parameters

The statistical ranges of L-land for each of the bins

(section 3a) of P-land, C-land, andM-land are shown in

Fig. 5, and the range of L-land in each case represents

the sensitivity ofL-land to the particular value ofP-land,

C-land, and M-land. For example, the multimodel me-

dian curves for the interquartile range (25th–75th per-

centiles) in Fig. 5a suggest that at P-land5 5mmday21,

50% of L-land values are between 0.12 and 2.1 flashes

per square kilometer per month, with a mean value of

1.4 flashes per square kilometer per month. In Fig. 5b,

when C-land 5 5mmday21, 50% of L-land values are

between 0.62 and 2.8 flashes per square kilometer per

month, with a mean value of 2.0 flashes per square ki-

lometer per month. Similar ranges can be deduced in

Fig. 5c for L-land versus M-land.

The ranges in Fig. 5 can generally be interpreted as

uncertainty. At any particular value ofM-land (Fig. 5c),

for example, the results suggest that there is a wide range

of L-land values that occurs based on the OTD/LIS

dataset. The reason for this variability is unclear, but it

likely results from the correspondingly wide range of

microphysical to macrophysical processes necessary to

produce lightning beyond simply the presence of con-

vective precipitation or sufficient mass flux (Blyth et al.

2001; Deierling et al. 2005; Petersen and Rutledge 1998;

Petersen et al. 2005; Williams 2005). Regardless, the

variability in Fig. 5 helps to define the limits of inter-

preting the results of this study. In the end, the mean

values shown in Fig. 4 and the thicker black lines in Fig. 5

by definition will tend to reproduce the mean lightning

maps better than the extremes that may occur from one

month to the next. Understanding the driving factors in

the extremes in lightning flash rates—at monthly time

scales—requires a study at finer time and space scales,

which is beyond the scope of this study.

c. Lightning over the oceans

Figure 6 shows the mean L-ocean dependence on cli-

mate model convective parameters. The model median

curve ofL-ocean versusP-ocean (Fig. 6a) agrees to within

;50% compared to the corresponding curve usingGPCP.

This same comparison for L-land versus P-land (section

3a) results in ;10% difference (Fig. 5a). The poorer

agreement in Fig. 6a is consistent with Fig. 1 discrepancies

and is mainly due to large percentage errors at P-ocean

, 3mmday21. Remarkably, there is very little model

divergence atP-ocean, 3mmday21 in spite of the poorer

skill in models capturing ocean precipitation.
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Model median L-ocean remains relatively constant at

;0.1 flashes per square kilometer per month for

P-ocean . 6mmday21 (Fig. 6a). For L-ocean versus

C-ocean (Fig. 6b), L-ocean converges on ;0.1 flashes per

square kilometer per month for C-ocean . 3mmday21.

Figure 6c shows the relationship between L-ocean and

M-ocean. In this case, L-ocean linearly increases for

M-ocean , 15kgm22h21 before linearly decreasing and

then remaining relatively constant. In all cases, L-ocean

values remain roughly an order of magnitude less than

L-land values (Fig. 4) for equivalent bins of P, C, and M

even though the cumulative frequency of occurrence is

generally similar for ocean and land (Fig. 3), especially for

M-land and M-ocean.

d. Robust linearity in lightning dependence on
convective parameters

There is evidence of a robust linear feature in the de-

pendence of lightning on the different convective param-

eters. In Figs. 4b, 5b, L-land increases linearly with

increases in C-land for values of C-land less than

4–5mmday21 (Fig. 5b). This linear behavior is more evi-

dent forM-land (Fig. 5c) for values less than 15kgm22h21.

Figure 4 shows that most climate models seem to exhibit

FIG. 5. The mean and statistical percentiles of the range of values of L-land (flashes per square kilometer per

month) for each value of (a) P-land (mmday21), (b) C-land (mmday21), and (c) M-land (kgm22 h21). The mul-

timodel median is shown in shades of black, GPCP is the dark gray solid line near the mean values curve in (a). The

polynomial parameterizations [e.g., (1), Table 2] for each percentile are overlaid as dashed lines.
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this linearity but to varying degrees depending on the

model.

This linearity could be an important feature, since

Fig. 3 shows that;90% of the climate model convective

precipitation values (C-land, C-ocean) are less than

;5mmday21, and ;90% of climate model convective

mass flux values (M-land, M-ocean) are less than

;15kgm22 h21. A major component of the mean

monthly, coarse grid-scale lightning can then be cap-

tured by this linear dependence of lightning on simula-

tions of convective parameters. Nonlinearity in the

dependence of lightning on convective parameters

arises for the largest, and least frequently occurring,

values of C-land, C-ocean, M-land, and M-ocean.

The variance explained by a linear model of L-land

using C-land from 0 to 5mmday21 averages 86% across

the range of statistical percentiles (Fig. 5b). The vari-

ance explained by a linear model ofL-land usingM-land

from 0 to 15kgm22 h21 averages 89% (Fig. 5b). For

L-ocean, the variance explained by L-land relationships

with C-land and M-land is 72% and 80%, respectively.

Compared to the results discussed in section 2c, which

suggested a linear model is not generally sufficient, the

linearity discussed here suggests that for a limited range

FIG. 6. The mean relationship between mean monthly L-ocean (flashes per square kilometer per month) and

binned precipitation for (a) P-ocean (mmday21), (b) C-ocean (mmday21), and (c) M-ocean (kgm22 h21). The

multimodel median line (thick black line) is based on the values from the individual climate models listed in the

legend. The mean value from the GPCP observationally based P-ocean dataset (thick red line) is also shown.
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of frequently occurring values of convective pre-

cipitation and convective mass flux from the climate

models, a linearmodel is quite applicable. The nonlinear

dependence of lightning on convective parameters is

discussed in the next section.

e. Empirical lightning parameterization

Since the linear models (sections 2c and 3d) are lim-

ited in their explanatory power, a more complex model

is used to establish a more generally applicable empiri-

cal fit to the climate model relationships with OTD/LIS

data. Theoretical and field studies of thunderstorms have

shown that lightning flash rates are proportional to the

product of downward flux of solid precipitation (graupel)

and upward flux of ice crystals into the anvil of a storm

(e.g., Blyth et al. 2001; Deierling et al. 2008). The linear

models (sections 2c and 3d) suggest that climate models

capture this fundamental relationship to some degreewith

the less precise measures of convection via C and M, but

the spatial and temporal scales in this study require em-

pirical analysis for the most general application. Namely,

climate model spatial resolution does not resolve in-

dividual clouds, let alone individual thunderclouds.

Although there is no theoretical basis, an empirical

polynomial fit to the relationship between L and both C

and M has been discussed previously in the context of

ground-based lightning data from the U.S. National

Lightning Detection Network (Orville et al. 2011) and

a high-temporal-resolution (;6 hourly output) general

circulation model output (Allen and Pickering 2002).

This study tests multiple polynomial fits to the re-

lationship between global satellite-based lightning data

from OTD/LIS and global climate model output.

Polynomial functions ranging from first to ninth de-

gree were tested as fits to the thick black lines shown in

Figs. 4–6. To select a specific polynomial fit, the root-

mean-square (RMS) difference is calculated as the dif-

ference between the multimodel median curve (e.g.,

solid lines in Fig. 5) and the fit curve (e.g., dashed lines in

Fig. 5). Figure 7a shows this RMS difference as a func-

tion of polynomial degree for C-land and M-land, and

the average of the two curves as a black line. Figure 7b

shows the percent improvement in the RMS difference

as a function of polynomial degree, calculated as the

change in RMS difference compared to the previous

value. In both cases, the values for first- and second-

degree polynomial fits are intentionally not shown since,

except for M-land, the values are too large.

Overall, the average fit to the multimodel median

curve improves as the polynomial degree increases from

first to fourth degree, and more modestly from fourth- to

fifth-degree polynomial. Further improvements beyond

a fifth-degree polynomial were less than 10% on average.

Polynomial fits greater than fifth degree are more likely

to fit the noise in themodelmedian curves rather than the

overall signal. A fourth-degree polynomial fit has been

used previously (Allen and Pickering 2002), but because

statistical improvements were evident for a more com-

plex fifth-degree polynomial (especially for C-land,

Fig. 7b), the focus in this study is on a fifth-degree poly-

nomial fit. The choice is somewhat subjective, and strives

to use a single-polynomial fit that balances RMS im-

provements and model complexity.

The functional form used in this study to understand

how L and convective parameters are related is

L5 a1X1 a2X
2 1 a3X

31 a4X
41 a5X

5 , (1)

where L is the monthly lightning flash rate density

(flashes per square kilometer per month) andX is one of

either P (mmday21), C (mmday21), or M (kgm22 h21)

for land or ocean grid cells, and a1–a5 are the fit co-

efficients (Table 2). The curves from (1) using a relevant

FIG. 7. The (a) RMS difference between the multimodel median

curve and empirical polynomial fit as a function of increasing

polynomial degree, and (b) percent change in the RMS difference

calculated as the RMS difference at a specific polynomial degree

compared to the RMS difference from the previous polynomial

degree.
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coefficient from Table 2 are shown in Fig. 5 for the land-

based component of the study. Ocean-based results are

similar; coefficients for those fits are in Table 2. As

a physically based constraint, the constant term in the

polynomial is set to zero such that when P, C, or M is

zero, then L is zero. The high-degree polynomial func-

tion is extremely flexible, but for P and C, the fit is

limited to an upper limit of 14mmday21, as is evident in

Figs. 5a,b. The upper limit is chosen from the GPCP

data, which suggest that 99.6% of observed monthly

total precipitation is less than 14mmday21. The full

range ofM is used in the empirical fit (0–36kgm22 h21).

f. Evaluation of the empirical lightning
parameterization

To evaluate the parameterization, L-land and

L-ocean are calculated using the values in Table 2 and

(1), and the complete (land–ocean) map of lightning

flash rate density derived from the parameterization is

first compared against observed lightning from OTD/

LIS. To harmonize the comparisons and to facilitate

a multimodel median set of convective parameters (P,

C, M), the monthly climate model output fields are in-

terpolated to a common 28 3 2.58 latitude–longitude grid
(i.e., GFDL CM3 from Table 1) for this analysis. Total

lightning flash rate density is then from the combination

of L-land and L-ocean determined by Table 2 and (1).

Mean annual L from OTD/LIS and L from the pa-

rameterizations using C and M (Table 2) are shown in

Figs. 8a–c, using a logarithmic scale for lightning flash

rate density. Values of L derived from P are not

shown—P is a poor predictor ofL as discussed above—

and values of L from C and M are both shown, since

not every climate model includes M as output (Table

1). Statistics at the top of the mean annual lightning

maps (Figs. 8a–c) are the mean annual flash rates for

the globe, land, and ocean (in units of flashes per sec-

ond), and the spatial correlation coefficient (r) for

globe, land, and ocean (Figs. 8b–c compared against

Fig. 8a).

Mean annual L from OTD/LIS is well captured. The

global flash rate from OTD/LIS is 47 flashes per second

(consistent with Cecil et al. 2014), while the parame-

terizations usingC andM produce a global mean annual

flash rate of 50 and 44 flashes second, respectively. Land

and ocean mean annual flash rates are also similar to

OTD/LIS.

The parameterization underestimates lightning off

the eastern coasts in the Northern and Southern Hemi-

sphere midlatitudes and off the western coasts in the

deep tropics, while overestimating lightning in much of

the open ocean (Fig. 8). Outside of the intertropical

convergence zone (ITCZ), the spatial patterns over the

oceans are captured by the parameterization. The dis-

crepancies in magnitude may be driven by coastal dy-

namics that are poorly captured by coarse-resolution

global climate models such as sea- and land-breeze circu-

lations and frontal passages. To address this discrepancy,

vertically resolved ice mass (Blyth et al. 2001; Deierling

et al. 2008), which is unavailable from theCMIP5 archives,

could be useful, especially in the ITCZ. A functional de-

pendence on land–ocean thermal contrasts (Williams and

Stanfill 2002) may also be an interesting way to improve

the ocean-based parameterization.

Over land, mean annual lightning flash rate density is

underestimated over Argentina, much of Africa, the

southern United States, Central America, and northern

India (Fig. 8). This underestimation is likely related to

the coarse time resolution of the data in this study

compared to the high fraction of annual lightning that

occurs in the relatively less frequent large thunder-

storms (Cecil et al. 2005; Zipser et al. 2006). Land sur-

faces in the northern latitudes such as Northern Europe,

northernNorthAmerica, and northernRussia are better

captured by the parameterization usingM thanC. Mean

annual lightning over the United States is also better

captured by the parameterization using M than C.

Figures 8d,e show the spatially explicit temporal cor-

relation coefficients for each grid box. This is a calculation

of the 12-month temporal correlation between OTD/LIS

TABLE 2. Fit coefficients for the empirical model (L5 a1X1 a2X
21 a3X

31 a4X
41 a5X

5; see text) for mean lightning flash rate density

that occurs as a function of P, C, or M over land (P-land, C-land, M-land) and ocean (P-ocean, C-ocean, M-ocean). Replace X in the

equation with P-land, C-land, M-land, or P-ocean, C-ocean, M-ocean, where precipitation rates (mmday21) are the monthly averaged

values, while convective mass flux (kgm22 h21) is the monthly value through the 0.44 hybrid-sigma pressure level. The output is monthly

lightning flash rate density (flashes per square kilometer per month).

Input variable a1 a2 a3 a4 a5

P-land (mmday21) 1.43 3 1021 8.01 3 1022 21.52 3 1022 9.11 3 1024 21.82 3 1025

C-land (mmday21) 6.54 3 1021 22.86 3 1022 29.63 3 1023 1.01 3 1023 22.69 3 1025

M-land (kgm22 h21) 1.31 3 1021 21.93 3 1023 8.87 3 1025 26.84 3 1026 1.17 3 1027

P-ocean (mmday21) 3.26 3 1022 27.16 3 1023 1.02 3 1023 27.31 3 1025 1.93 3 1026

C-ocean (mmday21) 5.11 3 1022 21.04 3 1022 1.09 3 1023 25.66 3 1025 1.17 3 1026

M-ocean (kgm22 h21) 1.06 3 1022 6.71 3 1024 28.58 3 1025 2.41 3 1026 21.97 3 1028
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meanmonthly lightning and lightning derived fromC and

M. The statistics at the top of Figs. 8d,e are the spatially

averaged temporal correlation coefficients for globe,

land, and ocean, respectively.

The parameterization based onC captures seasonality

in L (temporal correlation) with better than 95% con-

fidence in 63% of land and 32% of ocean surfaces

(Fig. 8d), while Fig. 8e shows that seasonality in L is

captured with 95% confidence by the M-based param-

eterization for 69% of land and 30% of ocean surfaces.

The seasonality of ocean-based lightning is poorly cap-

tured by the parameterization, but the temporal distri-

bution of land-based lightning is well captured.

A final note about the results is that limiting the

analysis of the dependence of L on C to the 10 climate

models that output both C and M (Table 1) does not

FIG. 8. Maps of mean annual lightning flash density (flashes per square kilometer per month) from (a) OTD/LIS, (b) the parameter-

ization based on C-land and C-ocean, and (c) the parameterization based on M-land and M-ocean. Also shown are maps of seasonal

correlation coefficients between OTD/LIS mean monthly lightning and (d) parameterized lightning based on C-land and C-ocean and

(e) parameterized lightning based on M-land and M-ocean. Statistics at the top of the lightning maps (a)–(c) are the mean annual flash

rates for the globe, land, and ocean (flashes per second), and the spatial correlation coefficient for globe, land, and ocean between OTD/

LIS and the derived lightning maps is shown in (b) and (c). The statistics at the top of (d) and (e) are the spatially averagedmean seasonal

correlation coefficients for the globe, land, and ocean.
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change any of the results. The spatiotemporal correla-

tion coefficients and mean annual lightning flash rates

are nearly identical to those shown in Fig. 8 and dis-

cussed above.

4. Discussion

Over land surfaces, the parameterization tends to

underpredict L in areas with the most lightning, such as

the tropics, and to overpredict L in areas with the least

lightning, such as northern boreal forests (Figs. 8a–c).

These discrepancies could partly be attributed as an

artifact of parameterizing global lightning against the

mean monthly value of lightning as opposed to lightning

that varies on an annual basis. A parameterization to the

mean will tend to reproduce the mean as opposed to the

low- and high-magnitude lightning flash rates. This idea

is evident by using the statistical percentiles shown in

Fig. 5. Although this is not shown, parameterization to

each percentile of lightning produces nearly identical

spatial and temporal correlation coefficients as those

shown for the mean case in Fig. 8 (e.g., 0.74 spatial

correlation in Fig. 8c, 0.62 temporal correlation for land-

based lightning in Fig. 8e). The lightning flash rate

density simply scales up and down relative to the mean.

Thus, parameterization to high lightning flash rate

density (say, 95th percentile) tends to produce higher

lightning flash rate density without affecting the spa-

tiotemporal patterns. The same is true for other per-

centiles. An improved parameterization would then

result from focusing on a method to increase the spa-

tiotemporal correlation.

One method to improve spatial and temporal corre-

lation is to derive a parameterization using a lightning

time series as opposed to a mean monthly climatology.

Although LIS is not global, Cecil et al. (2014) discuss the

interannual variability in monthly lightning flash rates

from the LIS time series and find that there is no sig-

nificant trend over the last decade, and very little in-

terannual variability. In a regional analysis of LIS data

from the past decade, however, Albrecht et al. (2011)

found that lightning trends were negative in the tropics

and subtropics viewed by TRMM. Regardless, a com-

plete global time series of lightning is not yet available

for testing. North American Lightning Detection

Network (NALDN; Orville et al. 2011), World Wide

Lightning Location Network (WWLLN; Lay et al.

2004; Virts et al. 2013), or Global Lightning Dataset

(GLD360) (Pohjola and Mäkelä 2013; Said et al. 2010,

2013) data could act as independent datasets for testing

global climate model parameterization, but each dataset

has limits. NALDN is limited mainly to cloud-to-ground

lightning in Canada and the United States. WWLLN

sensor coverage has only been adequate for global

lightning detection since about 2008 (Abarca et al.

2010). GLD360 has only been in operation since

about 2009.

Another method to improve the spatiotemporal cor-

relations between derived and observed lightning is

by increasing the complexity of the parameterization

beyond simplyP,C, orM. Convective regimes and land–

ocean lightning biases are aspects that the parameteri-

zation oversimplifies. Shifting convective regimes in

places like the Amazon (Williams et al. 2002) may be-

come evident by evaluating the seasonal dependence of

the coefficients of the parameterization. Vertically re-

solved ice mass flux, which is critical to the charging

mechanism that produces lightning (Blyth et al. 2001), is

unavailable from CMIP5 model output archives, but it

may be less dependent on land–ocean biases than con-

vective mass flux. Some CMIP5 climate models likely do

save vertically resolved ice mass flux as model output for

diagnostic purposes outside of the CMIP5 data portal.

The seasonality of lightning is best captured by pa-

rameterization using M (Fig. 8e), with the western

United States, India, Australia, and Southeast Asia

showing improvements compared to the parameterization

usingC (Fig. 8d). Seasonality is notwell captured by either

parameterization for much of the oceans. Over land,

equatorial South America over the Amazon is poorly

captured by both parameterizations, suggesting that cli-

matemodels are not capturing the regional characteristics

of convection there. The known maritime-like and land-

like convective regimes of equatorial South America

(Williams et al. 2002) could also motivate further study

into the existence of regional or seasonal dependencies of

the parameterization coefficients.

Regional discrepancies could also be due to inaccur-

acies in climate model simulations of precipitation (e.g.,

Meehl et al. 2012; Randall et al. 2007) that arise from

subgrid-scale convective processes that are important in

determining precipitation rates and difficult to accu-

rately capture at the spatial scales involved in climate

modeling. The complex hydrological cycle over the

Amazon rain forest (Williams et al. 2002), the monsoon

seasonality of India, coastal transition regions, and to-

pographic flow regimes all are involved in determining

the accuracy of global and regional precipitation simu-

lated by climate models (e.g., Donner et al. 2011;

Dufresne et al. 2013; Gent et al. 2011; Wu et al. 2010). For

example, a coastal region like the westernUnited States,

where lightning plays an important role in spring and

summertime fire activity, may be missing some of the

topographic-driven convective precipitation that drives

summer rains while at the same time overestimating the

winter rains from Pacific cyclones. Both would act to
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decrease the seasonal correlation and to increase un-

certainty in the parameterization in that region.

Ocean-based lightning is often poorly simulated. This

is likely due to the fact that seasonal ocean-based pre-

cipitation rates from climate models are poorly simu-

lated when compared with GPCP (Fig. 1), and that the

lightning frequency is also much smaller over oceans

than land (Cecil et al. 2014; Pessi and Businger 2009).

Discrepancies between simulated and observed mari-

time lightning downstream of land surfaces in the tropics

and midlatitudes are one problem with the parameteri-

zation in this study. This touches on the large land–

ocean ratio of lightning flashes (e.g., Allen and Pickering

2002; Cecil et al. 2014; Williams and Stanfill 2002).

Namely, the choice for calling a model grid cell ‘‘land’’

or ‘‘ocean’’ (section 2a) could be relaxed further to allow

‘‘near land’’ grid cells to be considered land or to be

parameterized independently of land and ocean. Allen

and Pickering (2002) suggested this as a strategy to im-

prove their parameterization, but they pointed out that

this classification may be too arbitrary to be justified

(i.e., overfitting).

The near-land maxima (east of the United States,

southern Africa, South America, and Australia, and

west of Central America) is also accompanied by near-

land/coastal minima in lightning (west of many of those

continents and countries). Thus, overclassification of

land and ocean would result in a middle-ground pa-

rameterization. Allen and Pickering (2002) found that

convective mass flux was a better predictor of lightning

in those near-land locations, and the results of this study

agree. For example, northwestern North America and

southern Alaskan coastlines have a band of high lightning

flash rate density when using C to parameterize lightning

(Fig. 8b), but this high lightning band is muted when using

M (Fig. 8c). Similarly, coastlines and maritime-like con-

vective regimes (Williams and Stanfill 2002) such as Scan-

dinavia, theBritish Isles, southwestern SouthAmerica, and

New Zealand are better captured usingM to parameterize

lightning. In all those examples, however, the parameteri-

zation still overestimates lightning.

Previous studies have discussed global lightning pa-

rameterizations (Allen and Pickering 2002; Price and

Rind 1992; Tost et al. 2007). Allen and Pickering (2002)

analyzed multiple schemes for parameterizing global

lightning from general circulation model output that

included convective precipitation (C), cloud-top height,

and convective mass flux (M), and found that M cap-

tured global lightning most accurately, while cloud-top

height was least accurate. Two important notes about

Allen and Pickering (2002) are that they compared re-

sults against OTD from a single year (1996) and that

their parameterizations were against cloud-to-ground

lightning and, as such, had to be scaled using cloud-top

height (Price and Rind 1993) to draw a comparison

with total lightning from OTD. With those notes in

mind, Fig. 9 displays global- and zonally averaged flash

rates using zonal bands that are identical to those used

by Allen and Pickering (2002), so that a direct com-

parison of results from this study with their results can

be made.

The results in Figs. 8, 9 suggest that M is the most

accurate way to parameterize global lightning on

a monthly time scale. The accuracy of zonally averaged

lightning flash rates is evaluated against OTD/LIS in

Fig. 9. Average RMS differences from OTD/LIS are

20%–60% less for lightning derived from the parame-

terization withM than forC except for the zone from the

equator to 208N (Fig. 9d), where average RMS is 4.0

flashes per second forM and 3.8 flashes per second for C

(about 5% larger). Temporal correlation with OTD/LIS

improves for all cases except the global average (Fig. 9a)

using the parameterization based on M. Figure 9 also

shows that the results of this study are in broad agree-

ment with those of Allen and Pickering (2002) in thatM

is the best metric for parameterizing lightning in climate

or global-scale models. Unlike Allen and Pickering

(2002), C is shown to be a reasonable second choice for

determining lightning, which is useful if M is not avail-

able as output (Table 1). The improvement in deriving

lightning from C since Allen and Pickering (2002) may

be a result of general improvements in climate model

precipitation physics over the past two decades (e.g.,

Donner et al. 2011; Dufresne et al. 2013; Gent et al. 2011;

Randall et al. 2007; Wu et al. 2010).

The Southern Hemisphere tropics (Fig. 9c) has the

poorest temporal correlation with OTD/LIS. Lightning

derived from the parameterization lags lightning from

OTD/LIS by one month in the zonal region and also, to

a lesser degree in the Northern Hemisphere tropics

(Fig. 9d). The lag in flash rates is largely driven by the

land-based component of the parameterization, since

ocean-based lightning, even in a region with a large

fraction of surface area being ocean, contributes 5–10

times less lightning than land. Interestingly, Allen and

Pickering (2002) used a different type of global model,

but their results showed the same lag in the tropics

(Fig. 9) when compared to OTD/LIS. Most likely, this

lag is a result of the relatively poor ability of climate

models to capture precipitation physics in the tropics,

and in particular over the unique convective regimes

(Williams et al. 2002) over equatorial South America.

Figure 1b shows that temporal correlation of land-based

precipitation with GPCP depends strongly on the

model, which suggests some of the problems in climate

model simulation of land-based tropical precipitation.
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An interesting and potentially important feature that

emerges from the lightning parameterization is linearity

over a subset of the full range of values of C andM from

climate models. This linearity is prominent in Figs. 4–6,

and is also apparent in the observationally based anal-

ysis of OTD/LIS compared with GPCP in Figs. 4a, 6a for

total precipitation greater than ;2mmday21. The ob-

servational basis suggests that the feature is not purely

a climate model artifact, since OTD/LIS and GPCP are

entirely independent of climate model simulations. This

linearity suggests that lightning increases proportionally

with C and with M for C , 4–5mmday21 and M , 15–

16kgm22 h21. As Fig. 3 shows,;90%ofC andM values

simulated by the climate models are less than those

upper limits to linearity.

The results in this study suggest lightning flash rate

changes are proportional to changes in relatively small

values of C and M. Climate models from the previous

CMIP show that M is expected to decrease 10%–20%

over the next century (Vecchi and Soden 2007), and

observational evidence shows lightning trends from LIS

are generally negative over the last decade (Albrecht

et al. 2011). However, the climate model trends tend to

reflect changes in M driven by the intense convection in

the tropics (Vecchi and Soden 2007), while LIS is nec-

essarily tropical. The linearity could then be a valuable

way to assess how climate model projections of con-

vection will impact future lightning distributions at both

global and regional spatial scales.

5. Summary

This study examines whether convective parameters

simulated using current CMIP5 climate models can be

used to derive lightning. The physical basis for this pa-

rameterization emerges from theoretical, field, and

higher-resolution modeling studies of thunderstorm

dynamics that suggests that the mass flux of ice in the

presence of supercooled water is related to lightning

flash rate (Barthe et al. 2010; Blyth et al. 2001; Deierling

et al. 2005). The approach in this study, however, uses

mean monthly lightning and climate model output.

FIG. 9. Mean monthly total (land and ocean) lightning flash rates (flashes per second) from OTD/LIS (black line), the lightning pa-

rameterizations usingC-land andC-ocean (red solid line) andM-land andM-ocean (blue solid line), and lightning parameterizations from

Allen and Pickering (2002) using convective precipitation (red dashed line) and convective mass flux (blue dashed line). Also shown are

the 1996 OTD lightning averages from Allen and Pickering (2002). The averages are shown for the (a) globe, (b) southern extratropics

(908–208S), (c) southern tropics (208S to the equator), (d) northern tropics (equator to 208N), and (e) northern extratropics (208–908N).
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Although climate models are not able to resolve the

time and space scales associated with a single thunder-

storm, and are generally not intended to simulate day-

to-day weather, the multiyear mean monthly convective

parameters like convective precipitation and convective

mass flux should, in principle, be related to the average

lightning observations.

The OTD/LIS satellite-based global lightning data

and output from 17 climate models (Table 1) are used

to test the hypothesis that monthly convective pa-

rameters can be used to predict lightning. GPCP-

observed global monthly precipitation data are also

used to provide some observational evaluation of the

climate model precipitation physics. A fifth-order

polynomial function is used to capture the nonlinear

relationship between monthly lightning and monthly

convective parameters. The climate model convective

parameters this study focuses on are convective pre-

cipitation and the upward convective mass flux at

a pressure level of;427 hPa (or near the hybrid-sigma

pressure level of ;0.44).

Climate model convective mass flux is the best pre-

dictor of lightning, as determined by spatiotemporal

correlation and magnitude comparisons with OTD/LIS.

Overall, lightning derived from the convective mass flux

parameterization captures about 55% of the spatial

variability in mean annual lightning and global flash

rates are within about 6% of OTD/LIS. The parame-

terization works better over land and tends to under-

predict lightning over regions with the highest flash

rates, while overpredicting lightning for regions with the

lowest flash rates.

A feature of the relationship between monthly light-

ning and monthly convective parameters is linearity for

the low values of convective precipitation and convec-

tivemass flux.Whereas a nonlinear function is needed to

parameterize the full range of simulated convective

precipitation and convective mass flux, a linear function

captures 70%–90% of the OTD/LIS variability for

a range of convective precipitation and convective mass

flux values that account for ;90% of the total range.

This linear characteristic of the relationship between

lightning and climate model convective parameters is

clear in Figs. 4b,c. If convective precipitation and con-

vective mass flux change in the future as a result of the

perturbations to the Earth system that are already un-

derway (e.g., Christensen et al. 2007), then the linear

dependence of lightning on those convective parameters

should be considered.

The parameterization in this study is immediately

relevant to communities of global climate modelers.

Paleo, historical, and projection studies using climate

models can all take advantage of the results to create

simulated lightning maps for studies of the time history

of lightning distributions and at least relative changes in

magnitude. Global fire modeling is physically confined

to land but logistically confined to the mean monthly

climatology from OTD/LIS. Hence, this parameteriza-

tion would likely be a way to test how variability in

lightning affects global fire distributions over long time

scales (Kloster et al. 2010; Li et al. 2012; Pechony and

Shindell 2009; Thonicke et al. 2010). Considering that

global chemical modeling is a prominent reason for the

development of lightning parameterizations (e.g., Allen

and Pickering 2002; Price and Rind 1992; Price et al.

1997; Tost et al. 2007), the results in this study are highly

relevant in determining monthly lightning contributions

to the nitrogen cycle.

The methods in this study are readily adaptable to

changes in climate model output, specific climate model

or global model experiments, or changes to the avail-

ability or quality of lightning data. As climate models

improve simulation of microphysical and precipitation

processes (Lebsock et al. 2013), the parameterization

in this study can be revisited. Global climatemodels are

used in this analysis, but output from a wider range in

models (such as cloud-resolving models, regional cli-

mate models, or Earth system models) could be used as

a basis for the parameterization. The OTD/LIS dataset

continues to develop in size and quality (e.g., Cecil

et al. 2014) and may be used to further test the ro-

bustness of the parameterizations. Additional satellite-

based (Liu et al. 2011) or ground-based (Orville et al.

2011) datasets could also supplement the OTD/LIS

dataset, especially at high latitudes where coverage is

limited to the OTD observational period. Thus, im-

provements or changes in any aspect of the observa-

tional or simulations can be incorporated to produce

a new statistical parameterization using methods dis-

cussed in this study.

Acknowledgments. Thanks go to CMIP and the cli-

mate modeling groups (Table 1) for making their

model output available. For CMIP, the U.S. De-

partment of Energy’s PCMDI provided coordinating

support and led development of software in-

frastructure in partnership with the Global Organiza-

tion for Earth System Science Portals. Thanks also go

to scientists maintaining and distributing GPCP and

OTD/LIS datasets, to three reviewers for taking the

time to provide very useful and constructive feedback

through peer-review, and to Paul Ginoux and Matt

Eastin for comments on an early draft. Funding sup-

porting this research was from UNC Charlotte Geog-

raphy and Earth Sciences Department, NC Space

Grant, and NSF BCS-14364961436496.

450 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32



REFERENCES

Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau, 2010: An

evaluation of the Worldwide Lightning Location Network

(WWLLN) using the National Lightning Detection Network

(NLDN) as ground truth. J. Geophys. Res., 115, D18206,

doi:10.1029/2009JD013411.

Adler, R. F., and Coauthors, 2003: The Version-2 Global Pre-

cipitation Climatology Project (GPCP) monthly precipitation

analysis (1979–present). J. Hydrometeor., 4, 1147–1167,

doi:10.1175/1525-7541(2003)004,1147:TVGPCP.2.0.CO;2.

Albrecht, R. I., S. J. Goodman, W. A. Petersen, D. E. Buechler,

E. C. Bruning, R. J. Blakeslee, and H. J. Christian, 2011: The

13 years of TRMM Lightning Imaging Sensor: From in-

dividual flash characteristics to decadal tendencies. Proc. XIV

Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil,

International Commission of Atmospheric Electricity, 4 pp.

[Available online at http://ntrs.nasa.gov/archive/nasa/casi.

ntrs.nasa.gov/20110015779.pdf.]

Allen, D. J., andK. E. Pickering, 2002: Evaluation of lightning flash

rate parameterizations for use in a global chemical transport

model. J. Geophys. Res., 107, 4711, doi:10.1029/2002JD002066.

Barthe, C.,W.Deierling, andM. C. Barth, 2010: Estimation of total

lightning from various storm parameters: A cloud-resolving

model study. J. Geophys. Res., 115, D24202, doi:10.1029/

2010JD014405.

Blyth, A. M., H. J. Christian Jr., K. Driscoll, A. M. Gadian, and

J. Latham, 2001: Determination of ice precipitation rates and

thunderstorm anvil ice contents from satellite observa-

tions of lightning. Atmos. Res., 59–60, 217–229, doi:10.1016/

S0169-8095(01)00117-X.

Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Perfor-

mance assessment of the Optical Transient Detector and

Lightning Imaging Sensor. Part I: Predicted diurnal variabil-

ity. J. Atmos. Oceanic Technol., 19, 1318–1332, doi:10.1175/

1520-0426(2002)019,1318:PAOTOT.2.0.CO;2.

Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W.

Nesbitt, 2005: Three years of TRMM precipitation features.

Part I: Radar, radiometric, and lightning characteristics.Mon.

Wea. Rev., 133, 543–566, doi:10.1175/MWR-2876.1.

——, D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning

climatology from TRMM-LIS and OTD: Dataset description.

Atmos.Res., 135–135, 404–414, doi:10.1016/j.atmosres.2012.06.028.

Christensen, J. H., and Coauthors, 2007: Regional climate pro-

jections. Climatic Change 2007: The Physical Science Basis,

S. Solomon et al., Eds., Cambridge University Press, 847–940.

Christian, H. J., and Coauthors, 2003: Global frequency and dis-

tribution of lightning as observed from space by the Optical

Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/

2002JD002347.

Deierling, W., J. Latham, W. A. Petersen, S. M. Ellis, and H. J.

Christian Jr., 2005: On the relationship of thunderstorm ice

hydrometeor characteristics and total lightning measurements.

Atmos. Res., 76, 114–126, doi:10.1016/j.atmosres.2004.11.023.

——,W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008:

The relationship between lightning activity and ice fluxes in

thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/

2007JD009700.

Donner, L. J., and Coauthors, 2011: The dynamical core, physical

parameterizations, and basic simulation characteristics of the at-

mospheric componentAM3of theGFDLGlobalCoupledModel

CM3. J. Climate, 24, 3484–3519, doi:10.1175/2011JCLI3955.1.

Dufresne, J. L., andCoauthors, 2013:Climate change projections using

the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5.

Climate Dyn., 40, 2123–2165, doi:10.1007/s00382-012-1636-1.
Fiore, A. M., and Coauthors, 2012: Global air quality and climate.

Chem. Soc. Rev., 41, 6663–6683, doi:10.1039/C2CS35095E.

Flannigan, M. D., M. A. Krawchuk, W. J. de Groot, B. M. Wotton,

and L. M. Gowman, 2009: Implications of changing climate

for global wildland fire. Int. J. Wildland Fire, 18, 483–507,

doi:10.1071/WF08187.

Gent, P. R., and Coauthors, 2011: The Community Climate System

Model Version 4. J. Climate, 24, 4973–4991, doi:10.1175/

2011JCLI4083.1.

Grewe, V., D. Brunner, M. Dameris, J. L. Grenfell, R. Hein,

D. Shindell, and J. Staehelin, 2001: Origin and variability of

upper tropospheric nitrogen oxides and ozone at northern

mid-latitudes. Atmos. Environ., 35, 3421–3433, doi:10.1016/

S1352-2310(01)00134-0.

Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Im-

proving the global precipitation record: GPCP Version 2.1.

Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

Kloster, S., and Coauthors, 2010: Fire dynamics during the 20th

century simulated by the Community Land Model. Bio-

geosciences, 7, 1877–1902, doi:10.5194/bg-7-1877-2010.

Kummerow, C., and Coauthors, 2000: The status of the Tropical

Rainfall Measuring Mission (TRMM) after two years

in orbit. J. Appl. Meteor., 39, 1965–1982, doi:10.1175/

1520-0450(2001)040,1965:TSOTTR.2.0.CO;2.

Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000)

gridded anthropogenic and biomass burning emissions of re-

active gases and aerosols:Methodology and application.Atmos.

Chem. Phys., 10, 7017–7039, doi:10.5194/acp-10-7017-2010.

Lay, E. H., R. H. Holzworth, C. J. Rodger, J. N. Thomas, O. Pinto,

and R. L. Dowden, 2004: WWLL global lightning detection

system: Regional validation study in Brazil. Geophys. Res.

Lett., 31, L03102, doi:10.1029/2003GL018882.

Lebsock, M., H. Morrison, and A. Gettelman, 2013: Microphysical

implications of cloud-precipitation covariance derived from

satellite remote sensing. J. Geophys. Res. Atmos., 118, 6521–

6533, doi:10.1002/jgrd.50347.

Levy, H., II, W. J. Moxim, and R. S. Kasibhatla, 1996: A global

three-dimensional time-dependent lightning source of tropo-

spheric NOx. J. Geophys. Res., 101, 22 911–22 922, doi:10.1029/

96JD02341.

Li, F., X. D. Zeng, and S. Levis, 2012: A process-based fire pa-

rameterization of intermediate complexity in a Dynamic

Global Vegetation Model. Biogeosciences, 9, 2761–2780,

doi:10.5194/bg-9-2761-2012.

Liu, C., D. Cecil, and E. J. Zipser, 2011: Relationships between

lightning flash rates and passive microwave brightness tem-

peratures at 85 and 37GHz over the tropics and subtropics.

J. Geophys. Res., 116, D23108, doi:10.1029/2011JD016463.

Mach, D. M., H. J. Christian, R. J. Blakeslee, D. J. Boccippio, S. J.

Goodman, andW. L. Boeck, 2007: Performance assessment of

theOptical TransientDetector and Lightning Imaging Sensor.

J. Geophys. Res., 112, D09210, doi:10.1029/2006JD007787.

Meehl, G. A., and Coauthors, 2012: Climate system response to

external forcings and climate change projections in CCSM4.

J. Climate, 25, 3661–3683, doi:10.1175/JCLI-D-11-00240.1.

Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of pre-

cipitation features in the tropics using TRMM: Radar, ice scat-

tering, and lightning observations. J. Climate, 13, 4087–4106,

doi:10.1175/1520-0442(2000)013,4087:ACOPFI.2.0.CO;2.

MARCH 2015 MAG I 451

http://dx.doi.org/10.1029/2009JD013411
http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015779.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015779.pdf
http://dx.doi.org/10.1029/2002JD002066
http://dx.doi.org/10.1029/2010JD014405
http://dx.doi.org/10.1029/2010JD014405
http://dx.doi.org/10.1016/S0169-8095(01)00117-X
http://dx.doi.org/10.1016/S0169-8095(01)00117-X
http://dx.doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
http://dx.doi.org/10.1175/MWR-2876.1
http://dx.doi.org/10.1016/j.atmosres.2012.06.028
http://dx.doi.org/10.1029/2002JD002347
http://dx.doi.org/10.1029/2002JD002347
http://dx.doi.org/10.1016/j.atmosres.2004.11.023
http://dx.doi.org/10.1029/2007JD009700
http://dx.doi.org/10.1029/2007JD009700
http://dx.doi.org/10.1175/2011JCLI3955.1
http://dx.doi.org/10.1007/s00382-012-1636-1
http://dx.doi.org/10.1039/C2CS35095E
http://dx.doi.org/10.1071/WF08187
http://dx.doi.org/10.1175/2011JCLI4083.1
http://dx.doi.org/10.1175/2011JCLI4083.1
http://dx.doi.org/10.1016/S1352-2310(01)00134-0
http://dx.doi.org/10.1016/S1352-2310(01)00134-0
http://dx.doi.org/10.1029/2009GL040000
http://dx.doi.org/10.5194/bg-7-1877-2010
http://dx.doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
http://dx.doi.org/10.5194/acp-10-7017-2010
http://dx.doi.org/10.1029/2003GL018882
http://dx.doi.org/10.1002/jgrd.50347
http://dx.doi.org/10.1029/96JD02341
http://dx.doi.org/10.1029/96JD02341
http://dx.doi.org/10.5194/bg-9-2761-2012
http://dx.doi.org/10.1029/2011JD016463
http://dx.doi.org/10.1029/2006JD007787
http://dx.doi.org/10.1175/JCLI-D-11-00240.1
http://dx.doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2


Orville, R. E., G. R. Huffines, W. R. Burrows, and K. L. Cummins,

2011: The North American Lightning Detection Network

(NALDN)—Analysis of flash data: 2001–09.Mon. Wea. Rev.,

139, 1305–1322, doi:10.1175/2010MWR3452.1.

Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Im-

proving convective precipitation forecasting through assimilation

of regional lightning measurements in a mesoscale model.Mon.

Wea. Rev., 133, 1961–1977, doi:10.1175/MWR2957.1.

Pechony, O., and D. T. Shindell, 2009: Fire parameterization on

a global scale. J. Geophys. Res., 114, D16115, doi:10.1029/

2009JD011927.

Pessi, A. T., and S. Businger, 2009: Relationships among lightning,

precipitation, and hydrometeor characteristics over the North

Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833–848,

doi:10.1175/2008JAMC1817.1.

Petersen, W. A., and S. A. Rutledge, 1998: On the relationship

between cloud-to-ground lightning and convective rainfall.

J. Geophys. Res., 103, 14 025–14 040, doi:10.1029/97JD02064.

——, H. J. Christian, and S. A. Rutledge, 2005: TRMM observa-

tions of the global relationship between ice water content and

lightning. Geophys. Res. Lett., 32, L14819, doi:10.1029/

2005GL023236.

Pohjola, H., and A.Mäkelä, 2013: The comparison of GLD360 and

EUCLID lightning location systems in Europe. Atmos. Res.,

123, 117–128, doi:10.1016/j.atmosres.2012.10.019.

Price, C., 2009:Will a drier climate result inmore lightning?Atmos.

Res., 91, 479–484, doi:10.1016/j.atmosres.2008.05.016.

——, and D. Rind, 1992: A simple lightning parameterization for

calculating global lightning distributions. J. Geophys. Res., 97,

9919–9933, doi:10.1029/92JD00719.

——, and ——, 1993: What determines the cloud-to-ground light-

ning fraction in thunderstorms? Geophys. Res. Lett., 20, 463–

466, doi:10.1029/93GL00226.

——, and——, 1994: The impact of a 23 CO2 climate on lightning-

caused fires. J. Climate, 7, 1484–1494, doi:10.1175/

1520-0442(1994)007,1484:TIOACC.2.0.CO;2.

——, J. Penner, and M. Prather, 1997: NOx from lightning: 1.

Global distribution based on lightning physics. J. Geophys.

Res., 102, 5929–5941, doi:10.1029/96JD03504.

Randall, D. A., and Coauthors, 2007: Climate models and their

evaluation. Climate Change 2007: The Physical Science Basis,

S. Solomon et al., Eds., Cambridge University Press, 589–662.

Said, R. K., U. S. Inan, and K. L. Cummins, 2010: Long-range

lightning geolocation using a VLF radio atmospheric wave-

form bank. J. Geophys. Res., 115, D23108, doi:10.1029/

2010JD013863.

——, M. B. Cohen, and U. S. Inan, 2013: Highly intense lightning

over the oceans: Estimated peak currents from global

GLD360 observations. J. Geophys. Res. Atmos., 118, 6905–

6915, doi:10.1002/jgrd.50508.

Saunders, C. P. R.,W.D. Keith, andR. P.Mitzeva, 1991: The effect

of liquid water on thunderstorm charging. J. Geophys. Res., 96,

11 007–11 017, doi:10.1029/91JD00970.

Shindell, D. T., G. Faluvegi, N. Unger, E. Aguilar, G. A. Schmidt,

D.M. Koch, S. E. Bauer, andR. L.Miller, 2006: Simulations of

preindustrial, present-day, and 2100 conditions in the NASA

GISS composition and climate model G-PUCCINI. Atmos.

Chem. Phys., 6, 4427–4459, doi:10.5194/acp-6-4427-2006.

Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The

Physical Science Basis. Cambridge University Press, 1535 pp.

[Available online at www.climatechange2013.org/images/

report/WG1AR5_ALL_FINAL.pdf.]

Takahashi, T., 1978: Riming electrification as a charge generation

mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548,

doi:10.1175/1520-0469(1978)035,1536:REAACG.2.0.CO;2.

Tapia, A., J. A. Smith, andM.Dixon, 1998: Estimation of convective

rainfall from lightningobservations. J.Appl.Meteor.,37,1497–1509,

doi:10.1175/1520-0450(1998)037,1497:EOCRFL.2.0.CO;2.

Taylor, K. E., R. J. Stouffer, andG.A.Meehl, 2012:An overview of

CMIP5 and the experiment design. Bull. Amer. Meteor. Soc.,

93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

Thonicke, K., A. Spessa, I. C. Prentice, S. P. Harrison, L. Dong, and

C. Carmona-Moreno, 2010: The influence of vegetation, fire

spread and fire behaviour on biomass burning and trace gas

emissions: Results from a process-basedmodel.Biogeosciences,

7, 1991–2011, doi:10.5194/bg-7-1991-2010.
Tost, H., P. Jöckel, and J. Lelieveld, 2007: Lightning and convection

parameterisations—Uncertainties in global modelling. Atmos.

Chem. Phys., 7, 4553–4568, doi:10.5194/acp-7-4553-2007.
Vecchi, G. A., and B. J. Soden, 2007: Global warming and the

weakening of the tropical circulation. J. Climate, 20, 4316–

4340, doi:10.1175/JCLI4258.1.

Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth,

2013: Highlights of a new ground-based, hourly global light-

ning climatology. Bull. Amer. Meteor. Soc., 94, 1381–1391,

doi:10.1175/BAMS-D-12-00082.1.

Williams, E. R., 2005: Lightning and climate: A review. Atmos.

Res., 76, 272–287, doi:10.1016/j.atmosres.2004.11.014.

——, and S. Stanfill, 2002: The physical origin of the land–ocean

contrast in lightning activity. C. R. Phys., 3, 1277–1292,

doi:10.1016/S1631-0705(02)01407-X.

——, and Coauthors, 2002: Contrasting convective regimes over

the Amazon: Implications for cloud electrification. J. Geo-

phys. Res., 107, 8082, doi:10.1029/2001JD000380.

Wu, S., L. J. Mickley, D. J. Jacob, D. Rind, and D. G. Streets, 2008:

Effects of 2000–2050 changes in climate and emissions on

global tropospheric ozone and the policy-relevant background

surface ozone in the United States. J. Geophys. Res., 113,
D18312, doi:10.1029/2007JD009639.

Wu, T., and Coauthors, 2010: The Beijing Climate Center atmo-

spheric general circulation model: Description and its perfor-

mance for the present-day climate. Climate Dyn., 34, 123–147,
doi:10.1007/s00382-008-0487-2.

Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty,

2006: Where are the most intense thunderstorms on Earth?

Bull. Amer. Meteor. Soc., 87, 1057–1071, doi:10.1175/

BAMS-87-8-1057.

452 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

http://dx.doi.org/10.1175/2010MWR3452.1
http://dx.doi.org/10.1175/MWR2957.1
http://dx.doi.org/10.1029/2009JD011927
http://dx.doi.org/10.1029/2009JD011927
http://dx.doi.org/10.1175/2008JAMC1817.1
http://dx.doi.org/10.1029/97JD02064
http://dx.doi.org/10.1029/2005GL023236
http://dx.doi.org/10.1029/2005GL023236
http://dx.doi.org/10.1016/j.atmosres.2012.10.019
http://dx.doi.org/10.1016/j.atmosres.2008.05.016
http://dx.doi.org/10.1029/92JD00719
http://dx.doi.org/10.1029/93GL00226
http://dx.doi.org/10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
http://dx.doi.org/10.1029/96JD03504
http://dx.doi.org/10.1029/2010JD013863
http://dx.doi.org/10.1029/2010JD013863
http://dx.doi.org/10.1002/jgrd.50508
http://dx.doi.org/10.1029/91JD00970
http://dx.doi.org/10.5194/acp-6-4427-2006
http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
http://dx.doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.5194/bg-7-1991-2010
http://dx.doi.org/10.5194/acp-7-4553-2007
http://dx.doi.org/10.1175/JCLI4258.1
http://dx.doi.org/10.1175/BAMS-D-12-00082.1
http://dx.doi.org/10.1016/j.atmosres.2004.11.014
http://dx.doi.org/10.1016/S1631-0705(02)01407-X
http://dx.doi.org/10.1029/2001JD000380
http://dx.doi.org/10.1029/2007JD009639
http://dx.doi.org/10.1007/s00382-008-0487-2
http://dx.doi.org/10.1175/BAMS-87-8-1057
http://dx.doi.org/10.1175/BAMS-87-8-1057

