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[1] We compare aerosol optical depth (AOD) and single scattering albedo (SSA)
simulated by updated configurations of a version of the atmospheric model (AM2)
component of the NOAA Geophysical Fluid Dynamics Laboratory general circulation
model over Southern Hemisphere Africa with AOD and SSA derived from research
aircraft measurements and NASA Aerosol Robotic Network (AERONET) stations and
with regional AOD from the NASA Moderate Resolution Imaging Spectroradiometer
satellite. The results of the comparisons suggest that AM2 AOD is biased low by 30–40%
in the tropics and 0–20% in the extratropics, while AM2 SSA is biased high by 4–8%.
The AM2 SSA bias is higher during the biomass burning season, and the monthly
variations in AM2 SSA are poorly correlated with AERONET. On the basis of a
comparison of aerosol mass in the models with measurements from southern Africa, and
a detailed analysis of aerosol treatment in AM2, we suggest that the low bias in AOD
and high bias in SSA are related to an underestimate of carbonaceous aerosol emissions in
the biomass burning inventories used by AM2. Increases in organic matter and black
carbon emissions by factors of 1.6 and 3.8 over southern Africa improve the biases in
AOD and especially SSA. We estimate that the AM2 biases in AOD and SSA imply that
the magnitude of annual top of the atmosphere radiative forcing in clear-sky conditions
over southern Africa is overestimated (too negative) by �8% while surface radiative
forcing is underestimated (not negative enough) by �20%.
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1. Introduction

[2] Biomass burning is a major source of particulate
matter in the atmosphere and influences global aerosol
optical depth (AOD) and single scattering albedo (SSA).
Burning processes release a significant number of particles
that absorb incoming sunlight [e.g., Reid et al., 2005b],
which warms the polluted layer of the atmosphere, and
scatter sunlight back into space, which acts to cool the
surface [e.g., Magi et al., 2008]. The cooling and warming
together may affect local, regional, and even global atmo-
spheric dynamics, but in order to determine the impact of
the aerosol on dynamics, it is important to evaluate the
simulation of aerosol properties in biomass burning regions
in global-scale general circulation models (GCMs). In the
larger sense, evaluations of aerosol radiative effects are also
important because GCMs are used to simulate past, present,
and future climates [Intergovernmental Panel on Climate
Change, 2007]. Uncertainties in the estimates of climate
sensitivity are strongly related to the continuing difficulties

in measuring and modeling aerosol physical and chemical
properties [Schwartz, 2004; Andreae et al., 2005].
[3] The Southern Hemisphere African aerosol loading is

strongly affected by seasonal biomass burning [e.g., Eck et
al., 2003; Swap et al., 2003; Ito et al., 2007]. In terms of the
contribution to global fire occurrence, analysis from the
NASA Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite collection 4 fire product [Giglio et al.,
2003, 2006] suggest that Africa alone accounts for about
44% of the millions of fires that occur every year on the
entire planet (Figure 1). The satellite observations of fire
occurrence are confined to the most recent decade or so,
while in situ data focusing on biomass burning emissions
have been collected in Africa during field campaigns like
SAFARI-92 [Scholes et al., 1996], EXPRESSO [Ruellan et
al., 1999], SAFARI-2000 [Haywood et al., 2003a, 2003b;
Hobbs et al., 2003; Schmid et al., 2003], and most recently
during DABEX in the western Sahel [Johnson et al., 2008].
Southern and northern hemisphere Africa account for similar
proportions of the annual fires in Africa, and nearly all those
fires occur in the tropics. Although fire emissions are directly
linked with fire occurrence, emissions are also dependent on
a range of parameters such as vegetation density, type, and
moisture content, and thus are not uniquely related to fire
occurrence [van der Werf et al., 2006].
[4] The majority of the aerosol mass emitted from biomass

burning is carbonaceous in nature [Eatough et al., 2003;
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Formenti et al., 2003; Gao et al., 2003; Kirchstetter et al.,
2003; Reid et al., 2005a], and carbonaceous particles are
known to both strongly scatter and absorb solar radiation
[Bond and Bergstrom, 2006]. Estimates by Bond et al. [2004]
suggest that, on average, 86% of the carbonaceous aerosol
emissions in Africa are from biomass burning, whereas only
59% of carbonaceous aerosol emissions in the rest of the
world are from biomass burning (noting that this number is
only 46% if we exclude South America). Thus, carbona-
ceous aerosol emissions from most regions of the world
are due to processes other than biomass burning. Estimates
by Bond et al. [2004] also suggest that biomass burning from
Africa alone contributes to nearly 30% of the total global
carbonaceous aerosol emissions every year, which includes
emissions from fossil fuel, biofuel, and biomass burning.
[5] The burning in Africa occurs consistently every year.

The relative contribution of Southern Hemisphere tropical
Africa fire counts to total global fire counts derived from
MODIS measurements [Giglio et al., 2003, 2006] ranges
from 17 to 21%, with actual fires detected ranging from
271,000 to 309,000 per year (Figure 1). Monthly fire counts
from MODIS show that burning begins in the tropics in
May, peaking in intensity from July to September. MODIS
fire counts in extratropical southern Africa peak in August
and September and range from 20,000 to 42,000 per year,
which is about half the fire counts reported for the United
States and Canada. The factor of 2 fluctuation in the extra-

tropical fire counts is partly due to variations in rainfall
which directly controls the amount of vegetation available
to burn [Anyamba et al., 2003; van der Werf et al., 2004].
The fires that occur every year in southern Africa may have
regional impacts on cloud properties and atmospheric circu-
lation, so it is important that simulations of the aerosol in that
region are closely evaluated against available measurements.
[6] In this study, we evaluate AOD and SSA over southern

Africa simulated by the second version of the Atmospheric
Model (AM2) component of the NOAA Geophysical
Fluid Dynamics Laboratory (GFDL) GCM [GFDL Global
Atmospheric Model Development Team, 2004; Delworth
et al., 2006]. We will discuss output from two versions of
AM2, which we call AM2e and AM2i, where the ‘‘e’’ and
‘‘i’’ refer to an externally mixed and internally mixed aerosol,
respectively. We describe this and other major features in
section 2, and also highlight some of the many changes
between the version of AM2 used here and the version
described by Ginoux et al. [2006] in a previous evaluation
of simulated aerosol properties. To evaluate the output from
AM2, we use independently derived data sets collected from
the University of Washington research aircraft [Hobbs et al.,
2003] during the SAFARI-2000 field campaign [Magi et al.,
2003; Schmid et al., 2003], retrieved using the ground-based
NASA Aerosol Robotic Network or AERONET [Holben
et al., 2001; Dubovik et al., 2002], and retrieved using
radiance measurements from the NASA MODIS satellite

Figure 1. Annual fire counts in Africa averaged from 2001 to 2006 using measurements from the
NASA MODIS satellite (collection 4). The numbers in the blue boxes are the mean (±standard deviation
of the 6 year mean) contribution of the particular yellow-boxed regions to global annual fire counts. The
green circles are the two AERONET sites referred to in this study (Mongu, Zambia at 15.25�S, 23.15�E;
Skukuza, South Africa at 24.99�S, 31.59�E). The color bar units are number of fires per year in a 0.5�
latitude by 0.5� longitude grid box.

D14204 MAGI ET AL.: SOUTHERN AFRICAN AEROSOL SIMULATION

2 of 19

D14204



[Remer et al., 2005; Levy et al., 2007]. The comparisons are
thus on multiple temporal and spatial scales to gauge whether
comparisons are consistent. We present the comparisons in
section 3, where we focus some of the comparisons
(AERONET and MODIS in sections 3.2–3.3) on the months
with peak fire activity from about July to September as
discussed above. The readers should note that we found that
peak aerosol loading in the region occurs one to two months
after peak fire activity, so this limitation should be considered
with respect to our results. We analyze the results in section 4
and our conclusions are in section 5.

2. Model Description

[7] In this study, we analyze output from the second
version of the Atmospheric Model (AM2) of the GFDL
GCM [GFDL Global Atmospheric Model Development
Team, 2004]. AM2 has a resolution of 2� latitude by 2.5�
longitude with 24 vertical levels and are driven by monthly
mean observed sea surface temperature fields. The model
results are saved every 24 h from January 2000 to
December 2006, except in the comparison with aircraft data
(section 3.1) where the model output is saved every 3 h from
August to September 2000. The last month of a separate
20-year simulation (1980–2000) is used as the initial
condition for GCM experiments described in this study.
[8] Since the evaluation of simulated global aerosol

properties by Ginoux et al. [2006], AM2 has significantly
changed. Below we describe many new features included in
the version of AM2 used in this study without directly
comparing them with the version of AM2 in the study by
Ginoux et al. [2006]. We discuss similarities and differences
between results in this study and those by Ginoux et al.
[2006] in section 4.5. Some of the major changes are the
method of nudging to meteorology, online aerosol fields
that interact directly with other physical components of the
model, and aerosol optical properties. We describe these
changes and other aspects of the updated version of AM2
below.
[9] The dynamical fields of AM2 are ‘‘nudged’’ toward

the reanalysis fields from NCEP (National Center for
Environmental Prediction) using a relaxation method with
a 6 h relaxation time scale [Moorthi and Suarez, 1992]. This
procedure ensures that the meteorology in the model mimics
as best as possible the present-day known patterns. The
main impact of this in southern Africa is to significantly
improve correlation between aerosol properties from AM2
output and observations, with a secondary impact being to
decrease root-mean-squared differences (usually by �10%).
[10] AM2 contains the following modules for aerosol

simulation: emission, which includes sulfate, dust, organic
carbon, black carbon, and sea salt emissions (see section 2.1);
chemistry, which currently uses a prognostic equation for
H2O2 with prescribed OH, HO2, O3, and NO3 fields simu-
lated with MOZART-2 [Horowitz et al., 2003] for gaseous
sulfur oxidations; advection, which is computed by a finite
volume dynamical core [Lin, 2004]; boundary layer turbu-
lent mixing, which uses a second-order closure scheme
[GFDL Global Atmospheric Model Development Team,
2004]; moist convection [Arakawa and Schubert, 1974];
dry deposition, which includes gravitational settling as a
function of aerosol particle size, hygroscopicity and air

viscosity [Chin et al., 2002] and surface deposition as a
function of surface type and meteorological conditions
[Wesely, 1989]; and wet deposition, which accounts for the
scavenging of soluble species in convective updrafts and
rainout/washout in large-scale precipitation [Giorgi and
Chameides, 1986; Balkanski et al., 1993].

2.1. Aerosol Sources

[11] AM2 simulates major tropospheric aerosol types
[e.g., Kinne et al., 2006], including sulfate, dust, organic
carbon (OC) as organic matter (OM), black carbon (BC),
and sea salt. Sulfate is mostly formed by oxidation of sulfur
dioxide (SO2) emitted from fossil fuel and biomass burning
combustion. SO2 fossil fuel emissions are based on energy
statistics for the year 2000 as described by Dentener et al.
[2006]. We use monthly fire emissions of SO2 based on
Version 2 of the Global Fire Emission Database (GFED)
[van der Werf et al., 2006]. In addition to direct emission,
SO2 is produced from the oxidation of dimethylsulfide
(DMS) released from the ocean. DMS emission is based
on the parameterization proposed by Chin et al. [2002].
[12] The carbonaceous aerosol emissions (OM and BC)

from biomass burning are based on GFED monthly data,
while annual emissions from biofuel and fossil fuel burning
are based on the inventory for the year 2000 developed by
Dentener et al. [2006]. OM is calculated as 1.4 � OC for
biomass burning, as recommended byDentener et al. [2006].
Secondary organic aerosol (SOA) formed by oxidation of
volatile organic compounds are also simulated and are
assumed to result from the oxidation of a-pinene (C10H16)
and n-butane (C4H6), on the basis of Guenther et al. [1991].
We use the same reaction rates as the ones proposed by Tie
et al. [2005]. The aging of carbonaceous aerosols are treated
as in the work by Reddy and Boucher [2004] with an
exponential lifetime of 1.63 days.
[13] Dust emission follows the parameterization by

Ginoux et al. [2001], and is based on the preferential
location of sources in topographic depression. Li et al.
[2008] described the dust component and examined the
impact of simulated dust transport on Antarctica. In southern
Africa, the major source is the Kalahari desert with max-
imum activity in summer [Prospero et al., 2002]. Sea salt
particles are emitted from the ocean according to Monahan
et al. [1986], but the aerosol in the region described in this
study is not strongly affected by sea salt.

2.2. Aerosol Properties

[14] We analyze output from AM2 with two configura-
tions: ‘‘AM2e’’ aerosol optics are based on an externally
mixed aerosol, while ‘‘AM2i’’ internally mixes all sulfate and
BC using volume-weighted refractive indices [e.g., Chylek
et al., 1988]. In this study, if we refer to AM2 without an
‘‘e’’ or ‘‘i,’’ we intend the discussion in that case to apply
to both configurations of AM2. If discussions are specific
to AM2e or AM2i, we use the ‘‘e’’ or ‘‘i’’ designation.
[15] Aerosol extinction and absorption are a function of

aerosol size distribution, extinction efficiency, and single
scattering albedo (SSA) and are determined from offline
Mie theory [Bohren and Huffman, 1983] calculations. The
size distributions of sulfate and carbonaceous aerosols are
simulated as lognormal, while dust and sea salt mass
distributions are constant within five bins ranging from
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0.02 to 20 mm diameter. Aerosol properties for sulfate, OM,
and BC as simulated by AM2 are listed in Table 1. AM2
dust and sea salt properties are discussed by Li et al. [2008]
and Ginoux et al. [2006], respectively.
[16] BC from both fossil fuel and biomass burning is

assumed to be 80% hydrophobic and 20% hydrophilic,
whereas OM is 50% hydrophobic and hydrophilic, per
Ming and Russell [2004]. Refractive indices for OM are
based on Hess et al. [1998], and optical properties of BC are
from Haywood and Ramaswamy [1998]. Sulfate is consid-
ered to be entirely neutralized by ammonium and the depen-
dency of the refractive index on wavelength and relative
humidity is based on Tang and Munkelwitz [1994]. Sea salt
refractive indices and hygroscopic growth factors are both
based on Tang et al. [1997]. Dust is simulated as hydrophobic
and the optical properties are from Balkanski et al. [2007].

3. Comparisons

[17] In this section, we compare AM2 output to indepen-
dently derived data sets from aircraft, AERONET, and
MODIS. Two data sets (aircraft and AERONET) offer
comparisons with both AOD and SSA, while the MODIS
data set is limited to AOD. All comparisons of AOD and
SSA are at a wavelength of 550 nm unless otherwise stated.
We interpolated AERONET data to 550 nm from the
reported wavelengths using the Angstrom exponent from
the AERONET retrievals. Column-averaged SSA from the
aircraft and from AM2 are weighted by aerosol extinction,
providing values that are representative of the polluted
lower layer of the atmosphere and that are comparable with
AERONET SSA.
[18] Intercomparisons between the data sets used to

evaluate AM2 are important to consider in the discussion
that follows in sections 3.1–3.3. Magi et al. [2008] showed
that the aircraft-derived AOD and SSA usually agreed to
within uncertainty with AERONETAOD and SSA, but noted
that a dedicated validation of AERONET SSA products has
yet to be completed. MODIS AOD and aircraft-derived AOD
agree to within uncertainties about 50% of the time for cases
over southern Africa [Magi et al., 2008]. Comparing the
current version (collection 5) MODIS AOD products with
AERONET AOD at various sites around the world, Levy et
al. [2007] showed that median AOD from MODIS and
AERONET agreed to within �25%, with MODIS biased
slightly high. However, for sites in southern Africa, MODIS
AOD was biased low by about 30% (R. Levy, personal
communication, 2008) showing that agreement depends on
the details of the MODIS aerosol retrieval at a particular
location (e.g., prescribed aerosol choices and/or assumed
surface albedo). We show in Figure 2 that AERONET sites

discussed in this study (Skukuza, South Africa, and Mongu,
Zambia; see section 3.2) and MODIS regionally averaged
AOD agree to within uncertainties and are significantly
correlated, implying that even with spatial and temporal
differences in sampling, the instruments see a similar sea-
sonal cycle. AERONET and MODIS match more closely in
the tropics than the extratropics because the burning is more
uniform across the tropical region, whereas the MODIS
extratropical regional average includes a significant area of
Africa that does not burn (see Figure 1). Thus, the Skukuza
AERONET AOD does not seem as representative of the
extratropical region than the Mongu AERONET AOD does
of the tropical region. In general, the confidence in AOD
products (especially the direct sun data products) is higher
than the confidence in SSA products, but both are widely
referenced.

3.1. Aircraft

[19] We compare the total column AOD and column-
averaged SSA simulated by AM2 (referred to as AM2e
AOD and AM2e SSA, or AM2i AOD and AM2i SSA) in a
2� � 2.5� grid cell with AOD and SSA derived from the
University of Washington (UW) research aircraft vertical
profiles (henceforth, UW AOD and UW SSA) in August
and September 2000 [Magi et al., 2003; Schmid et al., 2003].
UW AOD and SSA are based on in situ measurements by
combining nephelometry, absorption photometry, and sun
photometry with data processing algorithms described by
Magi et al. [2007, 2008].
[20] The UW vertical profiles were in an atmosphere

impacted to varying degrees by smoke from local and
regional biomass burning and, as a result, UWAOD ranged
from 0.16 to 1.13 (median of 0.34) and UW SSA ranged
from 0.81 to 0.93 (median of 0.87) over 20 separate cases
[Magi et al., 2008]. Thus, the comparison offers a sense of
the ability of AM2 to simulate significant fluctuations in
AOD and SSA, as well as an understanding of how repre-
sentative UW vertical profiles (spatial scale of �10 km) are
of an entire AM2 grid cell (spatial scale of �100 km). We
construct this comparison by using the AM2 grid cell that
encompasses the UW vertical profile and use 3-hourly AM2
output to find the best temporal match to the time of the
UW vertical profile. We also discuss the spatial variability
of AM2 output by analyzing the eight AM2 grid cells sur-
rounding the central grid cell: we call this the neighboring
grid cell variability.
[21] We show the correlation between AM2e AOD and

UW AOD in Figure 3. The root-mean-squared (RMS)
difference is 0.41 with a correlation coefficient (r2) of
0.65 (p < 0.05, where p is defined as the probability that a
random distribution would be better correlated with the data,
and we assume that p < 0.05 is a significant correlation). In
the overall sense, the correlation (r2) of 0.65 implies that
increases and decreases in measured AOD were fairly well
simulated, but the RMS difference of 0.41 is greater than the
medianUWAODof 0.34. The bias suggests that AM2eAOD
is less than UWAOD by about 0.30. However, we have to
examine this comparison on many levels since the spatial
scales of the UW measurements are so much different than
that of AM2e.
[22] Neighboring grid cell variability of AM2e AOD

(shown as vertical error bars in Figure 3) does not explain

Table 1. Assumed Aerosol Properties in AM2ea

Species
Dg

(mm) sg
Density
(g/cm3)

MEC
(m2/g)b SSAb

Sulfate 0.100 2.00 1.77 5.60 1.000
OC 0.170 1.49 1.80 3.22 0.965
BC 0.0236 2.00 1.00 9.27 0.209

aDg, geometric mean diameter; sg, geometric standard deviation; MEC,
mass extinction cross section; and SSA, single scattering albedo.

bAt 550 nm, 50% RH.
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the discrepancy for high AOD (UWAOD> 0.4), but could be
part of the reason for the differences at low AOD. Measure-
ment and retrieval uncertainty in the UW AOD, shown as
horizontal error bars in Figure 3 and discussed byMagi et al.
[2008], is too small to explain the discrepancy. The RMS
difference of 0.52 at tropical latitudes accounts for most of
the total RMS difference of 0.41 mentioned above, where the
mean AM2e AOD is 0.25 compared to the mean UWAOD of
0.67. MODIS fire counts (Figure 1) show that the tropical
latitudes (0� to 22.5�S) of southern Africa are where the larg-
est numbers of fires occur in any given year, and although
large-scale climate variability like the phase of the El Nino–
Southern Oscillation (ENSO) does have some impact on
seasonal emissions [Anyamba et al., 2003; van derWerf et al.,
2004], we would expect that the AOD over tropical southern
Africa is correspondingly high every year during the biomass
burning season. AM2e AOD is significantly correlated with
UWAOD at tropical latitudes (r2 = 0.59, p < 0.05) indicating
that variability in biomass burning emissions may be cap-
tured by AM2e, but the large RMS difference suggests that
either the burning emissions are too low, the optical proper-
ties of the AM2e aerosol (i.e., the properties used to translate

aerosol mass concentrations to AOD) are incorrect, the
aerosol sink is too strong, or the advective transport is too
strong. We explore these mechanisms below.
[23] At extratropical latitudes (22.5�S to 40�S), the corre-

lation between AM2e AOD and UWAOD is not significant
(r2 = 0.11, p = 0.43), and the RMS difference is 0.13, which is
about 50% of the mean AOD for the eight data points. The
lower aerosol loadings in the extratropics are mainly a result
of fewer fires occurring in the region, although emissions
from grassland burning are also lower owing to higher
combustion efficiency [van der Werf et al., 2006]. The
extratropics can be more adversely affected by tropical
burning emissions when a synoptic-scale event (like a strong
frontal passage) [see Garstang et al., 1996] transports smoke
from the tropics over the extratropics. The simulation of
AOD in the extratropics probably gives insight into the skill
of AM2e simulation of aged or background aerosols. Most of
the extratropics does not have enough vegetation (i.e., due to
the Kalahari expanse and Namib desert) to make a strong
contribution to overall biomass burning emissions, regardless
of variations in the vegetation density due to factors like
ENSO [Anyamba et al., 2003; van der Werf et al., 2004].

Figure 2. Comparison of monthly averaged aerosol optical depth (AOD) at a wavelength of 550 nm
derived from AERONET and MODIS. We compare (a) Mongu, Zambia (latitude 15.25�S, longitude
23.15�E, elevation 1107 m) AOD (blue with triangles) with the average MODIS AOD (dark blue with
circles) over the tropical region of southern Africa (0–20�S) and (b) Skukuza, South Africa (latitude
24.99�S, longitude 31.59�E, elevation 150 m) AOD (green with triangles) with the average MODIS AOD
(dark green with circles) over the extratropical region (20–40�S). MODIS AOD is based only on land
retrievals. Dotted lines are AERONET and MODIS retrieval product uncertainties (±0.01, ±0.05 ± 0.15 �
AOD, respectively). Error bars are the standard deviation of the monthly mean (i.e., variability from
2000 to 2006 for a particular month). Correlation coefficients are r2 = 0.73 and r2 = 0.44, which are
both significant at the 95% confidence level.
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[24] In Figure 4, we show the comparison of AM2e SSA
with UW SSA for both the tropics and the extratropics. Of
the 20 comparisons, there are five when AM2e SSA is less
than UW SSA, suggesting a fairly strong positive bias. The
basic conclusion from this is that the aerosol simulated by
AM2e is not absorbing enough, which is consistent with
past assessments of aerosol simulations over southern Africa
[Kinne et al., 2006]. The tropics are the main source of the
positive SSA bias, which is important since the tropics are
typically the part of southern Africa with the highest AOD
(e.g., Figures 1–2). The extratropics have a slightly positive
SSA bias, on average, but the spread in the comparison is
large, making it difficult to draw any conclusions.
[25] The results in Figure 4 suggest that either the

scattering component of the simulated aerosol (i.e., OM
and sulfate in this region) [see Ginoux et al., 2006] is too
large or that the absorbing component (OM and black carbon,
BC) is too small. The other possibility is that the optical
properties of OM, sulfate, and BC, especially with regards to
the imaginary component of the refractive index are biased
[e.g., Magi et al., 2007]. Uncertainties in UW SSA [Magi et
al., 2008] are significant (horizontal error bars in Figure 4),
and may explain part of the discrepancy, but we explore a
longer time series of SSA compared to AM2e in section 3.2
and show that the high bias in AM2e SSA is consistent over
a much different temporal scale. Except for about four cases,
neighboring grid cell variability of AM2e SSA (vertical error
bars in Figure 4) is too small to explain the discrepancy.

[26] The comparisons reveal that column AOD and SSA
simulated by AM2e do not agree with measurements derived
from the UW research aircraft. In Figure S1 of the auxiliary
material, we show that vertical profiles of UW AOD and
AM2e AOD do agree in terms of injection heights, where
RMS differences are smaller at lower pressures.1 This implies
that simulated injection heights (based on Dentener et al.
[2006]) are not an issue over southern Africa. Significant
correlation coefficients in tropical southern Africa, where
most of the burning occurs, suggest that relative AOD and
SSA fluctuations appear to be captured by AM2e simula-
tions. AOD fluctuations in the extratropics, however, are not
significantly correlated, and SSA fluctuations are negatively
correlated, which suggests that the timing of aerosol emis-
sions in the simulation may be incorrect. In both the tropics
and extratropics, the RMS difference between AM2e AOD
and UWAOD is greater than 50%. AM2e SSA is biased high
by 0.03 in the tropics and by 0.01 in the extratropics
compared to UW SSA, noting that 11 out of 12 comparisons
in the tropics are biased high.
[27] The discrepancies could simply be attributed to the

difference in scale (both time and space) between an AM2e
grid cell and a UW vertical profile. Most likely, UW aircraft
data preferentially sampled areas with high aerosol loading
since signal to noise requirements in the instruments was an
issue, and some discrepancy is indeed expected since AOD
fluctuations on small spatial scales can result in significant
differences [Anderson et al., 2003]. Fluctuations in regional
SSA have never been characterized by in situ measure-
ments. The comparisons do highlight a discrepancy in
AM2e simulation of the tropical southern African aerosol,
and raise questions about the driving forces of aerosol

Figure 3. Comparison of AOD at a wavelength of 550 nm
derived from measurements obtained from the University of
Washington aircraft (UW AOD) with AOD output from
AM2e (AM2e AOD). AM2e AOD at tropical latitudes are
shown as blue squares (N = 12), and values at extratropical
latitudes are green circles (N = 8). The vertical error bars are
neighboring grid cell variability, the horizontal error bars are
the total uncertainty in UW AOD, and the solid line is the
one-to-one line.

Figure 4. As per Figure 3, but for single scattering albedo
(SSA) at a wavelength of 550 nm.

1Auxiliary materials are available in the HTML. doi:10.1029/
2008JD011128.
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fluctuations in the extratropics (i.e., the insignificant cor-
relation). Comparisons of UW AOD and UW SSA with
AM2i AOD and AM2i SSA (not shown) are essentially
the same as those shown in Figures 3–4. We explore longer
AOD and SSA time series and broader spatial scale AOD
data sets in the next sections to provide context for the
comparisons with aircraft data and to examine whether the
discrepancies are consistent.

3.2. AERONET

[28] We compiled AM2 daily and monthly output from
2000 to 2006 to compare with daily and monthly retrieved
aerosol products (AOD and SSA) from ground-based
NASA AERONET stations [Holben et al., 2001; Dubovik
et al., 2002] in Mongu, Zambia (latitude 15.25�S, longitude
23.15�E, elevation 1107 m) and in Skukuza, South Africa
(latitude 24.99�S, longitude 31.59�E, elevation 150 m). The
Mongu station is at a tropical latitude in southern Zambia,
and Skukuza is at an extratropical latitude in northeast
South Africa (see Figure 1). Mongu and Skukuza have
the longest time series of measurements in the region, making
them the best choices to compare with model output. We use
AERONET Level 2.0, Version 2.0 data products, which are
processed using current algorithms and are quality controlled
to exclude cloudy days and other events interfering with the
retrieval (available at http://aeronet.gsfc.nasa.gov for more
information). The AERONETstations are separated by about
1100 km, and the Mongu station is typically more strongly
affected by local and regional biomass burning than Skukuza
[Eck et al., 2003].
[29] Similar to the aircraft measurements in section 3.1,

the comparisons of AERONET products with AM2 output
are limited since the spatial scales are so different. Using a
longer time series of measurements from AERONET daily
and monthly AOD, however, should average out some of

the most local effects (like enhanced AOD from a fire near
the AERONET station) and provide a better comparison. To
construct the comparison, we use the two AM2 grid cells
that encompass the two AERONET stations, but we also
examine the neighboring grid cell variability of AM2 AOD
around the central AERONET grid cell to examine whether
the comparison significantly changes. Hypothetically, we
would expect the agreement to be best in the monthly AOD
comparison since AM2 uses a monthly inventory of bio-
mass burning emissions. In all cases, there are significant
gaps in the AERONET AOD time series due to failures in
the retrieval algorithm for reasons discussed by Dubovik et
al. [2002]. Most of the AERONET data corresponds to
months affected by biomass burning since the atmosphere is
more stable and dry (i.e., there are fewer cases of cloud
contamination). We also restrict the monthly AOD compar-
ison to AERONET monthly averages derived from three or
more available days, which again slightly reduces the
sample space.
3.2.1. Aerosol Optical Depth
[30] We present the time series of the difference between

AM2e AOD and AERONET AOD at the tropical station
(henceforth, Mongu AOD) in Figure 5. The RMS difference
between daily averaged AM2e AOD and Mongu AOD in
Figure 5a is 0.17 for all available comparison points, and is
0.12 in the monthly comparison in Figure 5b. As discussed
in section 1, we found that the months with peak fire activity
are July to September and we will refer to this as the
‘‘biomass burning season.’’ If we restrict the comparison to
biomass burning season (red circles in Figure 5), the RMS
difference in daily AOD is 0.22 and is 0.16 in the monthly
AOD comparison. The RMS difference is consistent through-
out the year in terms of percent of the mean AOD and
improves from about 85–100% different in the daily com-
parison to 65–75% different in the monthly comparison.

Figure 5. Comparison of (a) daily averaged and (b) monthly averaged AOD at a wavelength of 550 nm
derived from AERONET measurements in Mongu, Zambia (latitude 15.25�S, longitude 23.15�E,
elevation 1107 m) and output from AM2e for available data between January 2000 and December 2006.
The AOD bias is calculated as AM2e–AERONET. Red circles and lines are during the biomass burning
season (July, August, and September). Blue circles and lines are during the remainder of the year. Note
the scale differences in the plots.
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[31] Both AM2e AOD and Mongu AOD show an increase
in AOD during the biomass burning season by about 50%
above the annual mean AOD, but on average, AM2e AOD is
biased low by 0.07 to 0.12. The mean bias masks large
fluctuations in the monthly bias during the entire time series,
ranging from �0.38 to 0.13 during the entire year, with the
largest biases occurring during the biomass burning season
(Table 2). Neighboring AM2e grid cell variability in AOD
accounts for about ±10% change in the RMS difference, but

this does not explain the discrepancies of 65–100% in
AM2e AOD compared with AERONET AOD. Similarly,
neighboring grid cell variability only accounts for about
±10% of the 40–50% negative bias in AM2e AOD.
[32] The time series of the bias between AM2e AOD and

the AERONETAOD at the extratropical station (henceforth,
Skukuza AOD) in Figure 6 reveals smaller-scale fluctuations
in the monthly bias, ranging from �0.21 to 0.04 during the
biomass burning season (Table 2). On average, the monthly

Table 2. Statistics From the Comparison of AM2 With AERONET Aerosol Optical Depth and Single Scattering Albedo, Both at a

Wavelength of 550 nma

AERONET Station,
AM2 Configurationb

All Data Points

r2 RMSc Biasd Minimum Bias Maximum Bias Mean AM2e Mean AERONETf

Aerosol Optical Depth
Daily

Mongu, AM2e 0.43 0.17 �0.09 �1.22 0.26 0.14 0.23
Mongu, AM2i 0.43 0.17 �0.08 �1.22 0.27 0.14 0.23
Skukuza, AM2e 0.34 0.12 �0.05 �0.69 0.24 0.13 0.17
Skukuza, AM2i 0.34 0.12 �0.05 �0.68 0.27 0.13 0.17

Monthlyg

Mongu, AM2e 0.63 0.12 �0.07 �0.38 0.13 0.13 0.19
Mongu, AM2i 0.64 0.12 �0.06 �0.38 0.13 0.13 0.19
Skukuza, AM2e 0.45 0.06 �0.02 �0.21 0.09 0.13 0.15
Skukuza, AM2i 0.46 0.06 �0.02 �0.20 0.08 0.14 0.15

Single Scattering Albedo
Daily

Mongu, AM2e 0.10 0.06 0.03 �0.12 0.24 0.89 0.86
Mongu, AM2i 0.09 0.07 0.03 �0.12 0.23 0.89 0.86
Skukuza, AM2e 0.03 0.07 0.03 �0.16 0.24 0.91 0.89
Skukuza, AM2i 0.03 0.07 0.02 �0.16 0.25 0.91 0.89

Monthlyg

Mongu, AM2e 0.26 0.06 0.03 �0.09 0.13 0.90 0.87
Mongu, AM2i 0.26 0.06 0.03 �0.09 0.13 0.90 0.87
Skukuza, AM2e 0.09 0.07 0.05 �0.07 0.13 0.93 0.88
Skukuza, AM2i 0.09 0.07 0.05 �0.07 0.13 0.93 0.88

AERONET Station,
AM2 Configurationb

Biomass Burning Data Pointsh

r2 RMSc Biasd Minimum Bias Maximum Bias Mean AM2e Mean AERONETf

Aerosol Optical Depth
Daily

Mongu, AM2e 0.32 0.22 �0.12 �1.22 0.26 0.20 0.32
Mongu, AM2i 0.32 0.22 �0.12 �1.22 0.27 0.20 0.32
Skukuza, AM2e 0.35 0.16 �0.06 �0.69 0.20 0.16 0.23
Skukuza, AM2i 0.35 0.16 �0.06 �0.68 0.20 0.16 0.23

Monthlyg

Mongu, AM2e 0.42 0.16 �0.11 �0.38 0.13 0.19 0.30
Mongu, AM2i 0.43 0.16 �0.11 �0.38 0.13 0.19 0.30
Skukuza, AM2e 0.41 0.09 �0.05 �0.21 0.04 0.16 0.21
Skukuza, AM2i 0.45 0.08 �0.05 �0.20 0.04 0.16 0.21

Single Scattering Albedo
Daily

Mongu, AM2e 0.01 0.07 0.06 �0.06 0.18 0.88 0.83
Mongu, AM2i 0.01 0.07 0.06 �0.06 0.18 0.88 0.83
Skukuza, AM2e 0.12 0.06 0.04 �0.09 0.24 0.90 0.87
Skukuza, AM2i 0.12 0.06 0.03 �0.09 0.25 0.90 0.87

Monthlyg

Mongu, AM2e 0.01 0.07 0.06 0.01 0.13 0.88 0.82
Mongu, AM2i 0.01 0.07 0.06 0.01 0.13 0.88 0.82
Skukuza, AM2e 0.09 0.07 0.06 0.01 0.13 0.91 0.85
Skukuza, AM2i 0.08 0.07 0.06 0.01 0.13 0.91 0.85

aWe compare AM2 output from two grid cells that are colocated with two AERONET stations in southern hemisphere Africa (Mongu and Skukuza).
Italicized values indicate correlation that is not statistically significant (p > 0.05). The information in this table are derived from data in Figures 5–8.

bMongu, Zambia is located at 15.25�S, 23.15�E, 1107 m; Skukuza, South Africa is at 24.99�S, 31.59�E, 150 m.
cRMS is root-mean-squared difference.
dBias is defined as AM2 AOD – AERONET AOD.
eMean AM2 refers to mean AOD and SSA from either AM2e (externally mixed aerosol) or AM2i (internally mixed black carbon and sulfate).
fAERONET AOD uncertainty is estimated as 0.01, and SSA uncertainty is 0.03 for AOD � 0.2 [Dubovik et al., 2002].
gMonthly AERONET AOD comparisons are only for monthly AOD with three or more data points.
hBiomass burning season is defined here as July to September.
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AM2e AOD is biased low by 0.05 during the biomass
burning season, while the daily bias is �0.06 (but with a
larger range of �0.69 to +0.20). The RMS difference in the
monthly AOD is 0.09 during the biomass burning season,
which is about half of the RMS difference between AM2e
AOD and Mongu AOD of 0.16. Neighboring AM2e grid cell
variability in AOD accounts for less than ±10% change in
both the RMS difference, but this again does not explain the
discrepancies of 40–80% in AM2e AOD compared with
AERONETAOD. Neighboring grid cell variability accounts
for about ±20% of the 10–30% negative bias in AM2e
AOD, so may be a significant part of the discrepancy during
most of the year.
[33] This negative bias in AM2e AOD in both the tropics

and the extratropics compared to AERONET (Figures 5–6)
is consistent with the comparison with UW aircraft data
shown in Figure 3. However, the magnitudes of both the
RMS difference and the bias in the AERONET comparison
are smaller. This is most likely due to the better spatial
representation of AERONET retrieval products relative to
aircraft, when compared to a model grid cell. Also, like the
comparisons in section 3.1, the statistics of AM2i AOD
compared to AERONET AOD (both Mongu and Skukuza)
are virtually identical to the statistics of AM2e AOD com-
pared to AERONET AOD (Table 2). This again indicates
that even for a longer time series of AOD, the internal
mixing of BC and sulfate in AM2i does not improve the
discrepancy.
3.2.2. Single Scattering Albedo
[34] In Figure 7, we show the time series of the bias of

AM2e SSA compared to Mongu SSA for both daily and
monthly averages. AM2e SSA is biased high by, on
average, 0.02 to 0.06 for all comparisons (Table 2), with a
larger bias during the biomass burning season (red circles in
Figure 7). RMS difference is larger than the bias (ranging
from 0.06 to 0.07), which is due to the large fluctuations in

the bias throughout the year in the positive and negative
directions. The range of the bias improves from �0.12 to
0.24 in the daily comparison to �0.09 to 0.13 in the
monthly comparison (i.e., high and low biases are averaged
out), but otherwise the monthly comparison is nearly the
same as the daily comparison. During the biomass burning
season in particular, it is rare that that AM2e is biased low in
SSA. The correlation in the time series ranges from 0.01 to
0.26, with no significant correlation during the biomass
burning season.
[35] Finally, we show the time series of the bias of AM2e

SSA compared to Skukuza SSA in Figure 8. AM2e SSA is
biased high by 0.03 to 0.05 throughout the entire year and by
0.04 to 0.06 during the biomass burning season (Table 2).
RMS differences are greater than the biases (ranging from
0.06 to 0.07), because there is high variability in the bias
throughout the year. The range of the bias improves from
�0.16 to 0.24 in the daily comparison to �0.07 to 0.12 in
the monthly comparison, but the mean bias in the monthly
comparison is a factor of two larger than the mean bias in
the daily comparison. The correlation in the time series
ranges from 0.03 to 0.12, with no significant correlation
during the monthly biomass burning season data. It is rare
that that AM2e is biased low in SSA, but during the biomass
burning season (red points in Figure 8), there are no cases
when monthly SSA is biased low.
[36] The high bias in AM2e SSA is consistent with the

comparison of UW SSA with AM2e SSA in Figure 4. This
again suggests that the simulated aerosol is not absorbing
enough in the extratropics or the tropics where the burning
primarily occurs. Another similarity in the comparisons in
Figures 4, 7, and 8 is the very poor correlation. The
simulated AOD is much better correlated with AERONET
AOD (which is the opposite of the comparison with UW
AOD) than the simulated SSA, indicating perhaps that the
emissions are timed reasonably well, but that the chemical

Figure 6. As per Figure 5, but showing the comparison of (a) daily averaged and (b) monthly averaged
AOD at a wavelength of 550 nm from AERONET measurements in Skukuza, South Africa (latitude
24.99�S, longitude 31.59�E, elevation 150 m) with AM2e AOD. The AOD bias is calculated as AM2e–
AERONET. Red circles and lines are during the biomass burning season (July, August, and September).
Green circles and lines are during the remainder of the year. Note the scale differences in the plots.

D14204 MAGI ET AL.: SOUTHERN AFRICAN AEROSOL SIMULATION

9 of 19

D14204



composition or aerosol optical properties used to convert
from mass are incorrect.
[37] Finally, just like the comparison with UW SSA,

AM2i SSA derived using internally mixed BC and sulfate
has little or no impact on the comparisons with Mongu and
Skukuza SSA. We do not show the comparison with AM2i,
but list the statistics of both AM2 configurations compared
with both AERONET stations in Table 2. An aerosol mixing
scheme that includes the significant OM component, or
perhaps a different mixing assumption [e.g., Chylek et al.,
1988], may be necessary to make significant improvements
in AM2 simulations over southern Africa, but these refine-
ments are beyond the scope of this study.

3.3. MODIS

[38] Finally, we compare daily, monthly, and seasonally
averaged AOD over southern Africa from MODIS satel-
lite retrievals of AOD (henceforth, MODIS AOD) with

AM2 AOD. For seasonally averaged AOD, we use
January–March, April–June, July–September, and October–
December, such that the biomass burning season (July–
September) is captured together, noting the caveats we
discussed in section 1 about this choice. MODIS products
are available since March 2000, so we examine about 7 years
of data from March 2000 to December 2006 (similar to the
time series we examined for the AERONET and AM2
comparison) using only the collection 5 version of the
MODIS daily AOD aggregated to 1� by 1� grid boxes [Levy
et al., 2007]. We then average all land-based AOD from
MODIS and from AM2 over southern hemisphere tropical
Africa (0� to 20�S, referred to as the ‘‘tropics’’) and southern
hemisphere extratropical Africa (‘‘extratropics,’’ 20� to
40�S). These comparisons provide a much larger spatial
comparison to help assess the simulation of regional AOD.
[39] The statistics from all the comparisons (both AM2e

and AM2i versus MODIS) are listed in Table 3. AM2 AOD

Figure 8. As per Figure 6, but for SSA. The SSA bias is calculated as AM2e–AERONET.

Figure 7. As per Figure 5, but for SSA. The SSA bias is calculated as AM2e–AERONET.
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is biased low in nearly every case. The time series compar-
isons are all significantly correlated over the course of the
entire year (r2 = 0.43 to 0.62, p < 0.05). The mean values
of AM2 AOD and MODIS AOD agree to within the
published uncertainty in MODIS AOD of 0.05 ± 0.15 �
AOD [Remer et al., 2005] in the extratropics. The tropics
again show a much larger discrepancy, where the range of
AOD bounded by MODIS uncertainty rarely encompasses
the mean AM2e AOD, especially during the biomass
burning season. The range of the bias improves by about
50% from the daily to monthly comparison in the tropical
comparison, which is consistent with the fact that AM2e
uses a monthly biomass burning inventory as input. Mean
RMS differences (compared to the mean) are on the order
of 40–60% in the tropics and 10–40% in the extratropics.
[40] We show the time series comparison of AM2e

AOD and MODIS AOD in the tropics and the extratropics
in Figures 9 and 10, respectively. The emissions during the
biomass burning season results in a significant peak in both
AM2e AOD and MODIS AOD. The peak in AM2e AOD,

however, occurs roughly one month prior to the peak in
MODIS AOD, which is most clear in the monthly compar-
ison. This is consistent in both the tropics and the extra-
tropics, although it more evident in the tropics. The time
series of AM2i AOD is so close to that of AM2e AOD (see
the statistics in Table 3), that we did not include it on
Figures 9–10. We explore possible reasons for the phase
difference in AM2 AOD compared to MODIS AOD in
section 4.

4. Analysis

[41] The tropics are where the majority of fires occur
(Figure 1), and where AOD is highest both at a local and
regional scale (Figures 2, 3, 5, 9), but the tropics are also
where the discrepancies of AM2e AOD compared with
available data are largest in the southern Africa region.
There is a clear trend showing that the RMS differences and
biases improve as we change scales from the very limited
temporal and spatial scale of aircraft data to a better temporal

Table 3. Statistics From the Comparison of Aerosol Optical Depth at a Wavelength of 550 nm From AM2 and MODIS Averaged Over

Tropical and Extratropical Latitudes of Southern Hemisphere Africa Land Surfacesa

Region, AM2
Configurationb r2 RMSc Biasd Minimum Bias Maximum Bias Mean AM2e Mean MODISf

All Data Points
Daily

Tropics, AM2e 0.44 0.11 �0.08 �0.44 0.10 0.14 0.22 ± 0.08
Tropics, AM2i 0.43 0.11 �0.08 �0.43 0.11 0.15 0.22 ± 0.08
Extratropics, AM2e 0.44 0.04 �0.01 �0.34 0.12 0.11 0.12 ± 0.07
Extratropics, AM2i 0.45 0.04 �0.01 �0.33 0.13 0.11 0.12 ± 0.07

Monthly
Tropics, AM2e 0.54 0.11 �0.09 �0.26 0.03 0.14 0.23 ± 0.08
Tropics, AM2i 0.53 0.10 �0.08 �0.25 0.03 0.15 0.23 ± 0.08
Extratropics, AM2e 0.56 0.03 �0.02 �0.14 0.05 0.11 0.13 ± 0.07
Extratropics, AM2i 0.57 0.03 �0.01 �0.14 0.05 0.12 0.13 ± 0.07

Seasonalg

Tropics, AM2e 0.62 0.09 �0.08 �0.15 �0.01 0.15 0.23 ± 0.08
Tropics, AM2i 0.62 0.09 �0.08 �0.15 0.00 0.15 0.23 ± 0.08
Extratropics, AM2e 0.45 0.03 �0.02 �0.09 0.02 0.11 0.13 ± 0.07
Extratropics, AM2i 0.47 0.03 �0.02 �0.08 0.03 0.12 0.13 ± 0.07

Biomass Burning Data Pointsh

Daily
Tropics, AM2e 0.23 0.14 �0.10 �0.44 0.10 0.19 0.29 ± 0.09
Tropics, AM2i 0.21 0.13 �0.10 �0.43 0.11 0.19 0.29 ± 0.09
Extratropics, AM2e 0.45 0.04 �0.001 �0.25 0.12 0.12 0.12 ± 0.07
Extratropics, AM2i 0.46 0.04 0.003 �0.25 0.13 0.12 0.12 ± 0.07

Monthly
Tropics, AM2e 0.38 0.12 �0.10 �0.26 �0.001 0.19 0.30 ± 0.09
Tropics, AM2i 0.35 0.12 �0.10 �0.25 0.005 0.20 0.30 ± 0.09
Extratropics, AM2e 0.63 0.03 0.002 �0.04 0.05 0.13 0.13 ± 0.07
Extratropics, AM2i 0.63 0.03 0.007 �0.03 0.05 0.14 0.13 ± 0.07

Seasonalg

Tropics, AM2e 0.21 0.09 –0.08 –0.11 –0.05 0.20 0.28 ± 0.09
Tropics, AM2i 0.16 0.08 –0.08 –0.10 –0.04 0.21 0.28 ± 0.09
Extratropics, AM2e 0.23 0.02 –0.003 –0.03 0.02 0.13 0.13 ± 0.07
Extratropics, AM2i 0.21 0.02 0.002 –0.02 0.03 0.14 0.13 ± 0.07
aValues that are italicized indicate a correlation that is not statistically significant (p > 0.05). The information in this table are derived from data in

Figures 9–10.
b‘‘Tropics’’ refer to southern hemisphere tropical Africa; ‘‘extratropics’’ refer to southern hemisphere extratropical Africa.
cRMS is root-mean-squared difference.
dBias is defined as AM2 AOD – MODIS AOD.
eMean AM2 refers to mean AOD and SSA from either AM2e (externally mixed aerosol) or AM2i (internally mixed black carbon and sulfate).
fMODIS AOD uncertainty is calculated as 0.05 ± 0.15 � AOD per Remer et al. [2005].
gSeasons are January–March, April– June, July–September, October–December; hence, the biomass burning season is July–September and there are

only seven comparison points.
hBiomass burning season is defined here as July to September.
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Figure 9. Comparison of (a) daily averaged, (b) monthly averaged, and (c) seasonally averaged AOD at
a wavelength of 550 nm retrieved from MODIS satellite measurements (black) and derived from AM2e
output (blue) from January 2000 to December 2006. The AOD is averaged over land surfaces in Southern
Hemisphere tropical Africa.

Figure 10. As per Figure 9, but AOD is averaged over land surfaces in Southern Hemisphere
extratropical Africa and AM2e output is shown in green. Also, note that the scale is different than Figure 9.
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resolution in the AERONET data to a regionally averaged
comparison using the MODIS aerosol product (i.e., compare
Figure 3 to Tables 2 and 3). All the data provide useful
information, and the aircraft data could be especially useful in
developing subgrid-scale parameterizations of aerosol char-
acteristics. In general, although there is a clear biomass
burning season in the simulated AOD, there are consistent
discrepancies between model and data in the timing of the
peak AOD and in the magnitudes of AOD and SSA in all the
comparisons.
[42] The time series of AM2e AOD and MODIS AOD in

Southern Hemisphere tropical Africa (Figure 9) shows that
AM2e AOD increases twice during the course of each year;
the first increase in AM2e AOD occurs in January, while the
second increase begins in June and corresponds to the onset
of the biomass burning season. This dual peak in AM2eAOD
is consistent with MODIS AOD, with AM2e including a
large peak in January 2001 that is similar to MODIS AOD.
According to AM2e simulations, the January peaks in AOD
are a result of dust intrusions from Northern Hemisphere
Africa. AM2e AOD peaks about one month earlier than
MODIS AOD which marks a timing discrepancy in the onset
of the biomass burning season. GFED emissions [van der
Werf et al., 2006] used by AM2 to simulate biomass burning
are tied to MODIS fire counts [Giglio et al., 2003, 2006], so
MODIS fire counts peak about one month earlier than
MODIS AOD as well. MODIS AOD timing is consistent
with AERONETAOD in the tropics (Figure 2a), suggesting
that MODIS AOD is a realistic characterization of regional
AOD. This indicates that either not enough aerosol is emitted
in the model to match the peak AOD timing of MODIS or
that the simulated aerosol sink is too strong.
[43] In addition to the timing discrepancy, we investigate

the possible reasons for the discrepancies in the magnitudes
of AOD and SSA. The evidence summarized in Table 4
shows that AM2 AOD in the tropics is underestimated by
�30–40% (compared to both AERONET and MODIS) and
AM2e SSA in tropics is overestimated by �8%. AOD in the
extratropics is underestimated by over 20% compared to
AERONET, but agreeswell (within 1–6%)with the regionally

averaged comparison with MODIS. The increase in the high
AOD bias in the MODIS comparisons from 1 to 6% with
AM2e and AM2i, respectively, is consistent with a simulated
industrial source in eastern South Africa; AOD and absorp-
tion are likely enhanced by internally mixed biomass burning
BC and industrial sulfate components. The better agreement
of AM2 with the regional average (Table 4) than with the
AERONET AOD (Table 4) most likely implies burning that
impacts northeastern South Africa (see Figure 1) is not
properly captured in AM2. Skukuza reports notably higher
AOD during the biomass burning season than regionally
averaged MODIS data, as we showed in Figure 2. Similar to
the tropics, AM2 SSA in the extratropics is overestimated by
7% compared to AERONET. The SSA bias remains high
since the AERONET grid box is not strongly impacted by
industrial emissions to the south (i.e., there is still no strong
source of sulfates).
[44] Internal mixing of sulfate and BC in AM2i (compared

to AM2e) should be a more realistic representation of an
aerosol in the ambient atmosphere and is consistent with in
situ observations over southern Africa [Li et al., 2003; Posfai
et al., 2003], but Table 4 suggests that SSA comparisons with
AERONET are basically the same in AM2i and AM2e, with
only a slight enhancement of AOD for the extratropical
regional average (Table 4, AM2e versus AM2i). Matichuk
et al. [2007] found better agreement with their simulations
and AERONET SSA (from AERONET sites in Inhaca,
Mozambique, and Ndola, Zambia) using internally mixed
BC and OM, but their results only apply to September 2000.
We expect that internally mixing OM with sulfate and BC
aerosol would improve the comparisons in Africa (and other
regions impacted by burning), but this is not currently a
feature of the model. As it is, AM2i does not simulate SSA in
southern Africa more accurately than AM2e in either the
tropics or the extratropics.

4.1. Aerosol Mass

[45] One possible reason for discrepancies in AOD and
SSA may be differences in aerosol mass compared with
observations. In Figure 11, we show the AM2 mass con-
centrations for particulate matter less than 2.5 mm diameter
(PM2.5), OM, sulfate, and BC in the lowest model layers
(between the surface and about 500 hPa). AM2e and AM2i
have identical mass distributions. On the basis of data
collected during the SAFARI-2000 field campaign [Eatough
et al., 2003; Formenti et al., 2003; Gao et al., 2003;
Kirchstetter et al., 2003], OM and BC account for about
60–75% of the submicron aerosol mass in southern African
regional haze during the biomass burning season. If semi-
volatile components of OC (SVOC) are included, the carbo-
naceous aerosol contribution to submicron aerosol mass
could be as much as 85% [Eatough et al., 2003]. Ammonium
sulfate and ammonium nitrate contributions to submicron
aerosol mass range from 10 to 40% [Eatough et al., 2003;
Formenti et al., 2003].
[46] The PM2.5 mass from AM2 in Figure 11a is roughly

comparable to the submicron aerosol mass referred to above
because coarse mode (diameters > 1 mm) particles were not
significant. The median contribution of OM and BC to
PM2.5 aerosol mass during the biomass burning season is
55%, while the median sulfate contribution to aerosol mass
during the biomass burning season is 26% (Figure S2 of the

Table 4. Summary of Comparisons of Monthly Aerosol Optical

Depth From AERONET, MODIS, and Single Scattering Albedo

FromAERONET,With AM2Optical Properties, All atWavelengths

of 550 nma

Tropical Extratropical

Aerosol Optical Depth
AERONET 0.30 ± 0.16 0.21 ± 0.09
AM2e 0.19 ± 0.06 0.16 ± 0.03
AM2i 0.19 ± 0.07 0.16 ± 0.03
MODIS 0.30 ± 0.08 0.13 ± 0.04
AM2e 0.19 ± 0.03 0.13 ± 0.03
AM2i 0.20 ± 0.03 0.14 ± 0.03

Single Scattering Albedo
AERONET 0.82 ± 0.03 0.85 ± 0.03
AM2e 0.88 ± 0.01 0.91 ± 0.02
AM2i 0.88 ± 0.01 0.91 ± 0.02

aFor AERONET comparisons (aerosol optical depth (AOD) and single
scattering albedo (SSA)), AM2e and AM2i refer to the grid cell-to-grid cell
comparison (comparable to a single AERONET station), while they refer to
regionally averaged AOD in the MODIS comparisons (directly comparable
to MODIS). All data in this table applies to the biomass burning season
(July to September), and the values are listed as the mean ± standard
deviation.
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auxiliary material). Dust accounts for the remainder of the
simulated PM2.5 aerosol mass. Mass apportionment, there-
fore, suggests that OM and BC percent contributions are
underestimated in AM2.
[47] On the other hand, absolute mass concentrations in

AM2 are generally much different from what is reported by
in situ studies in southern Africa, especially in the tropics.
During the biomass burning season, PM2.5 aerosol mass in
AM2 ranges from 1 to 12 mg/m3 (median of 6 mg/m3) while

Eatough et al. [2003] and Formenti et al. [2003] suggest
submicron aerosol mass ranges from about 15 to 75 mg/m3

in regional hazes located far from direct sources of biomass
burning emissions. OM and sulfate consistently account for
the majority of AM2 AOD in both the tropics and extra-
tropics (Figures S3–S4 of the auxiliary material), and both
are well correlated with monthly MODIS AOD. The corre-
lation is consistent with in situ evidence [Formenti et al.,
2003; Gao et al., 2003] that biomass burning is a source of

Figure 11. Time series of vertical profiles of aerosol mass concentrations (mg/m3, in the color bars) of
(a) particulate matter less than 2.5 mm diameter (PM2.5), (b) organic matter (OM), (c) sulfate (SO4), and
(d) black carbon (BC) simulated by AM2 (both AM2e and AM2i) and averaged over tropical southern
Africa. The y axes show AM2 pressure levels (hPa). Mass statistics are listed in each plot as median and
interquartile range of the individual chemical components during the biomass burning (BB) season
(July–September) and during the rest of the year (not BB, all months but July–September). Note the
scale differences in each plot.
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OM and sulfate particles, but evidence also suggests that the
contribution of carbonaceous matter to AOD is much higher
than that of sulfate [Eatough et al., 2003; Kirchstetter et al.,
2003]. OM mass ranges as high as 7.5 mg/m3 in AM2
(median of 2.8 mg/m3), while BCmass is as high as 0.8 mg/m3

(median of 0.3 mg/m3). Values of OM and BC reported by
Eatough et al. [2003] range from about 10 to 56 mg/m3 and
1 to 2 mg/m3, respectively. The species mass concentrations
in AM2 are considerably less than in situ measurements in
the region suggest and may be part of the reason AM2 AOD
does not agree with AOD from other sources. We investigate
this in more detail below.

4.2. Aerosol Size and Relative Humidity

[48] The size distributions assumed in AM2 (Table 1 and
section 2.2) affect AOD and SSA, so we examine the
sensitivity of both to changes in aerosol size using offline
calculations. We examine the impact of changes to the
assumed geometric mean diameter (Dg) for sulfate, OM,
and BC size distributions since these chemical species are
the dominant controls on AOD and SSA fluctuations in
southern Africa. We set up the sensitivity tests by varying
Dg from 0.75 � Dg to 5 � Dg (and holding sg and total
mass constant) where Dg corresponds to the values listed
for sulfate, OM, and BC in Table 1. Using Mie theory, we
calculate the mass extinction efficiencies and single scat-
tering albedos (at 550 nm and RH = 50%), and then calculate
AOD and SSA assuming a uniform distribution of aerosol
between 0 and 6 km in the atmosphere. We assume a
constant total mass concentration of 6 mg/m3 with mass
apportioned as 34% sulfate, 60% OM, and 6% BC, which is
similar to median PM2.5 mass concentration and overall
mass apportionment during the biomass burning season for
AM2 as shown in Figure 11a.
[49] The case of 2 � Dg increases AOD by 15–21%.

For 3 � Dg and beyond, the mass extinction efficiency
begins to fall off for all the species, while for 1.25 � Dg,
AOD increases by 11–12%. Considered alone, these
increases in Dg suggest that the low AOD bias would
improve. However, the impact on SSA is an increase of
�5% from 0.75 � Dg to 2 � Dg for BC mass fractions
near 6%. The percent increase is larger for contributions of
BC greater than 6%. Thus, although increases in size can
improve the low AOD bias, SSA biases become worse.
[50] These sensitivity tests are purely hypothetical argu-

ments, and regardless of the results, should be considered in
the context of the physical plausibility of increases in size.
Namely, we have to ask the question: What range of values
of Dg for sulfate, OM, and BC is consistent with observa-
tions? There are no studies that report chemically speciated
size distributions in southern Africa. In terms of total aerosol
size distributions reported for southern Africa, Reid et al.
[2005a] list values of Dg ranging from 0.12 to 0.25 mm,Magi
et al. [2007] suggest a range from 0.15 to 0.22 mm, and
Haywood et al. [2003a] suggest Dg = 0.24 ± 0.02 mm, which
together imply that there is a broad range of ‘‘representative’’
size distributions. The total size distribution for AM2
(combining sulfate, OM, and BC in proportions stated above)
can be described with Dg � 0.11 mm. Increasing Dg by a
factor of two for OM and BC results in Dg � 0.18 mm. Both
values fall within the range suggested by past research.

[51] Another aspect of aerosol size that may impact the
simulated AOD and SSA is relative humidity (RH). In AM2,
all sulfate grows as the RH increases, while only the hydro-
philic part of the OM and BC components (section 2.2) grow
in size. Magi and Hobbs [2003] showed that the southern
African biomass burning aerosol is fairly hygroscopic, but
that since RH is less than 50% throughout the lowest part of
the troposphere, the effect of RH on aerosol optical prop-
erties is minimal [Magi et al., 2008]. This is consistent with
climate studies from southern hemisphere Africa showing
that the biomass burning season is coincident with a dry
atmosphere [Garstang et al., 1996]. RH simulated by AM2 is
correspondingly low in the tropics (Figure S5 of the auxiliary
material) and throughout southern Africa during the biomass
burning season. The effect of RH on AOD and SSA only
becomes significant for RH > 50–60% [Magi and Hobbs,
2003], but the RH between about 500 hPa and the surface
in AM2 averages around 40% during the biomass burning
season, which is consistent with independent observations.
[52] To summarize, although RH growth does not explain

the low bias in AOD over southern Africa, assumed size
distributions of the chemical components simulated in AM2
can help explain the low bias in AOD. On the basis of offline
calculations, we suggest that doubling OM and BC geometric
mean diameters (Dg) increases AOD by about 15–21%,
accounting for more than half the low bias, depending on
the region. The new values of Dg are still within the range of
Dg suggested by the literature. More than doubling Dg results
in a decrease in the extinction efficiencies and the impact is
smaller. However, SSA increases by about 4–5% when we
double Dg, so the high SSA bias would become worse
(higher). The same conclusions apply to increases in BC or
OM Dg alone. The only way to drive SSA down (improving
the high SSA bias) is to increase the contribution of BC to
the total aerosol. We, however, have not tested these findings
in AM2 where transport and deposition also play roles in
controlling aerosol loading. Thus, the 15–21% increase in
AOD should be considered an upper limit to the impact of
size, and we conclude that size alone cannot explain the
discrepancies.

4.3. Transport and Deposition

[53] Transport into and out of the tropics may also be an
important factor in determining AM2 AOD. Convective
transport is weak during the dry season owing to the presence
of persistent stable layers and upper level subsidence [Cosijn
and Tyson, 1996]. Advective transport plays a more impor-
tant role [Swap and Tyson, 1999; Garstang et al., 1996]. We
test the role of transport by creating pulse experiments with
AM2, where we simulate pulses of aerosol emissions from
15 July to 15 August (while setting other aerosol emis-
sions to zero) from a subset of the southern African extra-
tropics, southern African tropics, and northern African
tropics. We then examine the simulated transport paths and
residence times of the aerosol in the originating region and
the impact on neighboring regions for about 45 days after the
pulse ends (Figures S6–S7 of the auxiliary material), noting
that nearly all the aerosol disappears after about 75 days.
[54] From these pulse experiments, we find that only a

small fraction (4–5%) of OM aerosol (Figure S6 of the
auxiliary material) emitted in the southern extratropics or
the northern tropics is transported to the southern tropics.
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There is more cross-boundary transport from the tropics, with
about 57% of the aerosol staying over the region, 30%
transported over the Atlantic Ocean, 10% to the extratropics,
and 3% to the northern tropics. Transport toward the Atlantic
Ocean agrees with climatologies of southern African trans-
port pathways (e.g., the ‘‘Angolan plume’’ discussed by
Garstang et al. [1996]) and is consistent with satellite data
products [e.g., Chin et al., 2002; Kinne et al., 2006]. The
small fraction of aerosol transported from the southern
tropics to the extratropics seems to occur in episodes, prob-
ably related to brief synoptic disturbances.
[55] We also tested to see whether the impact of transport

and deposition was similar for OM and sulfate (Figure S6 of
the auxiliary material). Both species have similar transport
pathways and times, but if OM is transported more quickly
out of the source region, then this would result in OM (and
BC) mass contributions to PM2.5 mass that are biased low.
We found that slightly (but not significantly) more sulfate
aerosol is transported from the tropics to the Atlantic (32%),
extratropics (13%), and northern tropics (6%). Thus, only
about 49% of the sulfate from the tropics stays over the
tropics, compared to 57% of OM. If anything, the model
favors more OM over the tropics. However, transport of
sulfate aerosol from the extratropics to the tropics is about
double that of transport of OM (12% compared to 5%),
roughly balancing out the loss from the tropics.
[56] Finally, wet deposition has very little impact during

the biomass burning season of southern Africa (see discus-
sion of RH above). We tested this by running a pulse
experiment with wet deposition on and off, and found that
average aerosol mass was reduced by only �6% by wet
deposition over southern Africa. Thus, we conclude that
simulated transport and deposition in the tropics and extra-
tropics is consistent with observations and cannot explain
the discrepancies between MODIS AOD and AM2 AOD.
The low bias in AM2 AOD begins and ends in the tropics
and the major aerosol source in this region is biomass burning.

4.4. Biomass Burning Emissions

[57] Finally, we examine the sensitivity of the comparisons
to the biomass burning emissions from the GFED inventory
[van der Werf et al., 2006] used in AM2. Our intention here
is to provide emissions that would improve the discrep-
ancies with AERONET and MODIS. There is a great deal
of uncertainty about biomass burning emissions due to a
number of individually uncertain parameters needed to cal-
culate the emissions. Bond et al. [2004] assessed emissions
for a typical year in the 1990s, and their estimates of global
BC + OM emissions are 19–90 Tg/a, while the range for
GFED (1997–2006) is 28–52 Tg/a. If we apply uncertainties
Bond et al. [2004] used to establish their range, then GFED
emissions are 18–84 Tg/a. Thus, the natural variability
predicted over a decade of GFED emissions, which include
a strong ENSO event in 1997–1998, is much less than the
confidence interval suggested by Bond et al. [2004]. One
other estimate of emissions (for 2001) based on GFED with
different emission factors by Chin et al. [2007] suggested
emissions of 76 Tg/a, which is at the high end of the
confidence interval suggested by Bond et al. [2004]. The
range of BC/OM between the three studies is 8.6% to 12.4%,
with Bond et al. [2004] slightly higher than the others.

[58] The magnitudes of simulated aerosol mass concen-
trations are dependent on emissions, but we also showed that
the model underestimates the contribution of carbonaceous
aerosol in southern Africa in sections 4.1 and 4.2. This
suggests that emissions from GFED may be both too low
and incorrectly partitioned. In other words, our comparisons
with both AOD and SSA strongly suggest that GFED over
southern Africa should not be universally scaled. More
aerosol would certainly improve the low AOD bias, it is
unlikely to improve the high SSA bias.
[59] In order to closely match the long AERONET time

series in Mongu and Skukuza, we have to increase southern
African biomass burning emissions of OM by 1.6 and BC
by 3.8, which increases annual emissions from 10 Tg/a to
14 Tg/a. Globally, this is about 54 Tg/a, which is within
the range predicted by Bond et al. [2004]. In a GCM study,
Sato et al. [2003] tried to match model output to global
AERONETclimatologies and found that they had to increase
OM by 1.6–1.8 and BC by 2.2–3.8, which is consistent with
our findings in southern Africa. In a SAFARI-2000 study
with an aerosol transport model,Matichuk et al. [2007] found
that a 30% increase in GFED emissions improved compar-
isons of simulated AOD with available observations (like
MODIS) for September 2000, while we found that a 47%
increase was needed, noting, however, that our study period
was much different. After increasing emissions, the high bias
in SSA is almost zero for the Mongu comparisons, while
Skukuza SSA is still biased high in AM2. AOD comparisons
withMODIS and AERONET data also improve, which is not
surprising. The correlations between the data products and
AM2 output do not change significantly, implying there are
still unresolved issues related to timing the emissions. Since
we showed in Figure 2 that MODIS and AERONET AOD
are significantly correlated, this suggests the timing is related
to the emissions.
[60] The ratio of BC/OM over southern Africa is 18% in

the emissions used to match simulated AOD and SSA, which
is significantly higher than anything suggested by the pub-
lished inventories. Referring to studies of in situ measure-
ments, Bond et al. [2004] suggested a huge range of BC/OM
of 6% to 89% with polluted areas in Asia around 25%. In
situ data from Africa [Kirchstetter et al., 2003] suggests
BC/OM of about 16% (ranging from 3% to 48%), so the
increase in BC/OM needed to match AERONET is con-
sistent with measurements, but not with inventories.
[61] Part of the problem may be that models and inven-

tories do not account for light-absorbing OM [Kirchstetter
et al., 2004; Bond and Bergstrom, 2006] in the simplified
OM and BC approach, which is good example of two
communities whose understandings of carbonaceous aero-
sols have yet to converge in a unified and consistent
approach. We can only suggest, on the basis of our evidence
that BC in models should be larger to account for important
discrepancies in SSA. To account for discrepancies in both
AOD and SSA, BC and OM should be increased, but
disproportionately. There is literature support for all of this,
but fundamental questions remain about how to simulate an
absorbing aerosol.

4.5. Comparisons and Impacts

[62] Results presented in this study generally support the
findings by Ginoux et al. [2006], which evaluated global
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aerosol properties of a previous version of AM2. Both
evaluations consistently reveal strong negative biases in
AM2 AOD in southern Africa, especially during the biomass
burning season. The configurations of AM2 in this study
include several updates since the version of AM2 described
byGinoux et al. [2006] (see section 2), including an option to
internally mix the BC and sulfate aerosol components in
AM2i. The model in this study simulates the 2000–2006
aerosol to directly compare with measurements that are a
temporal match and also includes an evaluation of SSA.
Ginoux et al. [2006] evaluated AM2 simulations from 1996
to 2000 compared to climatologies of available data rather
than direct temporal comparisons. Aside from methodolog-
ical differences, however, the basic conclusions (low AOD
bias and low bias in OM contribution to AOD) by Ginoux
et al. [2006] about biomass burning regions still apply to
the newer configurations of AM2 discussed here.
[63] The clear-sky radiative impact of the low bias in AOD

and the high bias in SSA in AM2 compared to available
observations implies that the magnitude of the top of the
atmosphere radiative forcing (RFtoa) is slightly overestimated
(too negative) and surface radiative forcing (RFsfc) is under-
estimated (not negative enough) by AM2 over southern
Africa. In a study of southern African aerosol radiative
impacts,Magi et al. [2008] showed that a percentage change
in SSA has 3–6 times the impact on RFtoa and RFsfc than
an equivalent percentage change in AOD. Thus, the high
bias in SSA in AM2 will outweigh the low bias in AOD in
terms of the impact on RFtoa, causing the magnitude of RFtoa
to be greater than it would be from observations.We estimate,
on the basis of results by Magi et al. [2008], that the total
effect on RFtoa would be an �8% increase in the magnitude
(+21% from higher SSA and �13% from lower AOD) over
the entire year, noting the individual impacts of the biases in
SSA and AOD offset each other.
[64] The same biases act together to decrease the impact of

the aerosol on the annual surface radiative flux over southern
Africa, implying that AM2 has about 20% more solar
radiation reaching the surface than observations suggest,
and that the impact of the biases on the magnitude of RFsfc
during the burning season is not significantly larger (21%).
The magnitude of RFsfc by the AM2 aerosol is therefore
less than that derived from observation. Slightly more than
half of the impact is due to the lower AOD, while slightly
less than half is due to higher SSA. The radiative energy
absorbed in the atmosphere (i.e., RFtoa – RFsfc) would be
less in AM2 than suggested by observations as well. A full
analysis of regional RF impacts due to apparent biases in
AM2 is beyond the scope of this study, but may reveal
larger-scale issues regarding the impacts of biases in aerosol
optical properties.

5. Conclusions

[65] We evaluated the aerosol simulation from the second
version of the Atmospheric Model (AM2) of the GFDL
General Circulation Model in Southern Hemisphere Africa
(southern Africa) against multiple data sources, comparing
aerosol optical depth (AOD) and single scattering albedo
(SSA) at a midvisible wavelength of 550 nm. We examined
output from two configurations of AM2; AM2e has an

externally mixed aerosol, while AM2i has internally mixed
black carbon and sulfate aerosol components (section 2).
The comparisons offered strong evidence that the simulation
of biomass burning in tropical southern Africa in AM2 is
inconsistent with in situ data collected from a research
aircraft, retrieved AOD and SSA products (Level 2.0,
Version 2.0) from NASA AERONET, and the retrieved
AOD gridded product (collection 5) from the NASAMODIS
satellite. Comparisons in extratropical southern Africa were
generally much better in terms of AOD, but a time series
comparison of SSA at an extratropical AERONET station
revealed that AM2 SSA is biased significantly high.
[66] The simulation of biomass burning in tropical

southern Africa is particularly important since MODIS fire
counts from 2000 to 2006 reveal that the tropics account
for over 90% of the fires that occur in all of southern Africa,
and previous studies showed that southern African biomass
burning accounts for a large part of the global carbona-
ceous aerosol emissions. Using comparisons at three spatial
and temporal scales over southern Africa, we found that
AM2 AOD is biased low by 30–40% in the tropics and
0–20% in the extratropics. The bias in the tropics is consis-
tent throughout the year, but the bias in the extratropics
during the biomass burning season varies from negative in
the AERONETcomparison to slightly positive in theMODIS
comparison. We also showed that AM2 AOD peaks one
month earlier than MODIS AOD nearly every year we
examined, but we could not find a single explanation for this
problem (see sections 4.3 and 4.4). AM2 SSA is biased high
by 4–8% throughout the year, noting that in the tropics,
AM2 SSA bias increases from 4% to 8% during the biomass
burning season. Weak correlation with SSA, especially
during the biomass burning season, suggests that the chem-
ical composition or aerosol optical properties used to convert
from mass concentrations are incorrect. SSA comparisons
did not improve when we used a configuration of AM2 with
internally mixed black carbon and sulfate aerosols.
[67] We concluded, after analyses of many different mech-

anisms impacting AOD and SSA (section 4) that an under-
estimate in carbonaceous aerosol mass over southern Africa
is the most likely reason for the discrepancies presented in
section 3. On the basis of a sensitivity test with the biomass
burning emissions used as input to AM2 (GFED) [van der
Werf et al., 2006], we showed that discrepancies in AOD and
SSA over southern Africa are minimized if organic and black
carbon emissions from GFED biomass burning are increased
by factors of 1.6 and 3.8, respectively. We suggested that the
disproportionate increase required for black carbon emis-
sions may be due to inadequate ability of models to simulate
light absorbing organic carbon. This requires further study
and better integration of modeling methodology with avail-
able measurements. Regardless of the reasons, it is difficult
to assess the quality of climate model output at the regional
scale until simulations and available measurements, espe-
cially aerosol optical properties, are in better agreement.
Africa is particularly sensitive to discrepancies in the simu-
lation of the regional aerosol since most of the emissions are
not exported quickly.
[68] Underestimating aerosol emissionsmay impact climate

predictions by next generation climate models that include
both internal mixing and aerosol-cloud interactions. We
estimated that the impact of the biases in the model would
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result in a �8% increase in the magnitude of the top of the
atmosphere radiative forcing (making it too negative) and
�20% decrease in the magnitude of the surface radiative
forcing (making it not negative enough) over southern Africa
throughout the year, but we did not determine what effect
this would have on general circulation or climate. If a choice
has to be made, is it more important to accurately match
aerosol emissions from available inventories or match sim-
ulated aerosol optical properties to available data products?
Both are observationally based and both require some
assumptions, but at least in this study, it appears that the
models lose something in the translation of aerosol emissions
to aerosol optical properties.
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