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GLOBAL UNIQUENESS OF A CLASS

OF MULTIDIMENSIONAL INVERSE PROBLEMS

UDC 517.946
A. L. BUHGEIM AND M. V. KLIBANOV

Uniqueness theorems for multidimensional inverse problems have at present been obtained
mainly in classes of piecewise analytic functions and similar classes or locally (see [1]1-[7], [15]
and the literature cited there). Moreover, the technique of investigating these problems has, as
a rule, depended in an essential way on the type of the differential equation. In this note a
new method of investigating inverse problems is proposed that is based on weighted a priori .
estimates. This method makes it possible to consider in a unified way a broad class of in-
verse problems for those equations Pu = f for which the solution of the Cauchy problem
admits a Carleman estimate of the type considered in [8] —[11]. The theorems of §1 were
proved by M. V. Klibanov and those of §2 by A. L. Buhgeim. They were obtained simultan-
eously and independently.

We consider the following inverse problems.
1.1. Determine functions u(x, t), aq4(x), and f (x) from the conditions

(1) u=1Lu x€R", >0
2 u(x, T)= F(x), D%F(x)>0, T= const
3) ukx,0 = f(x),
where L = I, <, 8,(x)D* is a uniformly elliptic operator of second order in R", and F and
a,, a #* o, are given functions. Let T, be any number such that Ty > T > 0, let 2 =
R" x (0, T,), let G be a domain in R", and let H**B(R") and H**¥*+AKk+BI2(Q) (k is an
integer, B € (0, 2)) be the Holder spaces [12].
THEOREM 1. Suppose that in (1)~(3) a,, f € H*A(R™), the function a,, is known for

x € G, and a, € C™(G), lal < 2. Then there is not more than one vector-valued function
W, agy, ) u €H* +8.2+812()), satisfying conditions (1)—(3).

The analyticity in ¢ of the function u is used in the proof of Theorem 1 (see [13D). If
the function a4, is not given in the domain G, then Theorem 1 is not true in general [14].
1.2. Determine functions u(x, t) and aao(x) from the conditions

(49 upy+Llu=0, x€R" +t€(,T)
(5) u(x, 0) = fl (X), ut(x' 0) = f2(x):

where f,, f,and g, @ # @, are given functions.
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Tt-lEOREM 2. Suppose thay in (4) ang (5) the Sunction aq 15 known for €Gand /.
2, € C*(RM), le] <2, wirh D&of1 (x) # 0 for all x € R™NG. Then there is noy more than opne
pair of functions (, %), u € C3R™ x [0, 7)), thas Is @ solution of problem (4), (5).

L3, Determine functions ¥ and b from the conditiong

©)  Au- Lyu = MEG % (x, y)Doy 4 b(x, ¥) fix, y),

*€Q, Cprn YE€Q com mon=, =0'1,J’2,~--»_Vm—1);

D) ux, y, g - Vix, »), om0 = gy »');

| ou
8 ul =P, p), M = F. .
@ Y rn TRG. : Lemt .G, )

Here o, = (x €ER™: <r;} and 9, = yeprm. vl <ry. ¥, >0}, Ty >riinis the
unit normaj o 982; A is the Laplace operator (in the Variables x or ¥y Tespectively): and A !l’,-,
F}, and . j=1, 2, ol < 1, are given functiong, We set
B=QIXS22;B'=Bn{ym=O}1 26=le(0’6)»
wl = ‘(x:y)'“x’ = "1, ’y’ < rl!r “’2 = {(xr y)’ ’x’2 - ’ylz = O}'
LetQcp be the domain enclosed between the hyperplane Ym =0 and the hyperplanes
@y and w,; let P = C* Q) n cl(Q).

THEOREM 3. Ler a, € C(F), lel <1, ang Suppose thar f € C'3(Zs)for some § > 0,
and f(x, y', 0) # 0, (x, yyep Then there is noy more than one vector-valued funetioy,
@, 5) D cE ) satisfying conditions (6)—(8).

2. In this section £ is a bounded domain in g with a boundary of class ¢= which is
Situated locally on one side of 3.
2.1. We consider the two boundary value Problems:

[C) N tLiul = 0, xe Q, re [0, 7);
(10) u’(x, 0) = g(x), ul(x, 0) = 0, xegq.

7
(1n %Ix‘yrn o =0 e =30
Here, as in §1, L= Elarl<2 a{;(x)l)"‘ is a uniform elh‘pﬁc operatgr; L I£Ii< Ziai=1 al(x)e
SGlER Eepn ‘e >0D=@p »D,), D; = %/ox;; a] € c(y), la] < 2, ang
4 =42 for o €4, = {a: Jo < 21\4,, where 4, ¢
of multi-indices; .,/ ¢ CH8 x [0, 1), and E§€CHD) is vector-valued functjop of dimension

THEOREM 4. Suppose that det Blx)#0 Jorall x € ﬁana’ ul =2 Jor (x, HDErx
[0, 7). 7ne, al = a2 for all o,

ReMark 1. If in (9) we replace u{,,by -u{, (the hyperbolic case), then for this



in Q x [0, T] are strongly pseudoconvex in the sense of [8] with respect to the operator
D-L,. |

If in (9) we replace u’;t by —u’, (the parabolic case) and condition (10) by #/(x, T)=
g(x), T' € (0, T), then for this inverse problem there is also an analogue of Theorem 4.

2.2. Suppose that y is a real function of class C™(§) with lp(x)] + |[Ve(x)| # 0, x €
Q;let Q= QN {p>0}. Wesuppose that I'y = 3\ {p = 0} and £ C Q are hypersur-
faces of class C*.

We consider the problem of determining functions u, f € C™(£,) from the conditions
(1) Pu=f Qf=g&

(13) pu = (pou, P14, ..., Pm—14) = hy, qu= Qo4, q14,..., qe—1u) = ha.
Here P and Q are linear differential operators or order m and [ respectively with coefficients
in C™(§);

3'u

p.u = —
! an

du
qju= s
an 5

’
.
I

n is the unit normal to T, or T respectively; and the function g and the vector-valued func-
tions 2, and h, are given.

We say that the operators P and Q essentially commute if the order of the operator
[P, Q] = PQ — QP is equal to m + I — 2. We assume that the following estimates hold for
Pand Q forall 7 2 7,:

o a 2 .
(14) Vu € Cy () 1'llu||:'m_l to llulliim < CﬂPu"T'o ;

(15) Vu € C5()qu =0 71° UuH: < C, H'QuII:‘S,

,s+i—1

s = m — 1, m, where the constants C, C; > 0,2 > 0, and « do not depend on u or 7, and

lul2 = T o2 e27¥ dx.
T jal<m J1D%ul

THEOREM 5. Suppose that the operators P and Q essentially commute o > =1 ora =1,
and 8CC, (I[P, O] le(wi+m=1 0y <a (W = W;(Qy) is the Sobolev space of order s). If
the hypersurface Ty is characteristic relative to Q, then the solution of problem (12), (13)
under conditions (14) and (15) is unique.

REMARK 2. In applications usually I = 1, £ = Q, N {x,, = 0}, and the leading part
of the operator Q is D,. In this case for the validity of the estimate (15) with a = 0 it suf-
fices that o(x, x,) < (x', 0), x' = (x;, ..., %,_;). Iy, (x',0)=0and Pxpx, <0, then
(15) holds for @ = %. Without the condition qu = 0 the estimate (15) is not true.

Questions of the uniqueness and stability of a broad circle of inverse coefficient problems
reduce to the problems considered in §§1.3 and 2.2. Theorems 1—4 essentially follow from
Theorem 5. Theorem 4 and theorems similar to it (see Remark 1) can also be proved by the
method of §1.2.

The operators P and Q in Theorem 5 may also be integrodifferential operators, and
their coefficients may be matrices. The smoothness assumptions can be considerably relaxed.
Theorem 5 has an analogue in anisotropic Sobolev spaces.
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