PHYS 4222 Classical Mechanics II

Contact Information

Instructor: Dr. Yuri Nesmelov Office: 269 Bioinformatics Building Phone: 75886 Email: Yuri.Nesmelov@uncc.edu

Course Information

The course meets in Grigg 131 on Tuesdays and Thursdays 11:00am-12:15pm.

Office Hours

Contact me anytime you have questions. Office hours are by appointment.

Required Text

Classical Mechanics, by John R. Taylor (University Science Books)

Grading

Two tests, each worth 20%	total tests 40%
Final exam 30%	total final exam 30%
Six home works, each worth 5%	total home work 30%

Course Policy

Grades are assigned using a 100-point grading scale: A = 90.0-100.0, B = 80.0-89.9, C = 70.0-79.9, D = 50.0-69.9. Late assignments will not be accepted. Grades will not be adjusted in any way. Your actual score on your tests and homework will be reflected in your final grade.

Expectations for Tests

The tests are closed book and closed notes.

Homework

Home work is due in class on the day specified in the schedule. No late homework will be accepted.

Academic Integrity

Students have the responsibility to know and observe the requirements of The UNCC Code of Student Academic Integrity (see Catalog or see http://www.legal.uncc.edu/policies/ps-105.html). This code forbids cheating, fabrication or falsification of information, multiple submissions of academic work, plagiarism, abuse of academic materials, and complicity in academic dishonesty. Any special requirements or permission regarding academic integrity in this course will be stated by the instructor, and are binding on the students. Academic evaluations in this course include a judgment that the student's work is free from academic dishonesty of any type; and grades in this course therefore should be and will be adversely affected for academic dishonesty. Students who violate the code can be expelled from UNCC. The normal penalty for a first offense is zero credit on the work involving dishonesty and further substantial reduction of the course grade. In almost all cases the course grade is reduced to F. Students are expected to report cases of academic dishonesty to the course instructor.

If you have a disability that qualifies you for academic accommodations, please provide a letter of accommodation from Disability Services in the beginning of the semester. For more information regarding accommodations, please contact the Office of Disability Services at 704-687-4355 or stop by their office in 230 Fretwell

Chapter	Topics	Reading	HW	
		assignment	due	
7. Lagrange's	Lagrange's equation for	7.1		
Equations	unconstrained motion			
	constrained systems	7.2 – 7.4		
	examples of Lagrange's equations	7.5		
	Lagrange multipliers	7.10		
Ch 8. Two-body	center-of-mass coordinate, reduced	8.1 - 8.2	HW1	
Central-Force	mass			
Problems	equation of motion	8.3 - 8.5		
	bounded Kepler orbits	8.5 - 8.6		
	unbounded Kepler orbits	8.7 - 8.8		
Ch 9. Mechanics	inertial force	9.1 – 9.2	HW2	
in Nonlinear	angular velocity and acceleration	9.3 - 9.4		
Frames	motion in a rotational frame	9.69.7		
	centrifugal and Coriolis force	9.8 - 9.10		
	Test1			
Ch 10. Rotational	center of mass and rotation	10.1 – 10.2		
Motion of Rigid	inertia tensor and principle axes	10.3 – 10.5		
Bodies	precession	10.6		
	Euler's equations	10.7 – 10.8		
	Euler's angle and motion of a	10.9 - 10.10		
	spinning top			
Ch 11. Coupled	coupled simple harmonic oscillators	11.1 – 11.3	HW4	
Oscillators and general formalism of coupled		11.5		
Normal Modes	oscillators			
	Lagrangian approach and coupled	11.4, 11.6		
	pendulums			
	normal modes and normal	11.7		
	coordinates			
Test 2				

Course topics

Ch13.	Hamiltonian	13.1 – 13.2	
Hamiltonian	Hamilton's equations	13.3 – 13.5	
Mechanics	phase-space orbits	13.6	
	Liouville's theorem	13.7	
Ch 16.	wave equations and waves	16.1 – 16.2,	
Continuum		16.4	
Mechanics			
Final exam			

Tentative schedule				
Date	Chapter	Topics	Reading	HW
			assignment	due
01.10.13	7. Lagrange's	Lagrange's equation for	7.1	
	Equations	unconstrained motion		
01.15.13		constrained systems	7.2 - 7.4	
01.17.13		examples of Lagrange's	7.5	
	-	equations		
01.22.13		Lagrange multipliers	7.10	
01.24.13	Ch 8. Two-body	center-of-mass coordinate,	8.1 - 8.2	HW1
	Central-Force	reduced mass		
01.29.13	Problems	equation of motion	8.3 - 8.5	
01.31.13		bounded Kepler orbits	8.5 - 8.6	
02.07.13		unbounded Kepler orbits	8.7 - 8.8	
02.12.13	Ch 9. Mechanics	inertial force	9.1 – 9.2	HW2
02.14.13	in Nonlinear	angular velocity and acceleration	9.3 – 9.4	
02.19.13	Frames	motion in a rotational frame	9.69.7	
02.21.13		centrifugal and Coriolis force	9.8 - 9.10	
02.26.13	Test1		HW3	
02.28.13	Ch 10.	center of mass and rotation	10.1 – 10.2	
03.12.13	Rotational	inertia tensor and principle axes	10.3 – 10.5	
03.14.13	Motion of Rigid	precession	10.6	
03.26.13	Bodies	Euler's equations	10.7 - 10.8	
03.28.13		Euler's angle and motion of a	10.9 - 10.10	
		spinning top		
04.02.13	Ch 11. Coupled	coupled simple harmonic	11.1 – 11.3	HW4
	Oscillators and	oscillators		
04.04.13	Normal Modes	general formalism of coupled	11.5	
		oscillators		
04.09.13		Lagrangian approach and	11.4, 11.6	
		coupled pendulums		
04.11.13		normal modes and normal	11.7	
		coordinates		
04.11.13	Test 2 (take home test, return on 04.16.13 along with HW5)			
04.16.13	Ch13.	Hamiltonian	13.1 – 13.2	HW5
04.18.13	Hamiltonian	Hamilton's equations	13.3 – 13.5	
04.23.13	Mechanics	phase-space orbits	13.6	
04.25.13		Liouville's theorem	13.7	
04.30.13	Ch 16.	wave equations and waves	16.1 – 16.2,	
	Continuum		16.4	
	Mechanics			
05.07.13	Final exam		HW6	