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A B S T R A C T

A human subject experiment was conducted to investigate caffeine’s effect on appraisal and performance of a
mental serial subtraction task. Serial subtraction performance data was collected from three treatment groups:
placebo, 200, and 400 mg caffeine. The data were analyzed by caffeine treatment group and how subjects
appraised the task (as challenging or threatening). A cognitive model of the serial subtraction task was devel-
oped. The model was fit to the individual human performance data using a parallel genetic algorithm (PGA). The
best fitting parameters found by the PGA suggest how cognition changes due to caffeine and appraisal. Overall,
the cognitive modeling and optimization results suggest that due to caffeine and task appraisal the speed of
vocalization varies the most along with changes to declarative memory. This approach using a PGA provides a
new method for computing how cognitive mechanisms change due to moderators or individual differences.

Introduction

How is cognition preformed? Cognitive architectures are an ap-
proach to answer this question (Anderson, 2007; Newell, 1990). How
does cognition change with moderators such as stress? Cognitive ar-
chitectures enable researchers to better understand and model human
cognition, as well as extend such models to encompass cognition in
stressful situations. Understanding human cognition under stress
through cognitive architectures has importance implications for im-
proving Soldier performance during modern asymmetric warfare op-
erations (Morelli & Burton, 2009; Stetz et al., 2007). Stress is used to
describe experiences that are challenging both emotionally and phy-
siologically (Selye, 1956), as well as psychologically (Matthews, 2016).
Today’s network-centric battlefield environment is highly stressful and
cognitively demanding. A better understanding of cognition while
under stress can provide insight into how warfighters make decisions on
the battlefield, especially under time-critical life-or-death situations
(Kowalski-Trakofler, Vaught, & Scharf, 2003).

A large-scale computational approach is presented that begins to
explore the question of how cognition changes with stress. This ap-
proach uses methods from physiological psychology, cognitive archi-
tectures, and parallel genetic algorithms. We are able to provide an

initial answer to how cognition changes due to stress in a task com-
monly used to study stress and due to caffeine consumed as a potential
modulator of stress.

First, the task (a serial subtraction task), the subjects, and model are
described. Then the model of the task is detailed, followed by the ex-
periment methodology, and the results and discussion of the human
study. Next, how the model was fit to the human data by varying three
parameters of a cognitive architecture is explained. How the parameters
varied gives some indication of how performance was modified by
stress and by caffeine. This approach has flaws and further opportu-
nities are discussed.

This section overviews the basic experimental method. The task is
introduced, then the model used to predict performance on the task is
described, and finally the methodological approach is explained.

Serial subtraction task

The task used to study stress is the serial subtraction task. A brief
summary of the task is shown in Fig. 1. Serial subtraction is part of the
Trier Social Stressor Task (TSST), which starts with a public speaking
task about an embarrassing real-life episode or interviewing for a job
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(Kirschbaum, Pirke, & Hellhammer, 1993). This task has been used
hundreds of times in physiology studies to cause stress in subjects,
which can then be measured in a variety of ways. The task is designed
to cause psychosocial evaluative stress that results in physiological
stress activation, and it does so routinely and reliably as measured by
changes in heart rate, blood pressure, and stress hormone levels (e.g.,
Klein, Whetzel, Bennett, Ritter, & Granger, 2006; Kudielka,
Hellhammer, Kirschbaum, Harmon-Jones, &Winkielman, 2007;
Tomaka, Blascovich, Kelsey, & Leitten, 1993). Typically, the subjects’
performance on the task is not recorded, and despite performance, all
participants are told to improve their speed and accuracy. The task has
solely been used to cause changes in physiology due to math anxiety
and social comparison and has not been used to give insights about
cognition and stress.

Before the task begins the experimenter explains that the subject’s
performance is going to be recorded and analyzed for accuracy (e.g.,
error type, percent correct, etc.). After the task is explained to the
subject, a task appraisal questionnaire is completed, and the subject
begins performing the task with no visual or paper clues. It is thought
this anticipation period, for some subjects, increases anxiety and worry
about poor performance on the upcoming task.

Subjects sit in a chair directly in front of and near the experimenter
who is holding a time keeping device and clipboard of the correct sub-
traction answers that she checks off as the subject performs the task.
Before the task begins the experimenter emphasizes the task should be
performed as quickly and as accurately as possible. Often, and in our case,
the experimenter wears a white lab coat to increase stress. The experi-
menter informs the subject of the starting number. From this point for-
ward, the subject speaks the answer to each subtraction problem.

When an incorrect answer is given, the subject is directed to “Start
over at< the last correct number> ”. At two minutes into each four-

minute session, subjects are told “two minutes remain, you need to go
faster”. This prompt enhances the time pressure component of the task.
The next section describes the model developed to perform the serial
subtraction task.

Modeling serial subtraction

A simple model of the serial subtraction task was developed to
provide a description of how the task is performed, and contributes to a
theory of how cognition and cognitive mechanisms change to give rise
to performance. In the model, theory on mental arithmetic performance
was combined with observations gathered during a previous serial
subtraction study (Ritter, Bennett, & Klein, 2006) to create a cognitive
model of the serial subtraction task.

The ACT-R cognitive architecture (Anderson, 2007) was chosen for
several reasons: (1) it provides a symbolic structure in the form of a
production system and a parameter-driven level of processing using a
number of mathematical equations; (2) it permits the parallel execution
of the verbal system with the control and memory systems; and (3) it
has been used for other models of mathematical processing developed
by other researchers (Anderson, 2005; Dehaene, Piazza, Pinel, & Cohen,
2003; Lebiere, 1999; Ravizza, Anderson, & Carter, 2008; Rosenberg-
Lee, Lovett, & Anderson, 2009). According to Rosenberg-Lee et al.
(2009), “The ACT-R cognitive architecture proposes that cognition is
accomplished by the activity of independent modules that are co-
ordinated by a production system. Modules represent various percep-
tual and motor modalities, such as vision and finger manipulation, and
aspects of central cognition, such as retrieving memories, cognitive
control, and the maintenance of internal representations.” Fig. 2 shows
the primary components of the ACT-R architecture. The dashed line
represents the components used in the serial subtraction model.

The serial subtraction model performs a block of subtracting by 7 s or
13 s in a similar manner to that of the human subjects. The model’s de-
clarative knowledge consists of approximately 650 arithmetic facts and
goal-related information. The model’s procedural knowledge is made up of
24 production rules that allow for retrieval of subtraction and comparison
facts necessary to produce an appropriate answer. The model performs
subtractions using a column-by-column strategy. Table 1 shows several
example arithmetic facts and a production rule used in the serial sub-
traction model. The declarative memory of the serial subtraction model is
loaded with integer, addition, subtraction, multiplication, and comparison
facts. A ‘chunk-type’ defines the structure for each type of fact. The top
section of Table 1 shows example chunk types and several integer, addi-
tion and subtraction facts. The bottom section of the table shows an ex-
ample production rule which is part of the borrowing operation when
performing subtraction. If the fields in the top part of the production
(above the ==>symbol) match the current state of the model’s buffers,
the production executes the lower statements (below the ==>symbol)
which can modify the buffers.

9095
-    7
9088
-     7
9081
-     7
9074
-     7
9067...

8185
-    7
8178
-     7
8171
-     7
8164
-     7
8157...

6233
-  13
6220
-   13
6207
-  13
6194
-   13
6181...

5245
-  13
5232
-   13
5291
-  13
5206
-   13
5193...

Block 1          Block 2          Block 3           Block 4
Star ng number 
given verbally by 
experimenter

Subjects speak 
each answer 
(no paper or 
visual cues)

Fig. 1. An example of the serial subtraction task stimuli and the starting numbers for each
block.

Simulates a subject 
performing a block of 

subtrac ons by 7s and 13s
Verbalizes the answers

Serial subtrac on model 
uses the Declara ve, 

Procedural, Imaginal, Goal, 
and Vocal modules

Goal

Aural

VocalMotor

Vision

Imaginal

Procedural

Declara ve

Fig. 2. The primary components of the ACT-R architecture. The components within the dashed line are used by the serial subtraction model.
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The serial subtraction model executes in ACT-R 6.0 and uses the
imaginal module and buffer. The imaginal buffer implements a problem
representation capability. In the serial subtraction model, the imaginal
buffer holds the current 4-digit number being operated on (the min-
uend) and the number being subtracted (the subtrahend). The goal
module and buffer implement control of task execution by manipula-
tion of a state slot. ACT-R’s vocal module and buffer verbalize the an-
swer to each subtraction problem as the subjects do.

The model starts with the main goal to perform a subtraction and a
borrow goal to perform the borrow operation when needed. Both goal
chunk types contain a state slot, the current column indicator, and the
current subtrahend. The imaginal buffer maintains the current problem.
This buffer is updated as the subtraction is performed. The model be-
gins with an integer minuend of four-digits. All numbers in the model
are chunks of type integer with a slot that holds the number. The model

also contains subtraction and addition fact chunks whose slots are the
integer chunks described above. This representation of the integers and
arithmetic facts has been used in other ACT-R arithmetic models
(Lebiere, 1999; Rosenberg-Lee et al., 2009).

The model determines if a borrow operation is required by trying to
retrieve a comparison fact that has two slots, a greater slot containing
the minuend and a lesser slot containing the subtrahend. If the fact is
successfully retrieved, then no borrow is necessary; otherwise a borrow
subgoal is created and executed. Borrowing is performed by retrieving
the addition fact that represents adding ten to the minuend. The sub-
traction fact with the larger minuend is retrieved. The model then
moves left one column by retrieving a next-column fact using the cur-
rent column value as a cue. If this retrieval fails, there are no more
columns; therefore, the borrow and the subgoal return back to the main
task goal. If there is a next column and its value is not 0, then 1 is
subtracted from it by retrieval of a subtraction fact. If the value is 0,
then the problem is rewritten in the imaginal buffer with a 9 and the
model moves to the next column and repeats the steps discussed above
returning to the main task when there are no more columns. The model
outputs the answer by speaking the four-digit result. The model has two
output strategies. In this investigation, the data reported are for the
calc-and-speak strategy where the model speaks the answer in parallel
with the calculation described above. If the answer is incorrect, the
problem is reset to the last correct answer. If the answer is correct, the
main problem task is rewritten in the imaginal buffer.

After the model has performed a block of subtractions, the number
of attempted subtraction problems and percent correct are recorded.
The model’s performance can be adjusted by varying the values of ar-
chitectural parameters associated with specific modules and buffers,
and subsymbolic processes within the architecture.

Experimental method

Subjects
As part of a larger project, human subject data were collected to

study the effects of stress and caffeine on cognition. A mixed experi-
mental design was conducted with 45 healthy men 18–30 years of age
who consumed caffeine daily (Klein et al., 2006). Due to known sex
differences in caffeine metabolism and cortisol responses to stress
(Benowitz, Lessov-Schlaggar, Swan, & Jacob, 2006; Kirschbaum,
Kudielka, Gaab, Schommer, & Hellhammer, 1999), this initial in-
vestigation was limited to males.

Design and procedure
The full protocol is shown in Fig. 3. After obtaining informed con-

sent, and confirming the subjects did not have any health or medical

Table 1
Example declarative memory chunk-types and facts (Top); example production rule from
part of the borrowing operation in the serial subtraction model (Bottom).

Declarative memory consists of facts defined by chunk-types
(chunk-type integer value)

(chunk-type addition-fact arg1 arg2 sum)

(chunk-type subtraction-fact arg1 arg2 diff)

(ZERO ISA INTEGER VALUE 0)

(ONE ISA INTEGER VALUE 1)

(TWO ISA INTEGER VALUE 2)

(FOUR + SEVEN ISA ADDITION-FACT ARG1 FOUR ARG2 SEVEN SUM ELEVEN)

(FOUR + EIGHT ISA ADDITION-FACT ARG1 FOUR ARG2 EIGHT SUM TWELVE)

(FOUR + NINE ISA ADDITION-FACT ARG1 FOUR ARG2 NINE SUM THIRTEEN)

(NINE + FOUR ISA SUBTRACTION-FACT ARG1 NINE ARG2 FOUR DIFF FIVE)

(NINE + FIVE ISA SUBTRACTION-FACT ARG1 NINE ARG2 FIVE DIFF FOUR)

(NINE + SIX ISA SUBTRACTION-FACT ARG1 NINE ARG2 SIX DIFF THREE)

Procedural memory consists of productions representing knowledge
(p* borrow-move-right
“Positioned at new column, val is not zero, subtract one to borrow”

=goal> isa borrow
state move-right-to-borrow

=retrieval> isa next-column
next-col= new-col

=imaginal> isa subtract-problem
=new-col= val

- =new-col zero
==>

!output!(at new column=new-col need to borrow from=val)
=goal> state reduce-minuend
current-col = new-col

+retrieval> isa subtraction-fact
arg1= val
arg2 one)

Baseline

Informed 
Consent

Health Status

Ques onnaires

Saliva 1 Saliva 2

Cogni ve 
Tasks 1

Cogni ve 
Tasks 2

Ques onnaires

Blood 
Pressure & 
Heart Rate

Ca eine/
Placebo Stressor Recovery

10" 5"10" 15" 20" 20" 15" 5" 20"

Experimental Timeline Fig. 3. The experimental protocol, including an illustration of the four
blocks of the serial subtraction task labeled ‘Stressor’.
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conditions that would interact with stress and caffeine, all subjects
completed several questionnaires and were asked to perform a series of
three cognitive tasks. A baseline was taken for several physiological
measures (i.e., hormones from saliva, heart rate [HR], and blood
pressure [BP]). Preliminary results from these measures are reported
elsewhere (Bennett, Whetzel, Ritter, Reifers, & Klein, 2006; Klein et al.,
2006; Whetzel, Ritter, & Klein, 2006).

Subjects individually performed a simple reaction time (RT) and a
working memory (WM) task, which required 15min to complete. Then
subjects were administered one of three doses of caffeine: none (pla-
cebo), 200mg caffeine (equivalent to 1–2, 8 oz. cups of coffee), or
400mg caffeine (equivalent to 3–4, 8 oz. cups of coffee). After allowing
absorption time, a 20-min stress session of the mental arithmetic (e.g.,
serial subtraction) portion of the TSST was performed. Following
completion of this stressor, subjects again were asked to complete the
same RT and WM tasks. Cognitive performance was determined by
calculating accuracy and response time scores.

The serial subtraction task used in the experiment consisted of four
four-minute blocks of mentally subtracting by 7 s and 13 s from four-
digit starting numbers. Fig. 1 noted the four starting numbers used to
begin the four blocks of subtraction during the experiment.

Task appraisal analysis
Before and after the serial subtraction stress session, subjects com-

pleted pre- and post-task appraisals based on Lazarus and Folkman’s
(1984) theory of stress and coping. Each subject answered five ques-
tions: two focused on the subject’s resources or reserves to deal with the
serial subtraction task and three focused on the subject’s perception as
to how stressful the task would be. The post-task appraisals were ana-
lyzed in this case because subjects reported that the task was not
threatening prior to completing the task.

After correcting for the imbalance in questions, a ratio of perceived
stress to perceived coping resources was created (total task require-
ments score/total coping ability score). For example, if a subject’s total
appraisal score was less than or equal to one, their perceived stress was
less than or equal to their perceived ability to cope, which equated to a
challenge condition. If a subject’s appraisal score was greater than one,
their perceived stress was greater than their perceived ability to cope,
which equated to a threat condition.

Each caffeine treatment group had 15 subjects. Table 2 shows the
distribution of subjects into appraisal groups. The placebo group had
approximately the same number of subjects in each appraisal condition
(7 challenge, 8 threat). The 200 mg caffeine group had twice as many
challenged subjects as threatened subjects (10 challenge, 5 threat). The
400mg caffeine group contained only two challenged subjects with the
remaining (13) subjects reporting a threatening appraisal. These dif-
ferences are reliable, χ2 (1, 2)= 8.92, p= .012. This is consistent with
previous results that show an increase in self-appraised alertness for
moderate but not high caffeine levels (Brice & Smith, 2001; Yu,
Maskray, Jackson, Swift, & Tiplady, 1991). It is understood that sub-
jective alertness does not always provide an objective measure of
alertness. A subjective increase alertness may result in the stressful task
being appraised as a challenge, then as a threat. On the other hand, high
caffeine levels may induce anxiety which would lead to more threa-
tening appraisals (Brice & Smith, 2001; Winston, Hardwick, & Jaberi,
2005; Yu et al., 1991).

Human experimental results and discussion

For this investigation, the serial subtraction performance data from
the placebo group (PLAC), the 200mg caffeine group (LoCAF), and the
400mg caffeine group (HiCAF), were analyzed by average across
treatment group and by appraisal condition. The performance statistics
of primary interest were number of attempted subtraction problems and
percentage correct. The data are shown in Table 3 where each pair of
values represents number of attempts and percent correct. The results
discussed in this paper apply to data from the first block of subtracting
by 7 s.

Across all treatment groups, the subjects in the challenge condition
tended to demonstrate some of the best performance in both number of
attempts and percent correct. Subjects who perceived the task as
threatening, demonstrated some of the worst performance. Previous
work has only found that subjects make fewer attempts when threa-
tened, not that there is also lower percent correct (Tomaka et al., 1993).

Performance differences between the challenge and threat condi-
tions were most pronounced in the LoCAF group with an increase of
nearly 25 more attempted subtraction problems and a 13.5% increase
in subtraction accuracy by challenged subjects over threatened subjects.
For the HiCAF group the challenge and threat condition differences
were less than LoCAF but still substantial: 13 more attempted problems
and a 7.7% increase in subtraction accuracy. Differences between the
challenge and threat condition were least visible in the PLAC group, 10
more attempted problems and only a 5.4% increase in accuracy.

Fig. 4 visualizes these performance differences with the treatment
groups labeled along the x-axis and the plot subdivided into three
sections: averages across treatment groups (not by appraisal condition)
in the leftmost section, and averages across treatment groups sub-
divided by appraisal condition in the center (challenge) and rightmost
sections (threat). With limited sample sizes, what might appear as a
large difference within the plotted data does not take into account some
of the variance in the samples. The plotted data should be viewed from
the perspective of a proof-of-concept which visualizes potential trends;
however, a larger dataset is needed to test statistical significance.

Fig. 4 plot reveals several interesting trends; some supported by
existing caffeine and cognition research and others not. In the average
across treatments plot (leftmost section), the performance of the HiCAF
group drops below that of PLAC for both performance statistics. This
supports findings that large doses of caffeine are occasionally associated
with anxiety and disrupt performance (e.g., Haishman &Henningfield,
1992; Wesensten, Belenky, & Kautz, 2002). Whether a 400mg dose is
considered ‘large’ may be in question as some studies administered up
to 800mg doses (McLellan, Kamimori, Voss, Tate, & Smith, 2007).
Generally, 100–300mg doses are categorized as ‘low’ dosages because
50–300mg of caffeine is available in a number of forms including ta-
blets, chewing gum, a wide variety of beverages, and some food pro-
ducts.

In the challenge condition (middle section), HiCAF performance
does not drop below PLAC, but is approximately equivalent or slightly
higher. In both the average across treatments and the challenge con-
dition, LoCAF performance is well above that of PLAC. This is also
supported in previous research that low doses of caffeine tend to in-
crease performance (Amendola, Gabrieli, & Lieberman, 1998; Smith,

Table 2
Subjects’ post-task appraisals by caffeine condition.

Caffeine treatment 1–2 8 oz. cups of coffee 3–4 8 oz. cups of coffee

Number of subjects Placebo 200mg 400mg
Challenge 7 10 2
Threat 8 5 13

Table 3
Human performance (average number of attempts and percent correct) by caffeine
treatment group (each N=15) and appraisal condition (challenge PLAC N=7, LoCAF
N=10, HiCAF N=2; threat PLAC N=8, LoCAF N=5, HiCAF N=13).

Treatment Average Challenge Threat

PLAC 47.3/81% 50.7/83% 40.4/78%
LoCAF 59.1/86% 62.4/88% 37.5/75%
HiCAF 45.7/79% 51.6/83% 38.9/75%

S.E. Kase et al. Biologically Inspired Cognitive Architectures 22 (2017) 1–9
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Clark, & Gallagher, 1999). In both these cases, across treatments and
challenge plots, the effects of caffeine mirror trends previously pub-
lished in arousal literature (e.g., Anderson & Revelle, 1982) and appear
to support the Yerkes and Dodson (1908) law that postulates the re-
lationship between arousal and performance follows an inverted U-
shape curve.

There is no supporting research for the performance trends visible
under the threat condition (right section). Threatened subjects self-re-
ported stress and lack of coping skills to adequately perform the serial
subtraction task. The threat plot shows performance decreases from
PLAC to LoCAF (instead of increases as observed in the other sections of
the plot) with HiCAF only very slightly higher than LoCAF (+1.4 at-
tempts, and +0.3% correct). In this case, the U-shape is not inverted,
but actually very slightly U-shaped.

In summary, task appraisal appears to be associated with perfor-
mance. This might not be surprising given that the appraisal was taken
after performance, but similar appraisal measures taken before also
correlate, including in this task, and self-appraisal scores are often
generous in general; that is, people tend to hold overinflated views of
their skills (e.g., Dunning, Johnson, Ehrlinger, & Kruger, 2003).

Caffeine dose generally provided an inverted U-shaped curve, with
moderate caffeine providing the greatest number of attempts and the
highest percent correct for challenged subjects. Similar performance
was not obtained for subjects appraising the task as threatening. Also,
changes in post-task appraisal with the same shape occur with mod-
erate caffeine more often with a challenging appraisal.

These results provide differences that are interesting. The next step
is to explore what changes to cognition could give rise to such differ-
ences.

Understanding changes under stress

To understand how cognition changes for these groups, we can
adjust theoretically motivated parameters in a cognitive architecture,
and treat the adjustments as a description of how cognition changed. If
patterns of parameter changes that lead to better correspondences are
found, they suggest how cognition changes. This process in other areas
is sometimes called docking, which is an alignment procedure for
comparing models (Burton, 1998; Louie, Carley, Haghshenass,
Kunz, & Levitt, 2003). This section begins by discussing the archi-
tectural parameters selected for adjusting the model’s performance to
simulate the human data. This process of fitting the cognitive model to
human data is a form of optimization. The model fitting approach is
based on parallel generic algorithms that are described in the next
several subsections. The fitting results, accompanied by interpretations
of best fitting parameter values, are discussed at the end of this section.

Architectural parameters

Several architectural parameters in ACT-R appeared important in

performing serial subtraction. We selected what we thought were the
three most task-relevant parameters to explore out of more than 80
parameters available in the ACT-R architecture version 6.0. A speech
parameter was chosen for optimization because vocalization of the
answer is the most time-consuming aspect of this task. Two memory
parameters were chosen because the task is memory intensive. Other
memory parameters could have been chosen and ongoing work is ex-
ploring the fitting of other parameters. One would, of course, like to
explore a wider set, but to illustrate and start to explore this model
fitting approach, three task specific parameters were selected. The
parameters used in model fitting were: seconds-per-syllable, the de-
clarative knowledge base level memory activation constant, and the
declarative memory activation noise.

Because subjects perform the serial subtraction task by speaking the
answer to each subtraction problem, the seconds-per-syllable (SYL)
parameter was important to investigate. SYL controls the rate the serial
subtraction model speaks. The ACT-R default timing for speech is 0.15 s
per syllable based on the length of the text string to speak. There is a
default of three characters per syllable controlled by the characters-per-
syllable parameter. The seconds-per-syllable and characters-per-syl-
lable parameters control the cognitive processes in ACT-R’s vocal
module. The vocal module gives ACT-R a rudimentary ability to speak.
It is not designed to provide a sophisticated simulation of human speech
production, but to allow ACT-R to speak words and short phrases for
simulating verbal responses in experiments such as the answers to the
subtraction problems.

Experimentation involving mental arithmetic investigates the
mental representation of numbers and arithmetic facts (counting, ad-
dition, subtraction, multiplication) and the processes that create, ac-
cess, and manipulate them. The activation of chunks storing arithmetic
facts in declarative memory is critical to ACT-R’s performance in mental
arithmetic (Lebiere, 1999). Two parameters affecting declarative
knowledge access are the base level constant (BLC), and the activation
noise parameter (ANS). The BLC parameter and a decay parameter af-
fect declarative memory retrieval and retrieval time. The ANS value
affects variance in retrieving declarative information and the error rate
for retrievals in the model. It was thought a stressful task such as serial
subtraction would show a large amount of variability in ANS. Also, the
ANS value can represent subjects’ variance from trial to trial. Other
parameters, such as base level learning, decay, and the characters-per-
syllable parameters were left fixed at their default values for this study.

The search space for the model optimization was defined by para-
meter value boundaries. The ACT-R website (http://act-r.psy.cmu.edu/
) is an online repository of ACT-R studies where both the manuscripts
and the models are available broadly categorized by type of task.
Information was collected on models related to cognitive arithmetic
and mathematical problem solving and which particular parameters
and values were being used. The commonly found parameter value
boundaries for ANS, SYL, and BLC where then expanded for the opti-
mization to ensure all plausible combinations of values in performance

PLAC   LoCAF   HiCAFPLAC   LoCAF   HiCAFPLAC   LoCAF   HiCAF

Average Across Treatments Challenge Condi on Threat Condi on

Hu
m

an
 P

er
fo

rm
an

ce

Number of A empts
Percent Correct

Fig. 4. Comparing human performance differences in number of at-
tempts and percent correct by treatment group (x-axis) and appraisal
condition: treatment groups not accounting for appraisal (leftmost
section), and averages across treatment groups divided by appraisal
condition, challenge (middle section) and threat (rightmost section).

S.E. Kase et al. Biologically Inspired Cognitive Architectures 22 (2017) 1–9

5

http://act-r.psy.cmu.edu/


of the serial subtraction task could be tested. The parameter value
boundaries selected were: ANS and SYL 0.1–0.9, and BLC 0.1–3.0.

Optimization approach

The search space for these three parameters is large and rather
complex. Recent work with ACT-R has also shown this fitting is to a
noisy, multidimensional, non-linear, multi-parameter function. It is not
an appropriate task for manual optimization. For example, Kase (2008)
has shown that simple hill climbing performs poorly in optimization.

Genetic algorithms (GAs) have been used to optimize the fit of
functions to data for a long time (e.g., Davis & Ritter, 1987; Goldberg,
1989). GAs use a set of genotypes, the genes for a solution, and compute
the fitness of a phenotype, a solution created by the genotype. In cog-
nitive modeling, a genotype could represent a set of parameters. The
phenotype is the predictions of a model arising from those parameters.
Better evaluated phenotypes are more likely to have their genes passed
to a later generation.

The first model used for a similar purpose improved the speed of a
neural network to find XOR (Ritter, 1991). Later work by Lane and
Gobet (2005) has suggested GAs can be helpful in this area. Further
work by Peebles (2016) has also shown this approach of using GAs to
understand and improve model fit can be a productive approach to
understanding models and their relationship to data.

In this study, a parallel genetic algorithm (PGA) was applied to
overcome the combinatorial parameter search spaces and substantial
computational and time resources associated with optimizing the ACT-
R model to the human performance on the serial subtraction task. This
is a stochastic global optimization problem where it is reasonable to
assume multiple local optima exist. In general, the goal of global op-
timization is to find a point for which the object function obtains its
smallest value, the global minimum. Genetic algorithms have the ad-
vantage of being less susceptible to getting stuck at local optima than a
gradient search method.

The genotypes were composed of ACT-R parameters sets applied to
the cognitive model. The population evolved to find better ‘solutions’
by selecting the most fit parameter sets (those that give the best match
to the human data), and propagating these solutions to the next gen-
eration. In the algorithm, the fitness evaluation consisted of running the
model in the ACT-R cognitive architecture, analyzing the model’s per-
formance output, and calculating a fitness evaluation based on the

match of the predictions to human behavior using multiple processors
that reduced the time required to reach acceptable solutions.

The PGA used a fitness evaluation of the number of attempts and
percent correct performance for the nine sets of data, executing a type
of regression, fitting a multi-variable non-linear stochastic function
(ACT-R) to multivariate data. This is a departure from the cognitive
modeling community’s traditional manual optimization technique. We
have also fit the subjects individually using this approach, and obtained
similar results (Kase, 2008).

Parallel implementation

There are several classes of PGAs distinguished by their level of
parallelization. In this study, the algorithm used is a master-slave global
parallelization PGA. This type of PGA is characterized by a high com-
putation to communication ratio. In a master-slave PGA, one master-
processing node executes the GA-related functions, while the fitness
evaluation is distributed among numerous slave processors. The slave
processors evaluate the fitness of the genotypes that they receive from
the master process, and then return the fitness results back to the
master node.

The ACT-R architecture and cognitive model are written in Lisp.
Generally, MPI (i.e., multiprocessor coordination libraries) is available
on cluster computing resources in the form of C or Fortran libraries. To
utilize parallel processing in the cognitive model optimization process,
ACT-R and the cognitive model are packaged into an executable Lisp
image or core file. This image file can be run by a system call from a C
program on each processor in parallel while using MPI to communicate
genotypes and fitness values among the processors. Fig. 5 illustrates the
optimization platform on a high-performance computing (HPC) cluster.

The population of genotypes (ACT-R parameter sets), in the form of
a matrix, are ‘scattered’ row-wise to the processors. Each processor
executes the Lisp image file that runs the model within the ACT-R ar-
chitecture. Each processor then calculates a fitness based on the model’s
performance predictions and the human data statistics. In this case, sum
of the squares error is calculated on both number of attempts and the
percent correct from a block of serial subtractions by 7 s. The fitness
values calculated by the processors are ‘gathered’ up by the master
process, which then applies genetic functions to the population based
on the fitness of the genotypes. This is repeated through a number of
generations with the effect of evolving a set of candidate solutions.

Optimization setup

Nine PGAs were set to run 100 generations of 200 binary-encoded
genotypes. Each PGA optimized the serial subtraction model to the
subjects’ group performance data (treatment by appraisal) gathered
from the experiment. The PGA used genotypes consisting of one 36-bit
chromosome divided into three 12-bit substrings each representing the
value of the three ACT-R parameters ANS, BLC, and SYL.

In the PGA code the selection probability (selection of the fittest)
was set to 0.5, meaning half the genotype population is replaced each
generation by offspring of the fittest genotypes. Random mutations
alter a certain percentage of the bits in the list of chromosomes. This
operation introduces new traits in the original population and keeps the
PGA from converging too quickly before sampling the entire search
space. The mutation rate was set at 0.15. The terminating condition was
a specified number of generations (1 0 0), instead of proximity to each
subject’s performance statistics.

Model-to-data fit was determined by an objective function, or fitness
function, defined as the sum of squared discrepancies between model
performance (number of attempts and percent correct) and the corre-
sponding human performance (e.g., (47.3− 48.1)2+ (81.5− 81.4)2).
The fitness is in terms of error (or cost) with a fitness value of 0 re-
presenting perfect correspondence between the model predictions and
the human data, and values less than 1.0 represent a fit less than 1

Cogni ve
Model

Lisp ACT-R

HPC

Parallel
Processing

Lisp
Image

NCSA 
Linux Cluster

Gene c
Algorithm

C MPI

Fig. 5. Components of the optimization platform on a HPC Linux cluster.
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difference in number of attempts and percent correct.
Employing this type of automated optimization approach allowed

for 20,000 different sets of parameter values to be tested in a directed
manner each time the PGA was executed. Using this approach, the
model was optimized to the nine sets of human performance data in
Table 3.

Results of the PGA

Table 4 is a summary of the PGA optimization results by caffeine
treatment and appraisal condition. The first column denotes the ap-
praisal condition with CH for challenge, TH for threat, and ALL for the
average across challenge and threat. The next two columns, Human
Performance and Avg. Model Prediction, list the number of attempts
(first value) and percent correct (second value) for the human (second
column) and the model (third column). The model’s performance is an
average across the number of best fitting parameter sets. For example,
the (3) in the first row, last column means the PGA found three para-
meter sets producing fitness less than 1.0 and that these parameter
values (last column), model predictions (third column), and fitness
value (fourth column) are averaged across those three best PGA runs.
The fitness value column shows the PGA optimizations were able to find
good solutions for the three treatment groups and appraisal conditions
within a fractional part of a subtraction problem. Considering the
complexity of the serial subtraction task and the human performance
variability, these are exceptional model to human data fits that suggest
how cognition changed.

Several trends can be observed within the parameter values pro-
ducing best fits. Beginning with the seconds-per-syllable parameter,
SYL is shown in the last column and last value in the triple of Table 4.
The model predictions indicate that challenged subjects speak a syllable
more quickly than threatened subjects. This is true for all treatment
groups. LoCAF shows the greatest difference in speech rate with chal-
lenge SYL at 0.31 s per syllable (also lowest SYL overall) and threat SYL
at nearly two times slower (0.61). HiCAF differences in SYL are less:
challenge 0.40 compared to threat 0.57, a difference of 0.17. PLAC
shows a slightly less SYL difference of 0.14. Challenge subjects self-
report less stress and are generally confident that they can perform the
serial subtraction task well. With less stress and a low dose of caffeine
more fluid speech appears to result, or possibly the speech rate acts as a
surrogate for other cognitive processes required to complete the sub-
tractions (i.e., fact retrieval, working memory and place-keeping op-
erations, concatenation of subsolutions).

Across treatments, the activation noise parameter values (ANS, first
value in triple) are high compared to what would be manually assigned
to the model in the ACT-R modeling community. This occurrence could

be due to the nature of the task as more stressful than typically found in
psychology experiments (i.e., purposively used to elicit a stress re-
sponse). The ANS value range in Table 4 is narrow from the lowest ANS
of 0.67 to the highest ANS of 0.78, a difference of only 0.11. This hints
at the fact that caffeine may not effect this parameter’s role in the
model’s performance of serial subtraction. ANS values are basically
equivalent for the PLAC and LoCAF groups for challenge (0.68) and
threat (0.71). In this case, the slightly higher ANS in predicting threa-
tened subjects corresponds to the lower performance (less attempts and
lower accuracy), and the self-reports where subjects do not believe they
will perform well. Worrying or embarrassment about their poor per-
formance is a distraction and may interfere with working memory
processes and verbalizing solutions. The greatest variability in ANS
values is found in HiCAF. Surprisingly, the trend reverses with HiCAF
challenge predictions yielding a higher ANS value (0.75) than threat
predictions (0.67).

The base level constant parameter values (BLC, middle value in
triple) show a trend of nearly equivalent higher values for LoCAF and
HiCAF challenge conditions (2.65 and 2.69) than threat conditions
(2.48 and 2.35), and also for all BLC values under PLAC (2.49, 2.48, and
2.53). In this case, caffeine may be causing a ‘boost’ in the base level
activation value of facts in declarative memory promoting higher
probability of selection in response to a retrieval request and lower fact
retrieval time.

Discussion and conclusion

This investigation started to explore a more complete approach for
studying how cognition when moderators such as stress and caffeine are
considered. A fairly complex experimental protocol was used to collect
data on a task that has been used in previous stress research.

A cognitive model was fit to three different caffeine treatments and
appraisal groups using a PGA optimization approach. The fits were very
close revealing several patterns in the parameter values. The changes to
the model to fit these data increased our understanding of the cognitive
mechanisms that lead to these differences in behavior. The average
fitness values in Table 4 suggest the model can be well fit by this ap-
proach of identifying parameters using a PGA. The results suggest there
are systematic changes in cognition due to caffeine and appraisal—most
notable talking faster when challenged and slower when threatened,
and slightly more noise in declarative memory processes and less basic
activation of declarative memory. We also are able to see an inverted U-
shaped curve in these values as might be expected with these caffeine
doses. These changes represent the changes to cognition using this ar-
chitecture as it currently exists and is commonly used. It is possible that
the changes revealed in this study may be surrogates for other changes,

Table 4
Optimization results for three treatment groups (PLAC, LoCAF, HiCAF) and appraisal groups (CH= challenge, TH= threat) comparing human performance and model predictions in
number attempts and percent correct (both rounded) in a four-minute block, and fitness value associated with average (over N) of best fitting (less than 1.0 fitness value) ACT-R parameter
values. The ACT-R parameters are ANS, activation noise in declarative memory; BLC, base level constant activation of declarative memory; and SYL, seconds per syllable speaking rate).

Human performance Avg. model prediction Avg. fitness value ACT-R parameters
ANS, BLC, SYL (N)

PLAC (no caffeine)
ALL 47.3/81.5% 48.1/81.4% 0.83 0.70, 2.49, 0.44 (3)
CH 50.7/83.3% 50.4/83.0% 0.47 0.68, 2.48, 0.41 (6)
TH 40.4/77.9% 40.3/77.4% 0.36 0.71, 2.53, 0.55 (5)

LoCAF (200 mg caffeine)
ALL 59.1/86.5% 59.1/86.7% 0.12 0.72, 2.64, 0.33 (4)
CH 62.4/88.3% 62.7/88.4% 0.42 0.69, 2.65, 0.31 (3)
TH 37.5/74.8% 37.2/74.9% 0.58 0.71, 2.48, 0.61 (6)

HiCAF (400 mg caffeine)
ALL 45.7/79.2% 44.7/80.4% 0.50 0.78, 2.65, 0.47 (4)
CH 51.6/82.8% 46.1/87.7% 0.53 0.75, 2.69, 0.40 (3)
TH 38.9/75.1% 50.4/92.3 0.58 0.67, 2.35, 0.57 (4)
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but the cognitive model and PGA optimization begin to illustrate how
this approach can help summarize cognitions that may lead to a par-
ticular behavior when factoring in stress and task appraisal.

This investigation also shows using a cognitive model and para-
metric optimization approach can further our understanding of caffeine
beyond a strictly human experimentation approach. Overall, the cog-
nitive modeling and optimization approach was successful. The pre-
liminary modeling results and interpretations offer insight on the effects
of caffeine on task appraisal and subsequent performance of the task,
and promise an improved methodology for the study of other beha-
vioral moderators and other cognitive tasks. At this point in our in-
vestigation more analysis is needed and additional parameter sets
should be examined, along with continued refinement of the serial
subtraction model for predicting the effects of caffeine.

Several extensions to this research can be envisioned. The current
serial subtraction model simulates a stressed subject by manipulating
ACT-R architectural parameters. An alternative representation of par-
ticular theories of stress or anxiety could be implemented using subsets
of ACT-R production rules executed as the model runs. This would be
considered more of a knowledge representation simulation of stress
instead of a parametric overlay representation. A study by Miwa and
Simon (1993) suggested a knowledge representation alternative to
parametric modeling of individual differences by presenting a model
that could make a distinction between common skills and individual
differences. Miwa and Simon used the example that 70% of the subject’s
behavior could be explained by the common part of the model, and the
remaining 30% by the individual part of the model.

The current serial subtraction model does not possess self-evaluative
mechanisms. In other words, the model does not know whether it is
performing poorly or not. Audio file transcriptions of subjects’ perfor-
mance confirmed when a subject made an error, especially consecutive
errors, the subject would become discouraged with his performance and
appear to intentionally slow down his mental step-wise calculations of
the subtraction problem in order to answer correctly. Similar to Miwa
and Simon’s model representation, a production or set of productions
representing appraisal feedback could be added to the serial subtraction
model executing when the model detects it has made an error. These
extra productions could ‘waste time’ in simulating the subject slowing
down his mental calculations; or execute internal verbalizations about
doing poorly and feeling embarrassed, thus, interfering with the vocal
module’s speaking of the subtraction answer. This would be supportive
of what was observed in the pattern of SYL values.

Another extension to consider is the type of PGA used in the opti-
mization process. This study implemented a master-slave GA with a
single global population. The global population consisted of one large
search space defined by the three ACT-R parameters (ANS, BLC, SYL)
with minimum and maximum values of each parameter constraining
the space. The next level up in complexity is a multiple-population GA
which consists of several subpopulations that exchange individuals
occasionally. The exchange of individuals is called migration and is
controlled parametrically. Each sub-population can identify a different
locally-optimal solution. The populations send emigrants that have the
effect of attracting the other subpopulations to their solutions possibly
crossing valleys of low fitness that would have remained unexplored
otherwise. This additional exploration may discover even better solu-
tions.

In the results, the patterns of ANS and BLC value pairs were not
easily interpretable in reference to theories of stress and anxiety.
Subpopulations of a multiple-population PGA could be set up to divide
the ACT-R parameter space for searching. The divisions could be based
on different hypotheses about cognitive performance on the task. A
processor would be allocated for each genotype as in the global popu-
lation GA, but the genetic operators would be applied to each sub-
population separately. After the GA terminates, the solutions from each
subpopulation could be compared and evaluated in reference to the-
ories of stress and anxiety. The search space defined by the best

subpopulation could then be used in a global population PGA for a more
fine-grained search.

In general, the multiple-population GA would make for more effi-
cient theory development as one run of the GA could focus search on
several different regions thought to be theoretically feasible. Other al-
ternatives for use of a multiple-population GA include subpopulations
based on the use of different fitness functions, or subpopulations each
running a different version of the model. As discussed above, a base
model with a primary set of productions, and then several other ver-
sions of the base model with different additional production sets. The
‘family’ of models could be optimized in one run of the PGA and then
compared.

From an educational perspective, two extensions of this research
come to mind; formulating a parameter pattern library, and developing
a more flexible and reusable model optimization platform. Broadly
speaking, the PGA optimization technique is efficient enough to be
employed as an educational tool in learning about a cognitive archi-
tecture and how different combinations of parameters influence specific
cognitive processes. The ACT-R architecture has approximately 80
different parameters available for manipulating a model’s behavior.
With the PGA optimization, any sized search space could be explored
using many different sets of parameter combinations. The results of
each search could be overlaid to interpret the effects of each combi-
nation of parameters.

With the search space and parameter combinations held constant,
different models could be used during each search. If tasks being
modeled were broadly classified into categories, libraries or repositories
could be set up to collect patterns of parameter combinations with their
resulting effects on specific cognitive processes, possibly ordered by
architectural module. Patterns of predictions could be submitted by
researchers in the cognitive modeling community to a central library
located on the architecture’s website forming a collective pattern lan-
guage of architectural parameter combinations when applied to dif-
ferent classes of tasks.

This PGA optimization approach is available and extendable by
other modelers. A large cluster computing resource was used for this
project. Most medium to large sized universities have some type of
cluster computing resource. With the exception of the serial subtraction
model all other applications used in this project are open source
(CMUCL, ACT-R) or commonly reside on a cluster (C, MPI). The opti-
mization approach could be used to fit other models besides the serial
subtraction model. In theory, any cognitive model written in the ACT-R
architecture could be modified in the same way as the serial subtraction
model to run in a parallel processing environment. The primary mod-
ifications required included reformatting the model’s startup function
to accept parameter values coming in as arguments, and rewriting the
backend function to support the fitness criteria of the PGA.

Lastly, different types of search algorithms could be applied, even in
combination, to find the best model-to-data fits. For this project, the
majority of the search algorithm code was written separately from the
cognitive model interfacing with the model only in the fitness function.
For example, the basic code for the PGA was extracted from a textbook
and then modified to incorporate the cognitive architecture and model.
With the availability of open source applications and academic re-
sources, and easy integration of a cognitive architecture and model, this
optimization approach can be adopted for use by other cognitive
modeling communities using different architectures.

In conclusion, several earlier studies mentioned in section
‘Understanding changes under stress’ (Lane & Gobet, 2005; Peebles,
2016; Ritter, 1991) formulated the ground work for this PGA-based
global optimization approach for fitting parameterized cognitive
models to human data. This line of research has not been actively
pursued by the cognitive modeling community, but should have been as
this study points out. The results reported here show our optimization
approach was successful in producing excellent model to human data
fits and shows promise for replacing the cognitive modeling

S.E. Kase et al. Biologically Inspired Cognitive Architectures 22 (2017) 1–9

8



community’s traditional manual optimization technique—an iterative
step-by-step process that encourages modeler bias in selecting para-
meters values that support a chosen hypothesis.
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