1. Consider the three charges in figure below, in which d = 4 cm, q = 10 nC, and the positive x-axis points to the right. What is the force  $\vec{F}$  on the +5 nC charge? Give your answer as a magnitude and a direction.

| charge? Give your answer as a magnitude and a direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. $Sketch(3)$<br>2. $F_{+}(3)$<br>3. $F_{-}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. Magnitude (1) your = d   5 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fuet (2) $F = k \frac{9.72}{r^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\frac{\partial}{\partial s} = \frac{1}{\int_{-\infty}^{\infty} -5  \text{nC}} = \frac{1}{\int_{-\infty}^{\infty} +1} = $ |
| $\theta = \tan^{-1}\left(\frac{4}{3}\right) = 53^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\vec{F}_{+} = 9 \times 10^{9} \frac{5 \times 10^{-9} \times 10 \times 10^{-1}}{25 \times 10^{-4}} \left(-6053^{\circ} \hat{c} - 5in53^{\circ}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\dot{F}_{+} = -1.08 \times 10^{-4}  \hat{c} - 1.044 \times 10^{-4}  \hat{J}$ $\dot{F}_{-} = 2.5 \times 10^{-4}  \hat{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $F_{\text{net}} = \frac{2.05 \times 10^{-4}  \text{M}}{12.02 \times 10^{-4}  \text{M}} = \frac{1.44  \hat{j}}{12.02 \times 10^{-4}  \text{M}} = \frac{1.44  \hat{j}}{12.02 \times 10^{-4}  \text{M}} = \frac{1.45.4  \text{below x-ais}}{12.02 \times 10^{-4} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

2. An insulating sphere with radius R = 20 cm has a volume charge density of  $\rho = 100 \, (r - R) \, nC/m^3$ . What is the electric field strength and direction at a point r = 10 cm from the center? dq = p.dV = 100 ( T-R). 4 TT dr (Mse SI cysten

(7) fenc = Sdq = S100 (r-0,2) 47 r2. dr (x109) =  $= 10 \times 4\pi \int (\Gamma - 0.2) \Gamma^{2} d\Gamma =$ 

 $= 4\pi \times 10^{7} \times \left[ \int_{0.1}^{0.1} \int_{0.1}^{3} dr - 0.2 \int_{0.2}^{2} \int_{0.1}^{2} dr \right] =$ 

=  $12.57 \times 10^{-7} \left[ \frac{\Gamma^4}{4} \right]^{0.1} - 0.2 \times \frac{\Gamma^3}{3} \left[ \frac{0.1}{2} \right]^{-2}$ 

= 12.57 x 40 [2.5 x 40 - 6.86x 40] =

 $-52.3 \times 00 = -5.23 \times 00 C$ 

Gauss' Law: \$\overline{\mathbb{E}}.d\overline{A} = \frac{\mathbb{E}\end{\mathbb{e}me}}{\mathbb{E}\_0}

E. 4772 = fenc

E = 1 fenc = K fenc = -9 x 10 5.23 x 10

-47.1 to C.

Grading:

3. Two spherical drops of mercury each have a charge of 0.8 nC and a potential of 360 V at the surface. The two drops merge to form a single drop. What is the potential at the surface of the new drop?

$$V = k \frac{q}{r}$$
  $\rightarrow r = k \frac{q}{v}$   
ie radius of either sphere  $q$   
 $r = 9 \times 10^{9} \times 0.8 \times 10^{9}$   
 $r = 9 \times 10^{9} \times 0.8 \times 10^{9}$ 

$$v = 2 \times 10^{-6} \text{m}$$

$$Volume of bij drop = 2 \left(\frac{4}{3} \pi r^3\right)$$

$$=\frac{47}{3}T_0^3$$

Potential at the surface of big drop  $V_0 = 9 \times 10^9 \times 1.6 \times 10^{-9}$ 

$$V_0 = 570V$$

4. The electric potential on a horizontal plane having 10-m long sides is given by

$$V = 3,000 - 5x^3 + 10 x^2 - 2 y^2$$
 Volts

Where x and y are measured from the origin of the coordinate system. A positive point charge of +1 nC with a mass of 1 g is introduced into the chamber at position (x = 2m, y = 2m) with an initial speed of 0 m/s. What is the acceleration of the point charge at its initial position?

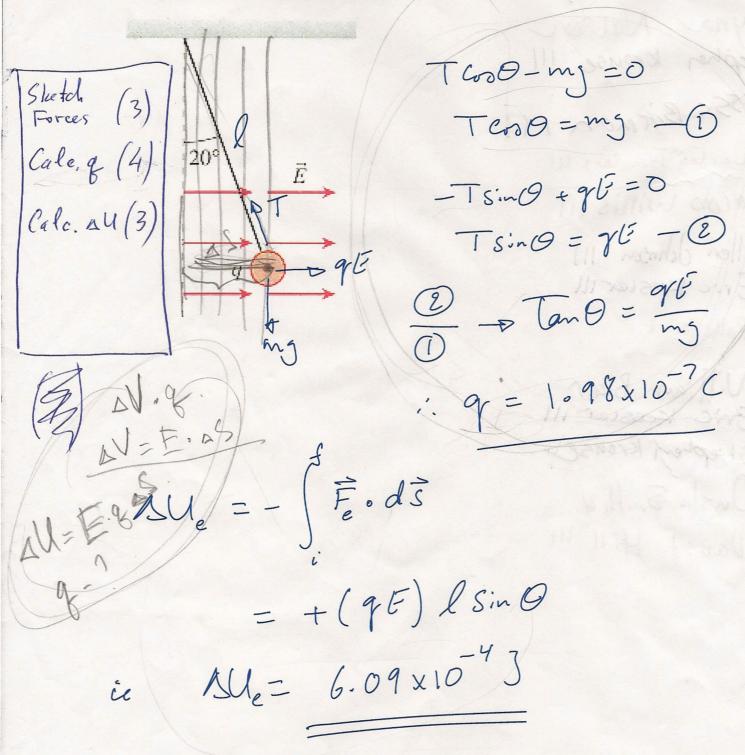
$$\vec{E} = -\vec{\nabla}V$$

$$= -\left[ (-15x^{2} + 20x) \hat{c} - 4y \hat{j} \right]$$

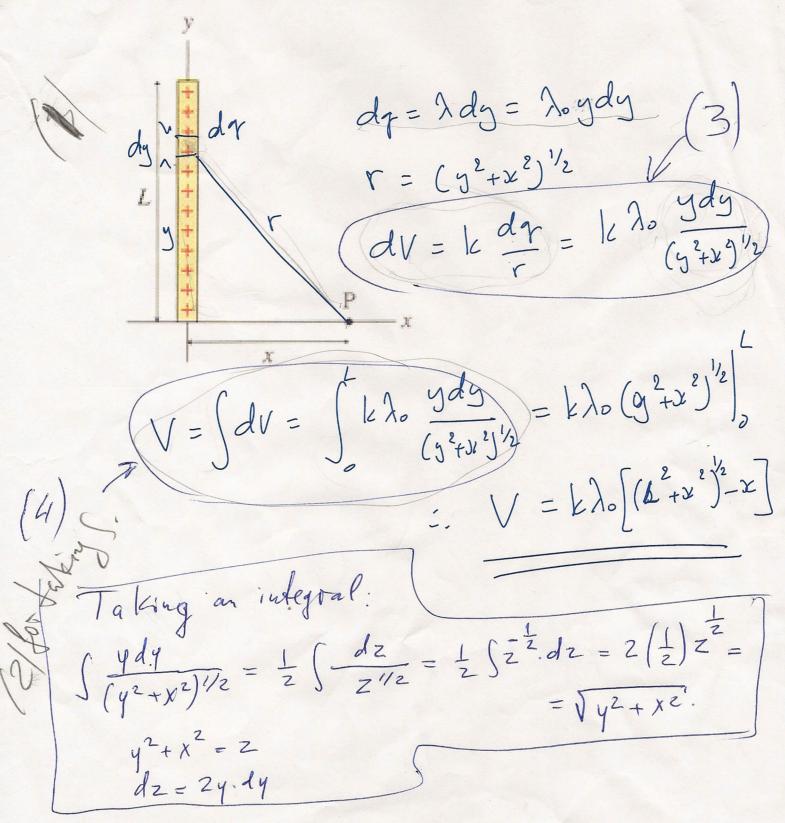
$$= (15x^{2} - 20x) \hat{c} + 4y \hat{j}$$

$$\vec{C} = (20\hat{c} + 8\hat{j}) \times 1/c$$

$$\vec{C} = \frac{qr\vec{E}}{m} = (20\hat{c} + 8\hat{j}) 10^{-6} \text{ m/s}^{2}$$


$$\vec{C} = (21.5 \times 10^{-6} \text{ m/s}^{2}, 21.8 \text{ above } x-axis)$$

$$\vec{C} = (21.5 \times 10^{-6} \text{ m/s}^{2}, 21.8 \text{ above } x-axis)$$


Some people can use:  

$$|E| = \sqrt{(20^2) + (8)^2} = \sqrt{464} = 21.5 \frac{N}{e}$$
  
 $|a| = 9 |E| = \frac{100 \times 21.74}{10^{-3}} = 21.5 \times 60 \frac{m}{52}$ 

5. An electric field  $\vec{E} = 90000 \, \hat{i}$  N/C causes the ball in figure below to hang at a  $20^{\circ}$  angle, where the length of the massless rigid rod connecting the ball to the pivot point is  $10 \, cm$ , and the ball's mass is  $5.0 \, g$ . If the ball is swung back to the perpendicular position indicated by the dotted line, what is the change in its electric potential energy?



6. The figure below shows a thin rod of length L with a linear charge distribution of  $\lambda = \lambda_0 y$ , where  $\lambda_0$  is a constant. Find an expression for the electric potential at distance x from the end of the rod.

