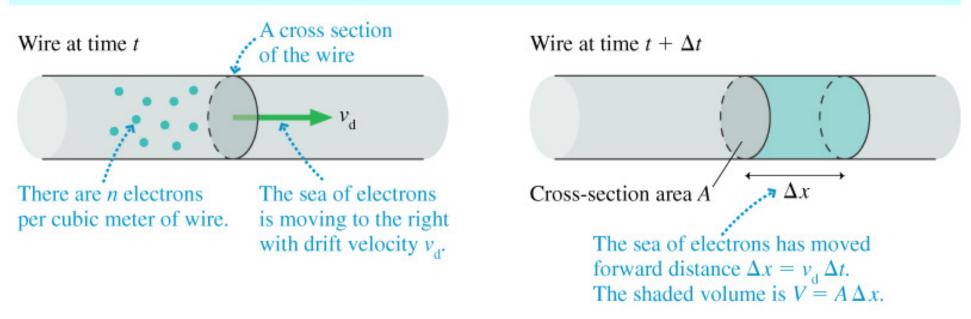
Lecture 11: Chapter 28, October 6 2005

The Electron Current

Simple material for reading, pp.879-896. We will consider major points.

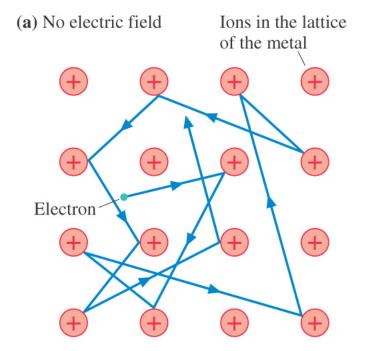

• The definition of current is given on page 890: I = dQ/dt [1 Ampere = 1 coulomb per second]

• Don't be confused with the use of parameter *i* called "current", i = l/e, in the text. As a current we will use only *l*.

• Sometimes we can use small *i* for current, but in the same sense as *I*, not as i = ||e|.

• Although the current *I* (or *i*) can be thought as a vector we will consider only its *magnitude*: I = i = dQ/dt

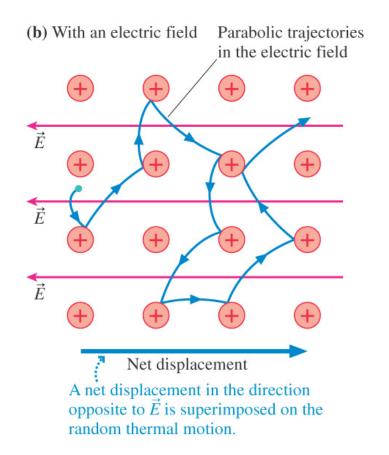
Drift of Electron Gas


Assumption: electrons drift with *constant* velocity (v_d) in the electric field. At the first sight they should accelerate, but the constant velocity can be achieved due to "friction" caused by their scattering on atoms.

 $I = Q/\Delta t = eN_e/\Delta t$ - where N_e – number of particles that pass through a cross section *A*.

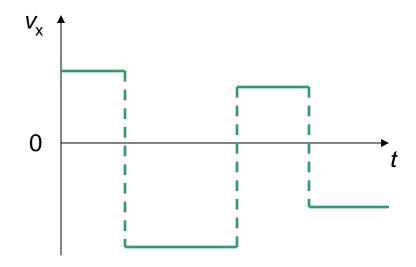
Let us introduce concentration *n*. When: $N_{\rm e} = nV = nA\Delta x = nAv_{\rm d}\Delta t \implies I = e nAv_{\rm d}\Delta t / \Delta t = e nAv_{\rm d}$

Microscopic Model Taking into Account Thermal Motion


Thermal Motion

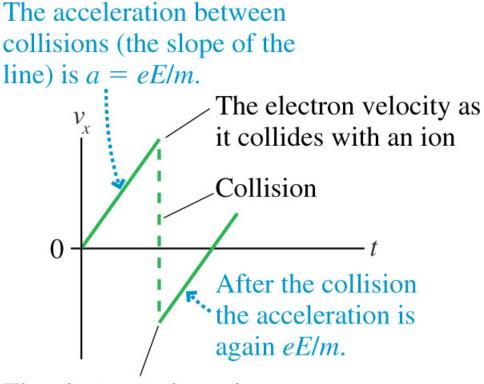
The electron has frequent collisions with ions, but it undergoes no net displacement.

The thermal energy of electrons is 3/2(kT). By requesting $3/2(kT) = mv_{th}^2/2$ one can estimate average electron speed $v_{th} \sim 10^5$ m/s


With an electric field

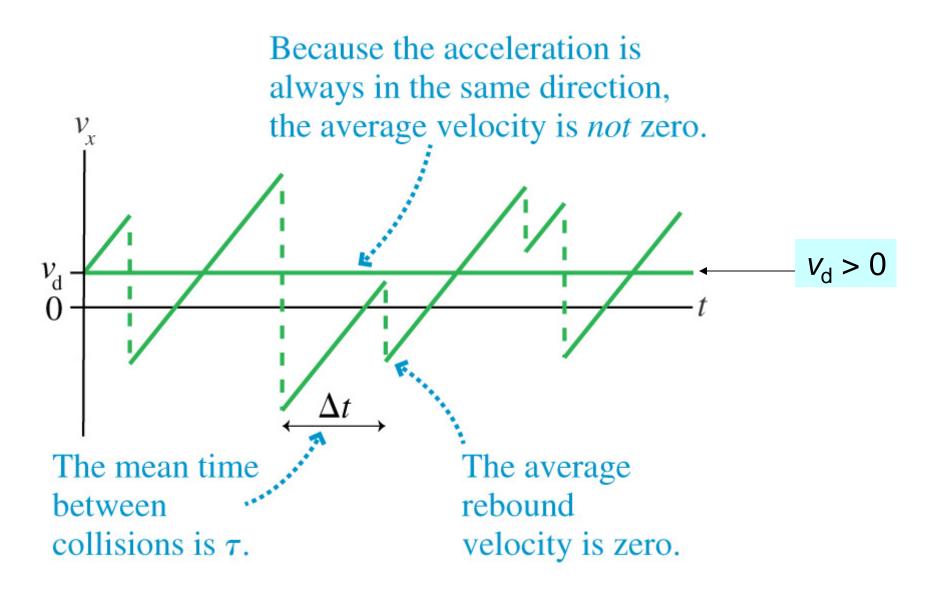
Drift velocity in electric field (v_d) is much smaller than v_{th} . But how to calculate v_d ?

More Detailed View How Current Appears in this Model


Without electric Field

• Between collisions the velocity is constant.

- Each collision leads to a random change in v_x .
- •The velocity on average is zero ($v_d=0$)


With electric Field

The electron rebounds with velocity v_{ix} .

Due to the slope the averaging will give a positive velocity ($v_d > 0$).

More Collisions...

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Calculating Drift Velocity and Current

Let us express the instantaneous velocity (v_x) :

 $v_x = v_{ix} + a_x \Delta t$, where v_{ix} – initial velocity after collision $a_x = F/m = eE/m$

Drift velociy (v_d) can be found by averaging v_x :

 $v_{d} = v_{ix} \text{ (average)} + a_{x} \Delta t \text{ (average)} = eE/m \Delta t_{av}$ Zero, can you explain why? $\Delta t_{av} = \tau$ - mean time between collisions

As a result we have: $v_d = e\tau E/m$ and $I = ne^2 \tau AE/m$

Conductivity and Resistivity

Current Density: $J = I/A = (ne^2 \tau/m)E$ Let us introduce conductivity σ as $\sigma = ne^2 \tau/m$ (1) When we have: $J = \sigma E$ (2)

The equation (2) says:

- Current is caused by the electric field.
- The current density depends linearly on *E*.
- The current density also depends on conductivity (σ) related to some material properties, see Eq. (1).

Resistivity (ρ) is determined as an inverse of the conductivity: $\rho = 1/\sigma = m/(ne^2\tau)$

End of Lecture 11 Reading: Entire Chapter 28 HW 5 and monitor when HW6 will be uploaded