Lecture 12: Chapter 31 Beginning, October 13 2005

Outline

- Resistors and Ohm's Law
- Real Batteries
- Power
- Circuitry and Kirchhoff's Laws

For a capacitor we assumed $\Delta V_c = \mathcal{E}$ for $t \rightarrow \infty$. Why is that?

What is *I*? What is the potential drop on the wires?

Let us consider a short.

What is *I*? What is the potential drop on the wires?

More detailed look...

• Don't try it at home. What will happen to the circuit and to the battery?

- Is current zero or nonzero?
- Is there potential change along the wires?

Resistors and Ohm's Law

Consider a part of this circuit:

$$J = \sigma E = E/\rho$$

$$I = JA = EA/\rho = (\Delta V/L)A/\rho$$

The quantity $R = \rho L/A$ resistance of the conductor. The unit is the *ohm*, where 10hm = 1V/A

 $I = \Delta V/R$ – this relationship between I and ΔV is known as Ohm's Law

Often used as V = IR

Ohmic and Nonohmic Materials

Despite its name Ohm's law is *not* a law of nature. It is limited to those materials whose resistance *R* remains constant during use.

(a) Ohmic material

Ohm's Law typically applies to the resistors *only*.

Nonohmic devices:

(b) Nonohmic materials

- Batteries where ε = Const
- Semiconductors
- Capacitors where the $I_{\rm DC}$ =
- 0, but $I_{AC} \neq 0$.

Examples of Ohmic circuit materials

(b) The voltage drop along the wires is much less than across the resistor because the V

• *Wires* are metals with very small resistivities ρ and very small resistances $R << 1\Omega$ An **ideal wire** has $R = 0 \Omega$

• **Resistors** are poor conductors with resistances $10\Omega < R < 10^6 \Omega$. They can be made from thin metal wire with high ρ .

• *Insulators* are materials such as glass, plastic, or glass. An ideal insulator has $R \rightarrow \infty$.

Control Question

Assuming Ohm's law ($\Delta V = IR$) where would you expect the potential to drop in a circuit: across the wires or across resistors?

How to find the current

Resistance Rule: For a move through *R* in the direction of current, the change in potential is -IR, otherwise it is +IR

EMF Rule: For a move through an ideal battery in the direction of the EMF, the change in potential is +E, otherwise it is -E

Energy and Power – Reading Chapter 31

$P_{\rm R} = I \Delta V_{\rm R} = I^2 R = (\Delta V_{\rm R})^2 / R$ – Important expressions

Series Resistors

Parallel Resistors – Reading Chapter 31

(a) Two resistors in parallel

(b) An equivalent resistor

The rules of connecting resistors in series and in parallel are opposite to that for capacitors

Fundamentals of Circuits

Goals

• To be able to find currents and potential differences in most complicated circuits such as multiloop circuit exemplified below

• To be able to consider real (complited) circuits where battery is included in the circuit such as this one:

Rules of circuit's algebra

- Assume arbitrary directions for currents
- Assume arbitrary directions of making the loop
- Use the Kirchhoff's junction rule
- Use the Kirchhoff's loop rule:

Loop law: $\Delta V_1 + \Delta V_2 + \Delta V_3 + \Delta V_4 = 0$

End of Lecture 12 Reading: Chapter 31 Review for Quiz 6 HW 6 and HW7 Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley