Lecture 20: Paragraphs 34.4-34.8 fromChapter 34,
November 22 2005

Maxwell’s Equations
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The equations have been studied except the term in the red box.



Displacement Current
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This 1s the magnetic field of the
current / that is charging the capacitor.
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Previously we introduced
Ampere’s law:
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Any surface bounded by C

through

e Ampere’s law says that we
can consider any surface
bounded by curve C to
calculate Iy, oyqn-

e However the result is
different for surfaces S; and
S,. Why is this?



Displacement Current (continuing)

The carriers are stopped at the electrode, but the electric field
(and its flux) physically presents in the gap

@, =EA,_but_E=Q/g,A- plane _ parallel _capacitor

0.- QA Q
EA &,
dCI)e 1 dQ I

dt g dt & If we introduce this “current” when

| -, d®, __— Ampere’s Law will be correct for any S,
disp = “0
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e Displacement current creates same B as real current, but it does
so with a changing flux rather than a flow of charge



Maxwell’s Rainbow

Wavelength (nm)
700 600 500 400

e Internet operates at near-
Infrared wavelengths ~1.5um.
Do you know why?
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Visible Light
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e Eye sensitivity to visible light is maximal for a green color
e Visible light occupies a very short range of wavelengths



Creating EM Waves: Antennas

Transformer
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Positive charge on top Negative charge on top

Copyright © 2004 Pearson Education, Inc.. publishing as Addison Wesley

An oscillating voltage causes
the dipole to oscillate.

v

Antenna  The oscillating dipole causes an
wire electromagnetic wave to move away
from the antenna at speed v, = c.
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Propagation of EM Waves

1. A sinusoidal wave with frequency f and
wavelength A travels with wave speed v

em”

> Wavelength A

EU | E\

perpendicular to
each other and to B =
the direction of 3. £ and B are in phase.
travel. The fields That 1s, they have
have amplitudes matching crests,

E, and B, troughs, and zeros.
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Two Major Laws Describing EM Waves

Faraday Law
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Ampere-Maxwell Law
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The Speed of Light

Two Equations should be satisfied at the same time, see Ch. 34:
EO :(ﬂ“f)BO = VemBO
Eq = Bo/(&0tVem)
This means that:

1
v = = 3.00 X ]_DE m/s =c¢ (34—45}

= Ve

No other speed will satisfy Maxwell's equations



Energy and Intensity
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e At any point the Pointing vector represents the direction of wave
e The magnitude of S represents the rate of energy transfer per
unit area of the wave. It oscillates at extremely high frequency.

e Intensity is averaged energy transfer, | = S,



Radiation Pressure

__energy _ absorbed Without
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C proof
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Newton’s second law:
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Force per unit area:
Radiation _ pressure
F (P/A) |

prad —
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e Transfer of momentum from light to the object
e For totally reflecting object the pressure is doubled: p,,4 = 2l/c



Polarization

Unpolarized The polymers are parallel to each other.

Polarized Light

E

Polaroid
The electric field Only the cofnponent of
of unpolarized light E perpendicular to the
oscillates randomly polymer molecules
in all directions. is transmitted.

e Usual sources, sun light, lumps, etc., are unpolarized
e | asers produce polarized light

e Unpolarized light can be polarized using polaroid



First Malus’s Law: Initially unpolarized light

Unpolarized light |

e

- = (1/2)l,

transmitted

0

Polarizer

Analyzer

e If incident light is unpolarized the intensity of the beam
transmitted through the polarized is 1,/2.



Second Malus’s Law: Incident Light is already polarized

y The incident light 1s polarized
at angle 6 with respect to the

Polarizer ax1s._ 1 polarizer’s axis.

Only the component of £
in the direction of the axis
1s transmitted.

Loerin.s = Iycos™0 (incident light polarized) (34.52)

e This law Is a consequence of the fact that | ~ (squared
component of E in the direction of polarizer)



Example of the Problem with Multiple Polarizers

7

In figure, initially unpolarized
light is sent through four
polarizing sheets. The first and
third sheets have polarizing
directions making angles of &,
= 30° and 6, = 60° (measured
counterclockwise) with the
direction of the y-axis. The
second and forth sheets have
polarizing direction making
angles of 4, = 15% and g, = 25°
(clockwise) with the direction of
the y-axis.

What percentage of the initial
Intensity is transmitted by the
system of the four polarizing
sheets?
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End of Lecture 20
Reading: Paragraphs 34.4-34.8 from Chapter 34
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