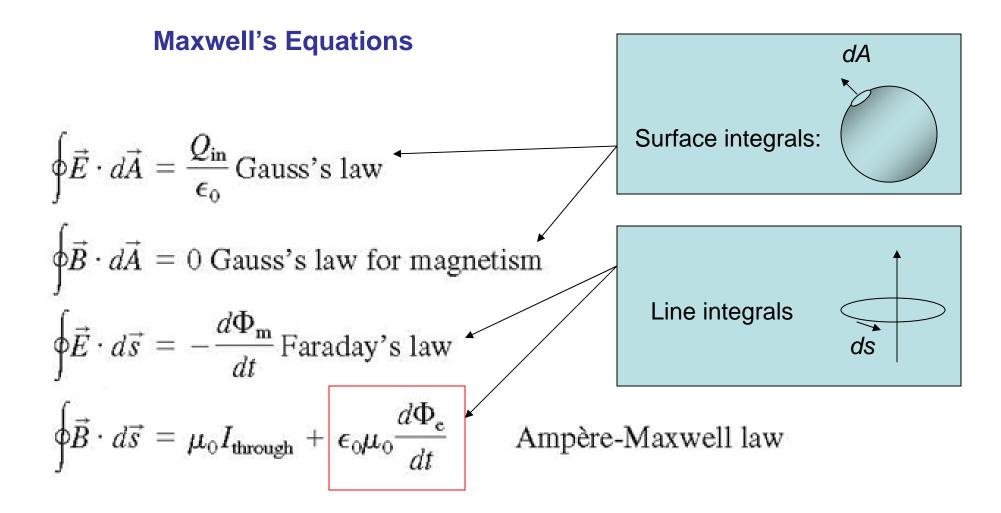
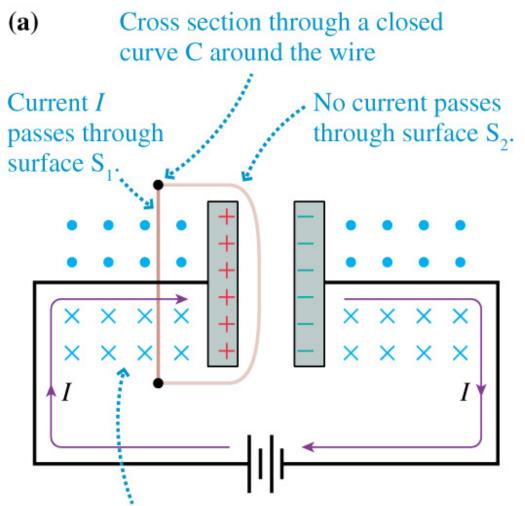
Lecture 20: Paragraphs 34.4-34.8 fromChapter 34, November 22 2005



The equations have been studied except the term in the red box.

Displacement Current



This is the magnetic field of the current *I* that is charging the capacitor.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Previously we introduced Ampere's law:

$$\oint Bds = \mu_0 I_{through}$$

Any surface bounded by C

• Ampere's law says that we can consider *any* surface bounded by curve C to calculate *I*_{through}.

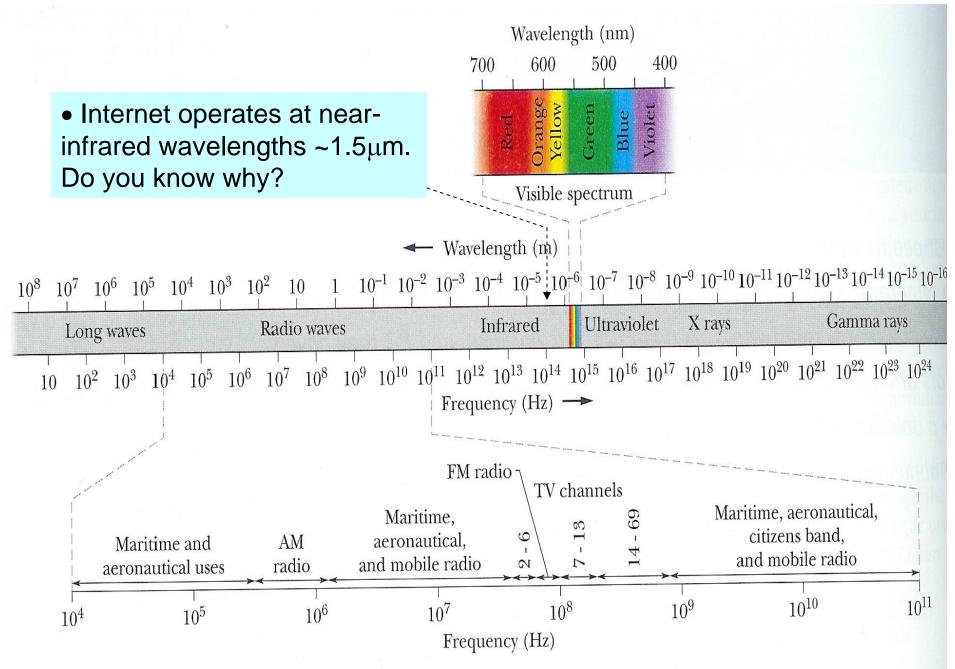
• However the result is different for surfaces S_1 and S_2 . Why is this?

Displacement Current (continuing)

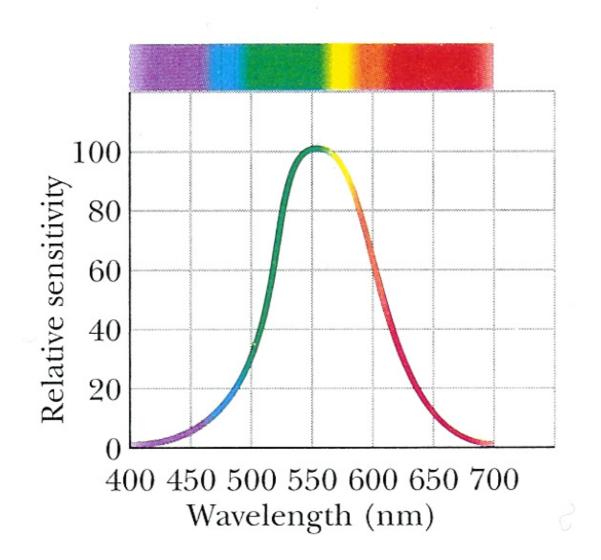
The carriers are stopped at the electrode, but the electric field (and its flux) physically presents in the gap

• Displacement current creates same B as real current, but it does so with a changing flux rather than a flow of charge

Maxwell's Rainbow

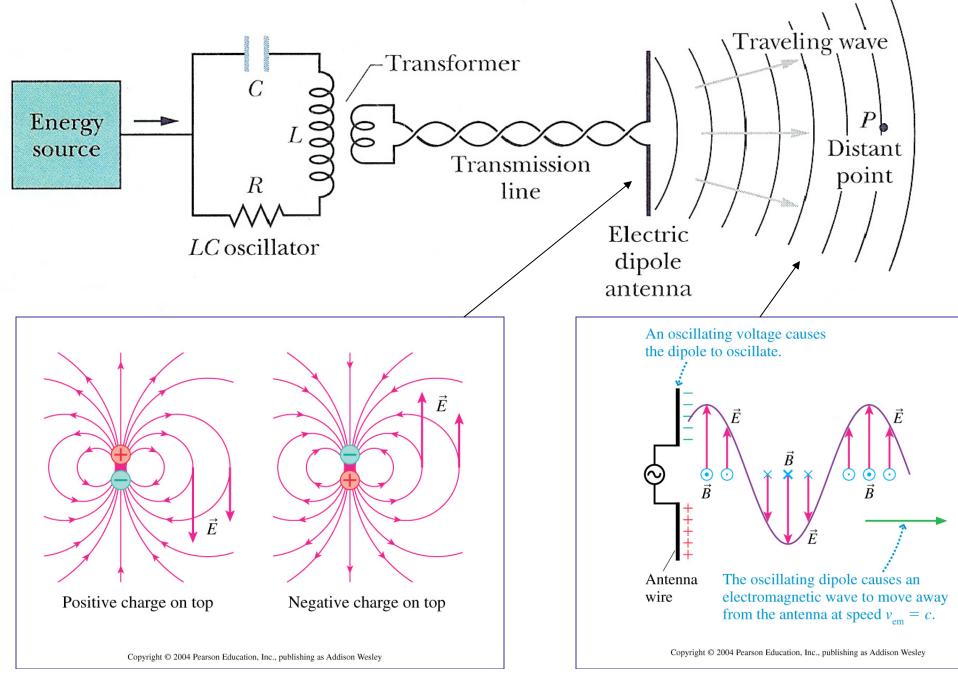


Visible Light

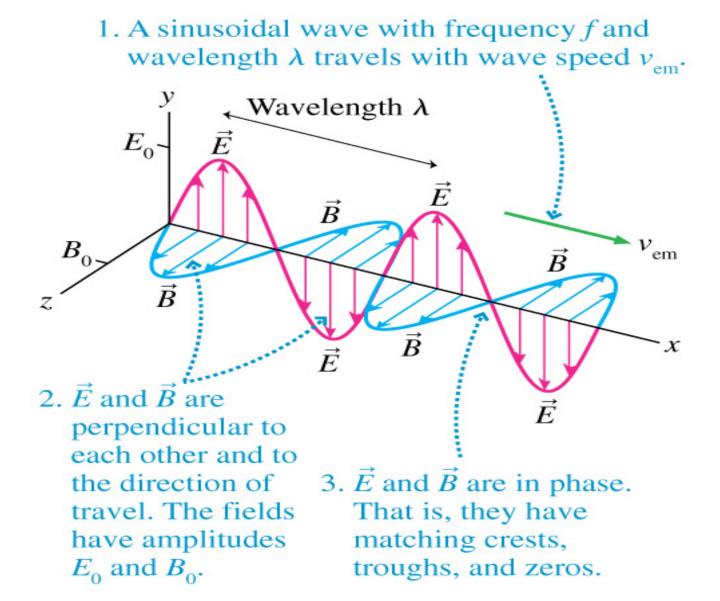


- Eye sensitivity to visible light is maximal for a green color
- Visible light occupies a very short range of wavelengths

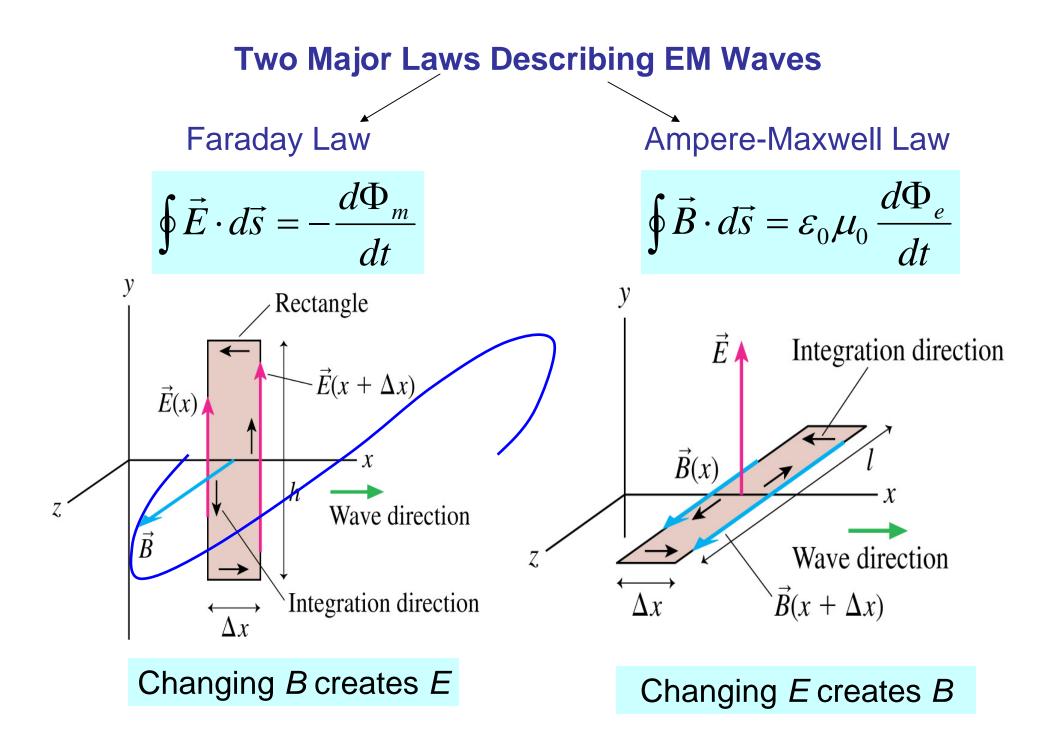
Creating EM Waves: Antennas



Propagation of EM Waves



Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley



The Speed of Light

Two Equations should be satisfied at the same time, see Ch. 34:

$$E_0 = (\lambda f) B_0 = v_{\rm em} B_0$$

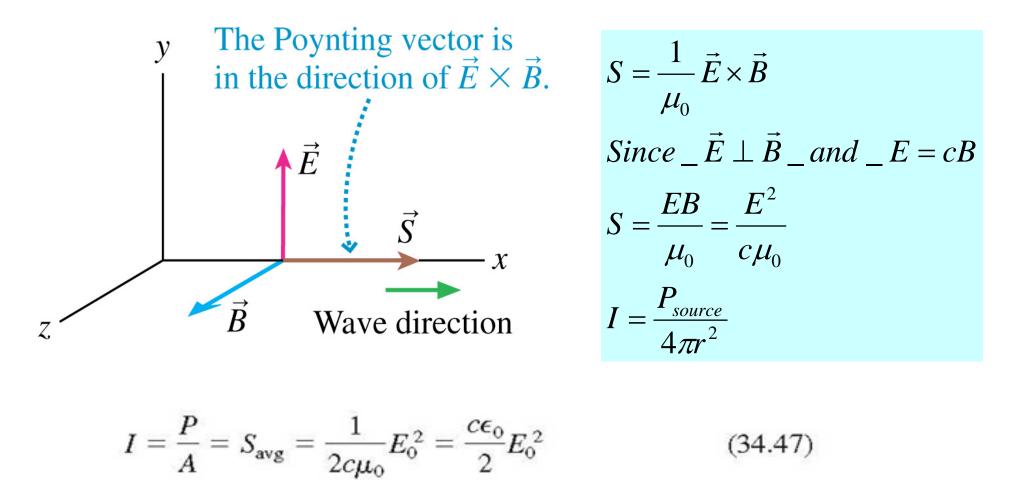
 $E_0 = B_0 / (\varepsilon_0 \mu_0 V_{\rm em})$

This means that:

$$v_{\rm em} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3.00 \times 10^8 \,\mathrm{m/s} = c$$
 (34.45)

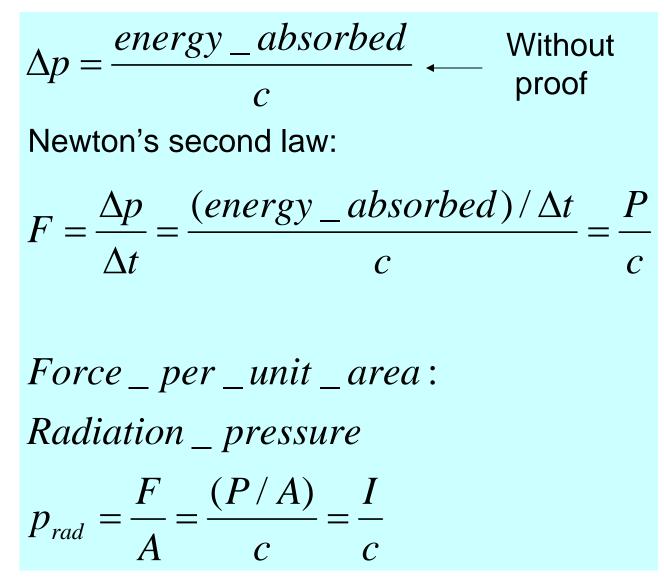
No other speed will satisfy Maxwell's equations

Energy and Intensity



At any point the Pointing vector represents the direction of wave
The magnitude of S represents the rate of energy transfer per unit area of the wave. It oscillates at extremely high frequency.
Intensity is averaged energy transfer, *I* = S_{ave}

Radiation Pressure



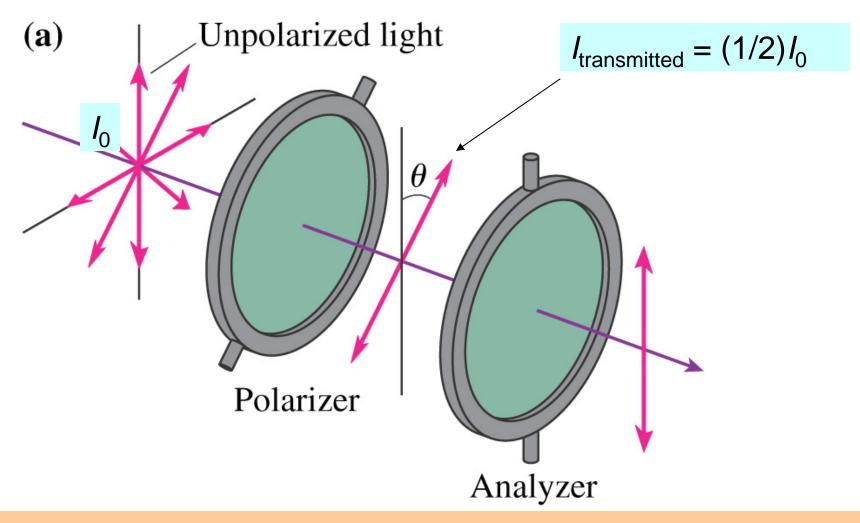
• Transfer of momentum from light to the object

• For totally reflecting object the pressure is doubled: $p_{rad} = 2l/c$

Polarization Unpolarized The polymers are parallel to each other. Light **Polarized Light** Polaroid The electric field Only the component of \vec{E} perpendicular to the of unpolarized light oscillates randomly polymer molecules in all directions. is transmitted.

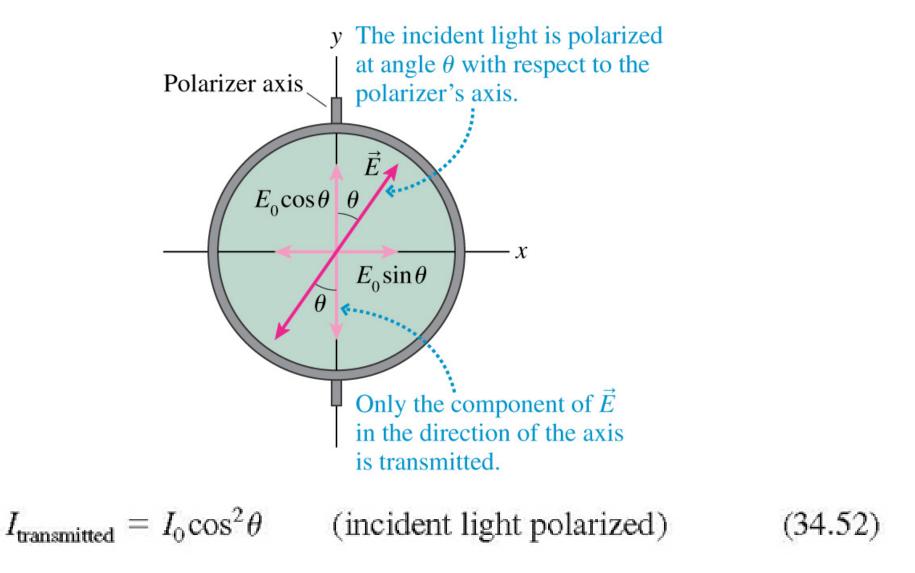
- Usual sources, sun light, lumps, etc., are unpolarized
- Lasers produce polarized light
- Unpolarized light can be polarized using polaroid

First Malus's Law: Initially unpolarized light



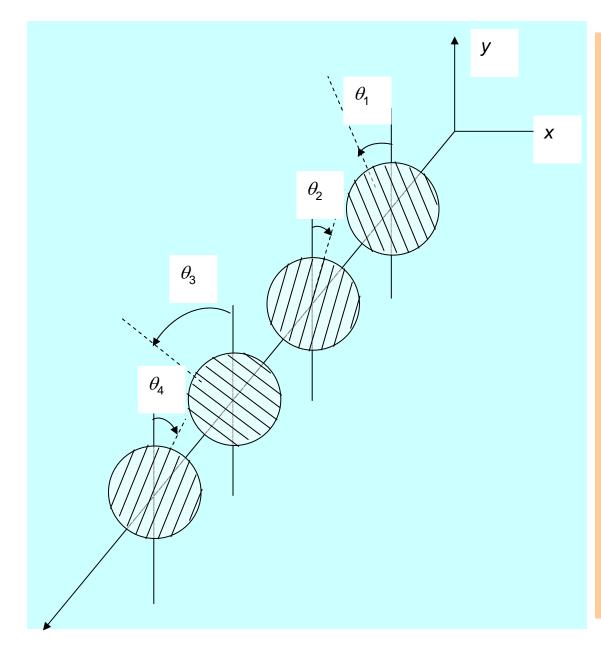
• If incident light is unpolarized the intensity of the beam transmitted through the polarized is $I_0/2$.

Second Malus's Law: Incident Light is already polarized



• This law is a consequence of the fact that *I* ~ (squared component of *E* in the direction of polarizer)

Example of the Problem with Multiple Polarizers



In figure, initially unpolarized light is sent through four polarizing sheets. The first and third sheets have polarizing directions making angles of θ_1 = 30[°] and θ_3 = 60[°] (measured counterclockwise) with the direction of the y-axis. The second and forth sheets have polarizing direction making angles of $\theta_2 = 15^\circ$ and $\theta_4 = 25^\circ$ (clockwise) with the direction of the y-axis.

What percentage of the initial intensity is transmitted by the system of the four polarizing sheets?

Solution

If incident light is unpolarized: $\underline{T}_{1} = \frac{1}{2} \underline{T}_{2}$ If incident light is polarized. I:= I: cos d, (Malus's Law) Q-angle between direction of polarization of incident wave and direction of polarizer, A, = 30 02 = 15° $\theta = \theta + \theta$ $I_{2} = I_{1} \cdot c_{0} s(\theta_{1} + \theta_{2}) =$ $= \widehat{\underline{1}} \cdot \underline{C} \cdot \underline{S}^2 + 45^\circ = \frac{\overline{\underline{1}}}{2},$

$$\begin{split} I_{3} &= I_{2} \cdot G_{s}^{2} \left(\theta_{2} + \theta_{3} \right) = I_{2} \cdot G_{s}^{2} 75^{\circ}_{=} \\ &= I_{2} \cdot \theta \cdot \theta_{7} \\ I_{4} &= I_{3} \cdot G_{s}^{2} \left(\theta_{3} + \theta_{4} \right) = I_{3} \cdot G_{s}^{2} 85^{\circ}_{=} \\ &= I_{3} \cdot 7.6 \cdot 10^{-3} \\ I_{4} &= I_{2} \cdot \theta \cdot \theta_{7} \cdot 7.6 \cdot 10^{-3} = \frac{I_{1}}{2} \cdot \theta \cdot \theta_{7} \cdot 7.6 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ I_{7} = 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 6.7 \cdot 10^{-3} \cdot 7.6 \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 10^{-3} \cdot 10^{-3} \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 10^{-3} \cdot 10^{-3} \cdot 10^{-3} = 1.27 \cdot 10^{-3} \\ &= 0.25 \cdot 10^{-3} \cdot 10^{-3} \cdot 10^{-3} \cdot 10^{-3} = 1.27 \cdot 10^{-3} \cdot 10^{-3} \\ &= 0.25 \cdot 10^{-3} \cdot 10^{$$

End of Lecture 20 Reading: Paragraphs 34.4-34.8 from Chapter 34 HW11