
IMPROVING MEASUREMENTS BASED ON THE CAT’S EYE RETRO-
REFLECTION 

 
 
 

by 
 

Katherine Mary Medicus 
 
 
 
 

A dissertation submitted to the faculty of 
The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy  

in Mechanical Engineering 
 

Charlotte 
 

2006 
 
 
 
 
 
 

Approved by: 

       
Dr. Angela D. Davies  

       
Dr. Robert J. Hocken  

       
Dr. Stuart Smith 

       
Dr. Farmarz Farahi

       
Dr. Wanda Nabors



 
 

 

ii 

 
 

© 2006 
Katherine Mary Medicus 

ALL RIGHTS RESERVED 



 
 

 

iii 

ABSTRACT 
 
 

KATHERINE MARY MEDICUS.  Improving Measurements Based on the Cat’s 
Eye Retro-Reflection.  (Under the direction of DR. ANGELA D. DAVIES) 

 
 

The interferometric radius measurement of refractive optical components is 

used to identify the effect of uncertainties in the cat's eye position. This 

measurement is typically modeled using a geometric ray model and is found by 

first placing the part at the confocal position and then the cat's eye position and 

measuring the distance the part moves between the two. I demonstrate that 

using the simple geometric ray model instead of a more complex Gaussian or a 

physical optics model causes biases in the radius measurement. These biases 

depend on the model, the interferometer configuration (numerical aperture, etc.), 

the nominal radius of the test part, and the amount of interferometer aberration. 

Biases on the order of parts in 10^4 exist for 1 mm radius parts and larger for 

smaller parts. The biases are calculated using a Gaussian model and software 

package to approximate a physical optics model for both micro- (< 1 mm) and 

macro-scaled parts. Both models test the effect of the numerical aperture, the 

radius of the test part, the distances in the interferometer, and the effect of 

aberrations on the radius measurements. The models have large uncertainties, 

many of which due to experimental details that cannot be modeled.  Thus, a 

direct correction of the bias is not possible.  Rather, the models serve to indicate 

the order of magnitude of the effects.  Experiments on a micro-interferometer are 

used to test for these biases and show an effect on the measured radius when 

the aberration (in the interferometer) is increased. 
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CHAPTER 1:  INTRODUCTION  

1.1 Overview of this Work 

This work uses the interferometric radius measurement to investigate the 

cat’s eye retro-reflection.  The overall goal of this research is to identify and 

reduce the uncertainty in the radius measurement (and other types of 

measurements) caused by the cat’s eye retro-reflection. 

This work is comprised of simulation and experiment.  The radius 

measurement and the cat’s eye retro-reflection is simulated analytically with a 

Gaussian model of light and computationally with the computer software package 

FRED which attempts to simulate a full physical optics model of light.  In 

simulation, I studied different aspects of the measurement to determine the effect 

of each on the uncertainty and bias in the radius measurement.  These aspects 

include the size of the test part, the configuration of the interferometer, 

imperfections (aberrations) in the interferometer, and the phase change on 

refection.  In experiment, I measured the radius on an interferometer and the 

effect of the above aspects is investigated.   

Each of the above aspects contributes to the final uncertainty of the radius 

measurement.  The goal is to determine how much this contribution is for each 

aspect and then determine if that aspect is limiting the final uncertainty in any 

given measurement.  
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The uncertainty and bias in the radius measurement tends to increase with 

decreasing part size.  Because of this, this investigation will focus on micro-scale 

parts with the hope that the errors in the measurement will be observable.  Some 

errors may be too small to observe on macro-scale parts.  But, depending on the 

required uncertainty goal, these errors may still need to be accounted for with 

macro-scale parts and would be important to consider in ultra-precision 

measurements.  It was a series of ultra-precision radius measurements of a 25 

mm radius part carried out at NIST several years ago that motivated this study 

[27].  This work is described Section 1.4.3. 

1.2 Using this Research 

This work can be used to determine which aspects of the measurement 

limit the uncertainty of a specific part.  The uncertainty goal must first be 

identified, though. This will vary from application to application and part to part.   

With the radius measurement, the uncertainty is commonly identified as “a part in 

10x” where x is commonly 4 or 5 for precision measurements and a higher 

number indicates a lower required uncertainty.  For example, a part in 104 for a 

25 mm radius test part is 2.5 µm and for a 0.2 mm radius test, five parts in 104 is 

500 nm.  Described this way, the difficulty of measuring micro-scale parts with 

high precision is not surprising.   

After the measurement uncertainty goal is clearly defined, this work can be 

used to identify which aspect(s) of the measurement limit the uncertainty.  

Throughout this work, each aspect will have an associated measurement 
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uncertainty (using the 10x term).  This will identify when the aspect has become 

the limiting factor in the final uncertainty.  

1.3 The Cat’s Eye Reflection 

The cat’s eye reflection is a retro-reflection, that is, the incoming beam and 

outgoing beams are always parallel, even if the incoming beam is not 

perpendicular to the reflector.  This is different from a standard mirror and is akin 

to a corner cube reflector.   A cat’s eye reflection is named due to the bright spot 

that you see in the eye of a cat when you shine a light toward it at night [1].   

The cat’s eye reflection is used in measurements because it can be used to 

define a point in space.  If a test part is placed at the cat’s eye position, that 

position is uniquely defined for the test part in the optical axis.  It is this property 

that forms the basis for optical measurements such as radius.   

A typical cat’s eye retro-reflection is realized using a focusing lens and a 

reflecting surface, Figure 1-1.  Because the reflecting surface is placed at the 

focus of the lens, a cat’s eye retro-reflection occurs.  The configuration of the 

cat’s eye reflector can take different forms: the focusing lens could be a mirror, 

the reflecting surface can have curvature, or the lens and mirror could all be the 

same spherical component (specific material and geometric properties are 

required). 



 
 

4 

 
Figure 1-1:  Schematic of various configurations of the cat’s eye reflection. 

1.3.1 Application of the Cat’s Eye Reflection 

Percy Shaw appears to have developed the first cat’s eye retro-reflectors 

for road safety in Great Britain in 1935 after the reflection from the eye of a cat 

prevented him from running off the road [2].  Sheets of cat’s eye retro-reflectors 

are used on signs and in other traffic applications to improve visibility [3].   

Cat’s eye retro-reflectors are used in laser tracking systems [4,5] instead of 

corner cubes because the cat’s eye has a larger acceptance angle.  A cat’s eye 

reflector replaces the corner cube reflectors in open-path Fourier transform 

infrared spectrometry to reduce cost, mass and fragility [6].  The stability of a He-

Ne laser is improved by using a cat’s eye reflector in the cavity [7]. 

Several authors have investigated the best parameters for the cat’s eye 

retro-reflector for different applications [8, 9, 10].  Parameters such as mirror 

curvature, spacing tolerances, focal length, aperture, and alignment errors must 

be considered to design a cat’s eye retro-reflector with minimized aberrations.  

The lens and mirror of the cat’s eye retro-reflectors are considered a single 

component.  After assembly, the lens and mirror do not move relative to one 

another.  A different application is to move the mirror relative to the lens to 

determine the position of the mirror when the cat’s eye retro-reflection takes 
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place.  The interferometric radius measurement [26] uses this approach.  This is 

the measurement that I will use to investigate the affect of the cat’s eye retro-

reflection.     

1.3.2 Intensity at Focus 

The physical optics model of the intensity at focus has been studied 

extensively [11].  This understanding is import to consider in the contest of the 

cat’s eye reflection.  It was found, under certain conditions, the point of maximum 

intensity does not coincide with the focal length of the system [12].  There is an 

axial shift along the Z axis (axial and optical axis) which can lead to a bias in 

determining the cat’s eye position.  This focus shift is not a factor in systems with 

a Fresnel Number, N, much much greater than one.  The Fresnel Number is 

defined as  

( )
f

a

N
λ

2

2=
 

Equation 1-1 

where a is the aperture diameter, λ the wavelength of the light, and f the focal 

length of the lens.  A small Fresnel number means that the diffraction of the 

beam is significant as compared to the focal length, almost as if the beam is 

spreading by diffraction faster than it is focusing.  A large Fresnel number means 

that the diffraction spread is small compared to the focusing.  For the current 

measurement system, the Fresnel number, N, ranges from 260 to 1,500 for 

varying focal lengths.  Therefore, the shift in the maximum intensity does not 

effect the current measurement of the cat’s eye position. 
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1.4 Measurement of the Radius 

The radius (sometimes misnamed in literature as the radius of curvature) of 

spherical components is a key parameter in determining the geometry and 

performance of an optical test part, for example, spherical refractive lenses with a 

continuous relief structure or spherical mirrors.  For spherical components, the 

radius is defined as the radius of the best fit sphere (by a least squares method) 

over the aperture of interest.  The interferometric radius measurement is well 

suited to conduct investigations on the cat’s eye position because a cat’s eye 

retro-reflection is required for the interferometric radius measurement.  Further, 

the interferometric radius measurement of micro-lenses allows for more rigorous 

study of the cat’s eye position because the effect of surface curvature will be 

emphasized and therefore more easily observed than for macro-scale optics.  

Phase shifting interferometry is well suited to measure the radius of optical 

components due to its low uncertainty values, the non-contact nature of the 

measurement, and its ability to adapt to parts of varying sizes [13].  With careful 

implementation, the radius of spherical parts can be measured to 0.001% (parts 

in 105) [25] for macro-scaled parts. This measurement is typically performed on a 

radius bench with either a Fizeau or Twyman-Green Interferometer.  The 

interferometric radius measurement uses the interferometer to determine the 

location of the two critical null positions (called the confocal and cat’s eye), 

Figure 1-2.  A scale of some type is used to measure the distance the component 

moves between the two null positions.  This distance is the radius of the 

component.  
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(a)      (b) 

Figure 1-2:  (a) Schematic of a Twyman-Green interferometer.  (b) The confocal 
and cat’s eye positions. 

1.4.1 Other Methods for Measuring the Radius 

Mechanical methods to measure the radius of a test part include templates, 

spherometers [14], and mechanical surface profilers [15].  A disadvantage of all 

of these methods is they are contact measurements, have limited ranges, and 

may have uncertainty too high for precision applications.  Optical methods 

include scanning white light interferometry (SWLI) [16], the Foucault (knife edge) 

test, an autocollimator, and a traveling microscope [14].  All of the tests are 

limited by the high uncertainty, speed, and/or by the size of test part.   The 

interferometric radius measurement is preferred for precision applications. 

1.4.2 Setup of an Interferometric Radius Measurement 

This work focuses on a micro-scale Twyman-Green interferometer, as 

shown in the schematic in Figure 1-2(a).  The laser and collimating optics 

produce a collimated beam of He-Ne 632.8 nm light.  A beam splitter then divides 

the light into the reference arm and test arm.  In the reference arm, the reference 

mirror reflects the light back to the beam splitter.  In the test arm, a lens (e.g., a 
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microscope objective) is used to focus the light to the test part.  The test part is 

placed at a null position of either the confocal or cat’s eye reflections as shown in 

Figure 1-2(b).  After the reflection from the test part, the light is collimated by the 

lens and returns to the beam splitter.  Imaging optics and a camera are then 

used to focus and capture the interferometer pattern. 

The confocal refection occurs when the optic is placed in the test beam of 

the interferometer such that the wavefront curvature of the incoming beam and 

the curvature of the test optic match.  A confocal reflection acts as a mirror.  In 

the geometric model, the cat’s eye refection occurs when the surface of the optic 

is coincident with the focus of the test beam.  The cat’s eye reflection acts as a 

retro-reflector.  Further discussion of the cat’s eye position in a non-geometric 

model can be found later in this work in Chapter 2 and Chapter 3.  

1.4.3 Previous Research in Radius 

Previous work in precision radius measurements using phase measuring 

interferometry include Selberg [25] and Schmitz, et al. [27] who investigated 

Fizeau interferometers on the macro-scale (150 mm and 300 mm apertures) with 

test parts near 25 mm radius.  Both of these investigators focused on calculating 

and reducing the biases and uncertainties in the measurement.  The sources of 

uncertainty can be divided into two categories: mechanical and optical.   The 

mechanical sources include the motion of the radius slide, the alignment of the 

axes, the displacement measuring interferometer (used to measure the distance 

traveled), Abbe errors, cosine errors, the deadpath, the environment, turbulence, 

and the laser system.  The optical uncertainties include the phase measuring 
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interferometer (an imperfect wavefront), surface figure of the test part, and 

variation in the aperture.  Schmitz, et al. [27] also considered the uncertainty in 

the radius due to using a geometric ray model instead of a physical optics model.   

The final combined standard uncertainty and the bias in the measurement 

of a Zerodur 24.446 mm radius sphere as calculated by Schmitz, et al. [27] 

depends on the transmission sphere used.  The uncertainties and the 

measurement divergence as compared to mechanical measurement are 

summarized in Table 1-1.  The largest contributors to uncertainty are deadpath 

uncertainty (an uncertainty from the displacement measuring interferometer) and 

the null position calculation (determining where confocal and cat’s eye are).  The 

smaller NA transmission spheres (larger f/#) have a higher uncertainty.  Even 

with accounting for the all the known sources of uncertainties and biases in the 

measurements, the investigators found an unexplained discrepancy between the 

interferometric radius measurement and the mechanical CMM measurement.  

This discrepancy ranges fro different measurements, but is as large as 250 nm in 

some cases. 

Table 1-1:  Uncertainty and bias results from radius measurement of Zerodur 
sphere [27]. 

Transmission 
Sphere 

Combined Standard 
Uncertainty  

(nm) 

Fractional Error 

 

Measurement 
Bias(nm) 

f/1.1 (0.45 NA) 57 2 Parts in 106 0 

f/3.2 (0.16 NA) 158 6 Parts in 106 -183 

f/4 (0.13 NA) 298 1 Part in 105 -275 
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Selberg did not perform a full uncertainty analysis, but did investigate many 

sources of error but concluded that measurements at the level of 0.001% (parts 

in 105) are possible for parts with radius greater the 100 mm and for parts smaller 

than 100 mm measurement accuracy is typically limited to the micrometer range.  

The Abbe errors can dominate the error budget in the radius measurement and 

are in the range of 10 to 100 µm.    

Griesmann, et. al., performed the precision radius measurements on a 

silicon sphere with a radius of 46.8 mm [17].  The uncertainty in one 

measurement was found to be 20 nm with the deadpath errors being the largest 

contributor.  In addition, the radius was measured on different locations of the 

sphere.  The authors found a high standard deviation in the radius measurement 

of 88 nm even though the sphere had low form errors of approximately 70 nm 

peak to valley.     

Recent research by Davies and Schmitz has introduced a new technique 

for reducing uncertainty in the radius measurement caused by error motions in 

the slideway [18].  This work used a homogenous transformation matrix (HTM) to 

describe the motion of the test part from the confocal to cat’s eye positions.  

Using this method, the authors calculated an uncertainty in radius of 7 µm for a 

408 µm radius part, 2 parts in 102, due to the mechanical error motions of the 

slideway.    

1.4.4 Previous Work on Measuring Radius on Micro-Optics 

Both commercial and research interferometers have been built for testing 

micro-lenses.  The size of the test lenses is not easily defined.  Some definitions 
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for micro-lenses include, focal length of 500 µm [22], volume of 1 mm3 and 

features of 10 µm [16], smaller than 2 mm radius [21], focal length of 0.5 to 1 mm 

[19], and “a lens which can not be handled by the hand” [20]. 

In many cases, the nominal radius of measurable parts is not specified.  At 

times, the micro-interferometers are specified only with input beam diameter and 

resolution and range of the radius scale.  It would be easy, but wrong, to suppose 

that the resolution of the scale defines the smallest measurable radius (taking 

into account the desired uncertainty).  Another factor is imaging, where a long 

imaging arm is required for micro-optics in a standard interferometer set-up.  This 

was demonstrated by Schwider and Falkenstörfer [21] where a major limitation in 

building their micro-interferometer was the physical constraints due to the 

imaging of the test part.  The researchers did measure the radius, but did not 

investigate the uncertainty of the measurement.  

Mersereau, et al. [22] presented an early review paper on various methods 

for measuring and testing micro-lenses.  The authors suggest measuring the 

radius of small parts on an interferometer, but do not discuss the details of the 

measurement tool or uncertainty.  

Commercial instruments to measure the radius of micro-lenses by 

interferometry are limited in their availability and uncertainty.  Zygo Corporation’s 

MicroLUPI, produced in 2001, was a tool used to measure the figure error and 

radius of micro-lenses [23].  The MicroLUPI is currently not in production.  The 

uncertainty of the radius measurement on this tool is not known.  Zygo’s current 

tool for measuring radius of micro-lenses is the PTI 250 Interferometer [24] with 1 
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µm resolution in radius and a 25 mm test beam diameter.  It appears that this tool 

would not be able to measure parts smaller than 1 mm radius due to the main 

limitation of the radius resolution and likely the imaging of the optic.  The Mini-Fiz 

from Fisba Optik has many of the same limitations. 

This work includes a description of the micro-interferometer at UNC 

Charlotte.  This instrument has an aperture of 8 mm and is capable of measuring 

the radius of parts ranging from 200 µm to 1 mm in radius.  A more detailed 

description of the interferometer is in Chapter 4.  This tool will be used to 

investigate the cat’s eye retro-reflection in the interferometric radius 

measurement. 

1.5 Uncertainties Affected by the Cat’s Eye Position 

The following sections briefly describe the uncertainties in the radius 

measurement that are affected by the cat’s eye position.  These include locating 

the cat’s eye position, determining the radius using a Gaussian or a physical 

optics model, offset of the cat’s eye due to phase change on reflection, 

aberrations in the phase measuring interferometer (PMI), and variations in the 

input beam aperture, part size, and objective numerical aperture (NA).  These 

uncertainties are briefly explained here and are discussed in further detail in 

subsequent chapters. 

There are, of course, other sources of uncertainty that are not directly 

related to the cat’s eye position.  These include slide motion uncertainties, 

uncertainty in measuring the length, Abbe offset, cosine error, environmental 

effects, and additional uncertainties due to the PMI (for example, uncertainty in 
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the laser wavelength, unwrapping errors, and phase stepping errors).  As 

mentioned, discussion of these uncertainties can be found in the literature and 

the work presented here adds to this body of knowledge.    

1.5.1 Null Position Location 

In practice, determining when the test optic is at either the cat’s eye or 

confocal positions can be difficult.  Visually, these positions occur when the 

interference pattern is nulled, i.e. the minimal number of fringes is seen.  For the 

radius measurement, this occurs when the defocus term ( 0

2a ) of the Zernike 

polynomial series (see Appendix A for description of the Zernike series) is zero.  

This is because the definition of radius is a best fit sphere.  When the 0

2a  (a 

spherical polynomial) goes to zero, the wavefront at confocal is equal to the best 

fit sphere over the aperture of the measurement.  However, it is not mechanically 

possible to position the test part where the interference pattern is exactly nulled.  

This positioning error is known as a null cavity error that leads to a non-zero 0

2a  

term.  One method for correcting this was shown by Selberg [25] and others 

[13,26].  This method determines the distance the part is offset from the null 

position.  The calculation is based on the 0

2a  term and the numerical aperture of 

the system (NA is the sine of the half angle of the cone of light) of the system.  

The NA is often not known to low uncertainty which leads to significant 

uncertainty in the correction and therefore the radius estimate. 

A lower uncertainty method, and the one used for this dissertation, is to 

correct for the null cavity error as described by Schmitz, et al. [27].  Multiple 



 
 

14

measurements are taken through confocal and through cat’s eye and a plot of 0

2a  

(defocus) vs. position along the optical axis (Z) is then constructed for each 

position.  Each data point is one interferometric measurement.  A linear fit is 

performed on the data and the intercept (where 0

2a  = 0) is the best estimate of 

the null position.  The difference between the two intercepts is the radius.  An 

example is shown in Figure 1-3 where the both the cat’s eye and confocal 

measurements are shown.   
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Figure 1-3:  Example of the null cavity correction for the radius measurement.  

The units on the Z position axis are inconsequential here.   

 
An uncertainty in the fit leads to an uncertainty in the radius.  The standard 

deviation, S, of the fit is 

2

1

2

−
=
∑

=

m

E

S

m

i

i

, 

Equation 1-2 [27] 
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where Ei is the difference at each data point between the model and the 

measured data and m is the total number of data points.  The equation of the 

linear fit is  

bZma pos +=0

2 , 

Equation 1-3 

where m is the slope and b the y-axis intercept.  Considering a standard 

deviation of the fit, the maximum and minimum possible values of the null 

position, Znull are found using  

m

Sb
Z null

±−
= .  

Equation 1-4. 

The error in radius due to the fit is then  

( ) ( )2

min,max,

2

min,max, CECECFCFFitError, ZZZZR −+−= ,  

Equation 1-5 

where CF indicates the confocal position and CE the cat’s eye position.  This 

calculation of the error in the fit only accounts for scatter in the Z position and the 

0

2a  term due to random errors.  This uncertainty in radius due to the fit does not 

include potential biases in the identification of the null position (such as a phase 

change on reflection bias).  I show the amount of the uncertainty in radius due to 

the fit in Chapter 4. 

1.5.2 Modeling the Cat’s Eye and Confocal Positions    

Possible models of the cat’s eye position are shown in Figure 1-4. Radius 

measurements have typically used the perfect geometric model [26] to indicate 
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the cat’s eye position.  In this model, the light is focused to a point and is 

coincident with the apex of the test part.  Investigations indicate that using this 

model can create significant errors in the radius in two ways, when the incoming 

wavefront is aberrated and when the nominal part radius is small (1 mm or less) 

[27,28].  This is demonstrated in Chapter 2 and 3 and is explained briefly here. 

Perfect Geometric 
Model

Gaussian Model

Geometric Model 
with Aberrations

Physical Optics 
Model – Airy Disk

Perfect Geometric 
Model

Gaussian Model

Perfect Geometric 
Model

Gaussian Model

Geometric Model 
with Aberrations

Physical Optics 
Model – Airy Disk

Geometric Model 
with Aberrations

Physical Optics 
Model – Airy Disk

 
Figure 1-4:  A schematic of the various methods for modeling the cat’s eye 

reflection. 

To reduce these errors, other models should be used.  An imperfect system 

can be modeled by adding aberrations to the incoming light.  The cat’s eye can 

also be modeled using a Gaussian model or a real physical optics model as 

shown in Figure 1-4.  If a geometric model is used instead of a Gaussian model, 

initial investigations show that errors are as shown in Table 1-2.   
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Table 1-2:  Error from using a geometric model instead of a Gaussian model.   

Nominal 
Part Radius 

Fractional 
Error 

(Error/Radius)  

250 µm 6 parts in 105 

1 mm 3 parts in 106 

25 mm 2 parts in 107 

 

In comparing the larger (25 mm) part to the smaller (250 µm), the part error 

is different by a factor of 102.  This shows that the Gaussian (instead of the 

geometric) model must be considered for smaller parts when the measurement 

goal is parts in 105.  For the larger part, though, the Gaussian model need only 

be considered when the measurement goal is parts in 107.  This is a preliminary 

example only and more detail on the calculation of these errors is found in 

Chapter 2.   

 Part of using these models is defining the part location where the cat’s eye 

reflection occurs.  Using the Gaussian model as an example, does the cat’s eye 

occur at the waist or somewhere else?  This question and these additional 

models are investigated in this work.   

Other work exists in the literature on using a Gaussian model of the cat’s 

eye for a radius measurement [27].  The authors investigated a Gaussian beam 

model with aberrations in this experiment on a 25 mm radius part with the 

software program Zemax to propagate the Gaussian beam.  They first assumed 

that the cat’s eye reflection occurred at the beam waist.  Then the offset of the 

beam waist from the geometric focus was calculated.  This offset occurs due to 

the input beam parameters and aberrations in the system.  The offset was then 
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assumed to be the bias in the radius, 6 nm (in a negative sense) for a 25 mm 

radius part.  Therefore the true radius is predicated to be smaller than the 

measured value.   

Part of this dissertation research has been developing a more detailed 

model of the radius measurement by propagating a Gaussian beam.  The 

method is briefly described here and in more detail in Chapter 2 [28].  The model 

considers a non-aberrated system and uses Matlab for the analysis (optical 

propagation software is not required).  The model is an improvement over the 

published work by considering both the reference and test beams and including 

propagation distances.  Even in a non-aberrated system, the model shows a bias 

error in the radius measurement when a “perfect geometric” model is used 

instead of a Gaussian model.  The error is significant for smaller radius parts (< 1 

mm).   The model only considers a perfect Gaussian beam and therefore doe not 

include added aberrations.   

An approximation of the full physical optics model of the cat’s eye position 

can be generated using an optical modeling software package such as FRED.  

This software was used to model the radius measurement.  This work is briefly 

described here and in more detail in Chapter 3.  FRED is a three dimensional 

package where optical elements are assembled to simulate an experiment.  For 

the radius measurement the interferometer was set up using a source, beam 

splitter, a mirror, a lens, a test part, and a detector.  For the measurement the 

simulated light was sent through the system, and the resultant output intensity 

and phase was read by the detector.  The test part was moved through confocal 
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and cat’s eye and the resultant phase was read at each point.  By analyzing this 

phase, the simulated radius can be determined.  Also, aberrations can be 

modeled in a simulation package such as FRED.   

1.5.3 Aberrations in the Phase Measuring Interferometer  

As described above and shown in Figure 1-2(a), the phase measuring 

interferometer (PMI) is used to identify the confocal and cat’s eye positions.  The 

models of radius described above use a perfect wavefront for the PMI; that the 

beam has no aberrations. In practice, no system is perfect and the PMI has 

aberrations that affect the radius measurement.  Retrace errors are a subset of 

errors that are caused by aberrations in the PMI and do affect the radius 

measurement.  A retrace error occurs when the rays reflected from the part do 

not follow the same path back through the interferometer.   

 The most promising method to test the effect of aberrations is with a 

physical optics simulation package like FRED and in experiment.  The current 

Gaussian model does not incorporate added aberrations.  In the FRED model 

and in experiments it is easy to add spherical aberration to the system using a 

glass plate in the converging beam.  The primary effect of the glass plate is to 

add an offset in the focus point away from the objective and, because of the 

breakdown of the approximation of θθ ≅sin  in Snell’s law, the secondary affect 

is to add spherical aberration to the wavefront.  A thicker plate leads a larger 

focus shift and aberration.  Spherical aberration, 0

4a , is a common aberration in 

optical components and will have the largest effect on cat’s eye and the radius 
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measurement.  These experiments with adding aberration to a system are found 

in Chapter 4.    

Preliminary results with the FRED model show that for a 0.25 mm radius 

test part, 0.16 waves of 0

4a  (spherical aberration) will produce errors of 8 parts in 

104.  For 6 waves of spherical aberration and a 0.5 mm radius part, the errors are 

3 parts in 103.  These errors occur when the perfect geometric model is used 

instead of an aberrated physical optics model.     

1.5.4 Input Variations  

Both the Gaussian model and the FRED model were used to test the affect 

of various input parameters on the cat’s eye position and the radius 

measurement.  Parameters varied include the input beam aperture, part size, 

objective numerical aperture (NA), and propagation distances in the 

interferometer.    

1.5.5 Offset of the Cat’s Eye Position Due to Phase Change 

Light reflected from a part will undergo a phase change which will affect the 

radius measurement and can be appreciated using a simple geometric ray 

model. 

The phase change on reflection only impacts the radius measurement 

through the identification of the cat’s eye and confocal null positions.  The null 

position will change if there is a change in the reflected wavefront curvature.  The 

phase change on reflection is constant over the aperture at confocal because the 

incident angle does not vary, therefore the confocal position is not affected by the 
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phase change.  It is not a concern what the phase change is, just that it is 

constant.  At cat’s eye, though, the incident angle varies across the beam 

aperture in a geometric optics model.  This variation changes the wavefront 

curvature.  This curvature will present itself as an offset of the cat’s eye position 

as shown in Chapter 5.  The geometric model represents the worse case 

scenario.  This leads directly to a bias in the measured radius on the order of 4 

parts in 106 for a 0.25 mm radius part, or 1 nm bias. 

1.6 Summary 

This chapter provides a basic description of the cat’s eye position and the 

interferometric radius measurement.  The radius measurement in the micro-

range is used to investigate the biases introduced in cat’s eye position.   

The sources of uncertainty in the radius measurement that are affected by 

the cat’s eye position include: the null position location, model approximations 

(Gaussian or physical optics with FRED), wavefront aberrations, system 

parameters, and the phase change on reflection.  The upcoming sections 

describe these sources of uncertainty in more detail and provide a comparison 

between the experimental radius measurements and the simulated radius 

measurement, using the Gaussian Model or the FRED model.  The initial 

expectation was that the majority of the bias in a radius measurement would be a 

result of the cat’s eye position shifting, but simulations show that the confocal 

and cat’s eye position shifts are on the same order of magnitude. 

A summary of the results of this dissertation research along with other 

published findings are shown in Figure 1-5.  The expected bias in the radius 
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measurement when the geometric non-aberrated model is used instead of a 

more detailed model is shown versus the radius of the test part.  This chart is 

explained in more detail later in this work, but is shown here to demonstrate the 

magnitude of the error.  The spread in the data (the rectangular boxes) 

incorporates different numerical apertures and added spherical aberration.   
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Figure 1-5:  The error in the radius measurement when the geometric model is 
used instead of a more detailed model.  The Davies simulation is from [41, 54] 

and the Schmitz simulation is in [27]  

 



 
 

CHAPTER 2:  THE GAUSSIAN MODEL OF A RADIUS MEASUREMENT 

2.1 Introduction  

The radius measurement model and the cat’s eye reflection is typically 

represented by a simple geometric model, that is, rays from an objective (or 

transmission sphere) form a cone and are focused to a point [26].  This simple 

geometric model breaks down as the test optic becomes smaller and/or higher 

precision is required.  Ultimately a full physical optics model is required, which 

includes diffraction effects and aberrations.  This chapter looks at a Gaussian 

model of the cat’s eye reflection and the radius model to explore the approximate 

impact of diffraction effects alone.  The model assumes an aberration free 

wavefront, but captures basic diffraction with the spread of the wavefront with 

propagation and a finite beam footprint at focus.   

Laser light is typically modeled using a Gaussian beam [29].  Here, only the 

fundamental mode (the TEM00) is used.  To be modeled as a Gaussian beam, 

the amplitude of the electric field must vary slowly as the beam propagates.  This 

assumption is examined later in this chapter.  An example of a Gaussian intensity 

profile is shown in Figure 2-1, but it is the phase, not intensity of the wavefront 

that is used for the radius measurement.  The phase of a Gaussian beam is 

constant along this intensity profile.  Of course, with masking, the intensity profile 

will look like a cropped Gaussian.  This method of propagating a Gaussian beam 
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has been investigated for the cat’s eye retro-reflector to determine the best 

parameters for the system [10].   
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Figure 2-1:  Example of Gaussian intensity profile.  The X and Y directions 

indicate the axes of the intensity.  The Z axis is the direction of light propagation 
(in/out of the page) 

2.2 The Radius Measurement in a Gaussian Model 

A schematic of the radius measurement is shown in Figure 2-2 with 

Gaussian parameters.  Here, the input beam has a Gaussian intensity profile 

instead of the uniform intensity profile and perfect collimation, as assumed in the 

geometric model.  The radius measurement is defined in terms of Gaussian 

model parameters that describe the light propagation.  In the reference arm, the 

beam propagates a distance dr, reflects off the reference mirror (labeled Ref. 

mirror in Figure 2-2) and again propagates a distance of dr.  In the test arm, the 

beam propagates a distance dt, is focused by a lens with focal length, f, 
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propagates a distance s, reflects from the test optic with radius r, propagates a 

distance s, is collimated by a lens with focal length f, and propagates a distance 

dt to return to the beam splitter.  Note that in Figure 2-2, the paraxial rays are 

shown to demonstrate the operation of the interferometer and do not indicate the 

Gaussian profile. 
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Figure 2-2:  A schematic of the radius measurement. 

2.3 The Gaussian Beam Model 

To derive the characteristics of the Gaussian profile, I start with the wave 

equation, 

0)(2 =+∇ EgE k    

Equation 2-1 

where E is the electric filed vector, and g is the position vector (normally 

identified using r). This equation is valid when the fraction change of ε (the 

dielectric constant or permittivity) in one wavelength is much much less than one.  
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This is true here where the propagation is in air.  This derivation is described by 

Yariv [30].  The term k2(g) is given by 

( )
22

2
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22 ,,
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gkkkzgk

+=

−=φ
  

Equation 2-2 

where x and y are the directions shown in Figure 2-1, and k the wave number, 

2πn/λ (n = index of the material and λ = wavelength of the light).  Because the 

transverse (t) dependence is on g only (the propagation is in the z direction), the 

Laplacian operator, ∇2, goes to 
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Equation 2-3 

I assume a solution of Equation 2-1 of the form 

-ikz
zyx e),,(ψ=E . 

Equation 2-4 

After substituting Equation 2-4 into Equation 2-3 and Equation 2-2 into Equation 

2-1, Equation 2-1 now takes the form 

( ) ( ) 0e 2
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-ikz
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Equation 2-5 

The first and second derivatives with of Equation 2-4 with respect to z are  
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Equation 2-6 

where the prime indicates the derivative with respect to z.  The second derivative 

is the substituted into Equation 2-5 to form 

( )[ ] 02e 2

2

222 =−+′′+−′−+∇ ψψψψψψ gkkkkikt

-ikz

. 

Equation 2-7 

The ψ’’ term goes to zero based on the assumption that the variation of the 

electric field is slow enough that kψ’ >> ψ’’ << k2ψ.  This assumption is 

considered later in this chapter.  Equation 2-7 then becomes 

( ) 02 2

2

2 =−′−+∇ ψψψ gkkikt . 

Equation 2-8  

Using Equation 2-3, Equation 2-8 can be rewritten as 
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Equation 2-9 

 

A solution for ψ, using a Gaussian equation, is assumed of the form 
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Equation 2-10 
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where P and q are functions of z.  The first and second derivatives with respect 

to g and the first derivative with respect to z of Equation 2-10 are required to 

solve Equation 2-9.  These derivatives are 
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Equation 2-11 

Substituting the derivatives (Equation 2-11) into Equation 2-9 results in 
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Equation 2-12 

where a prime indicates the derivative with respect to z.  If Equation 2-12 is to 

hold true for all values of g, the coefficients of each g term must sum to zero, 

resulting in    
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The real and imaginary parts of q, the complex radius can be expressed as  

2
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Equation 2-14 [30] 

where R is the radius of the wavefront, w the beam half width, and n the index of 

the propagation medium (air with n = 1).  The radius of the wavefront, R, and the 

beam half width, w, and consequently the complex radius are functions of 

position along the optical axis.  That is, as the beam propagates in space (or 

through an optical system), the beam curvature and size change.  The complex 

radius and propagation through the optical system are used to model the radius 

measurement.   

I am considering an optical system where the input is the complex radius, 

qin.  As the beam passes through each element in this system, the complex 

radius will vary for each position along the optical axis.  Each element in the 

system can be represented by a 2x2 matrix, M, [29, 31]  









=

DC

BA
M

. 

Equation 2-15 

Where the output beam complex radius, qout [30], can then be calculated using 

DCq

BAq
q

in

in

out
+

+
=

. 

Equation 2-16 

2.3.1 The Matrices of the Gaussian Model 

The reference and test beams are considered separately for the Gaussian 

analysis of the radius measurement.  Each element in the test and references 
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arms can be modeled using the matrix method of analysis.  These elements are 

propagation, mirrors, and lenses.   

The following are equations representing propagation through a distance d, 

a thin lens with focal length f, and a mirror with radius r (the test optic) [29]: 
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
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Equation 2-17 

Because the radius of the reference mirror is infinite, the reflection matrix 

for the reference mirror is  
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Equation 2-18 

Each arm of the interferometer is then represented by the multiplication of 

the matrices of each element in the arm.  The reference arm matrix, Mref, after 

the beam splitter, is propagation, reflection, and propagation as shown by 
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Equation 2-19 

The matrix for the test arm (after the beam splitter), Mtest is more complex 

with propagation by dt, focusing, propagation by s, reflection at r, propagation by 

s, collimation, and propagation by dt in 
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The Mref and Mtest matrices are simplified and used in Equation 2-16 to 

calculate the output beam complex radius of curvature of the reference and test 

beams respectively, qrout and qtout.  The parameter qtout is a function of the 

position s (the propagation distance after the lens) while qrout is constant and 

depends on the interferometer configuration.   

2.3.2 Finding the Confocal and Cat’s Eye Positions 

The confocal and cat’s eye positions both occur when qrout equals qtout 

meaning the curvatures match and the interference pattern is constant.  The 

reference arm qrout is first calculated using Equation 2-19 and Equation 2-16 and 

the test arm qtout is calculated using Equation 2-20 and Equation 2-16.  Since 

qtout is a function of the position of the test part (s) and qrout is a constant there 

will be two positions where qrout equals qtout, each corresponding to a different 

value of s.  One value defines the cat’s eye position and the other, the confocal 

position.  The radius is then calculated as the difference between these s values.  

It should be noted that this method requires a qin, focal length of the lens, and the 

propagation distances, dt and dr.  The nominal values for these parameters are 

based on the experimental setup.  They are varied in simulation to study their 

affect on radius.   

2.3.3 The Perfect Cat’s Eye and Confocal  

The analysis in this chapter will show that compared to a perfect geometric 

model where rays come to a perfect focus, a shift in the cat’s eye position, 

confocal position, and the radius value occur when the Gaussian model is 
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considered.  Consequently, assuming a perfect geometric model will lead to an 

error.  The errors are dependent on the size of the test part and the 

interferometer conditions.  An error in the cat’s eye position means that it does 

not occur at one focal length.  An error in the confocal position means that it does 

not occur at one focal length minus the input radius.  An error in the radius 

means that the output radius (cat’s eye position minus confocal position) is not 

equal to the input radius.  However, the model could be adjusted to achieve an 

output radius equal to the input radius (termed the “prefect” cat’s eye (f) and 

confocal (f-r) positions).  I model this condition to explore changes that could be 

made to the experiment to eliminate or minimize errors.  This condition is 

described in the following paragraphs. 

The propagation distances, dt and dr, are set to provide a cat’s eye at one 

focal length and a confocal at one focal length minus the input radius.  However, 

the propagation distances for the perfect cat’s eye are not the same as for a 

perfect confocal.   

The matrix that describes the output at the beam splitter can be written as 
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Equation 2-21 

This equation is a combination of Equation 2-19 and Equation 2-20. 

A perfect confocal occurs at s equal to f minus r if the output at the 

beamsplitter is a mirror image of the input.  This mirror image means that MBS, 
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Equation 2-21 must equal the matrix of reflection from a mirror with infinite radius 

as shown by 


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10
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. 

Equation 2-22 

For a perfect cat’s eye reflection, s is equal to f.  The matrix MBS is not 

equal to a matrix for a mirror reflection, rathet, it must represent a retro-reflection 

in this case.  The matrix for the retro-reflection is 
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Equation 2-23 

Using the required values for s, and then setting Equation 2-21 equal to 

Equation 2-22 and Equation 2-23, the parameter dt - dr for each position can be 

determined.  This is shown in 
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Equation 2-24 

and 
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Equation 2-25 

These positions are not equal.  The calculated values for dt - dr for typical 

values of f and r are shown in Figure 2-3 and Figure 2-4. 
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Figure 2-3:  Results of Equation 2-25, a perfect confocal, with varying NA (NA 

related to focal length with a 4 mm input beam radius) 
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Figure 2-4: Results of Equation 2-24, a perfect cat’s eye, with varying NA (NA 

related to focal length with a 4 mm input beam radius) 

 The negative values for dt - dr for the confocal position indicate that for a 

perfect confocal, dr, reference arm propagation distance must be greater than dt, 

(test arm propagation distance).   

Obviously, moving either the reference mirror or the objective lens during 

the measurement is not feasible.  In addition, many of the required configurations 

are not practical on the interferometer (e.g. greater than 1 meter for a 100 µm 

part).  Also, a precise measurement of the physical distance of the reference 

mirror and/or the lens is prohibitively costly in both time and money.  Therefore, 

we will set the reference mirror and lens locations in the model using 

approximate values from the physical interferometer.  We will study the effect of 

the position of these parts on the radius. 

  Because the lens and reference mirror can not be placed at the position 

required, the cat’s eye and confocal reflections will not occur at s = f and s = f - r, 
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respectively.  The model described above is used to determine the new 

positions.   

2.4 Determining the Inputs 

The goal of this algorithm is to determine the error in the measured radius 

which changes with varying inputs like objective lens (focal length and NA), input 

beam radius, qin, and part radius.  In the sections below, we describe three cases 

to calculate qin and then the calculation of each of the remaining inputs.  The 

matrices for the reference and test propagation described above require that the 

qin be defined after the beamsplitter.  But, the actual qin I describe below is 

defined before the beamsplitter due to the physical location of apertures.  To 

make the analysis simpler, I did not consider the propagation through the beam 

splitter.  This is valid because both beams will propagate through the same 

conditions in the beamsplitter.  It will be shown that if the two beams propagate in 

the same manner, the calculated radius from the model does not vary.  This is 

shown in the second case for calculating qin. 

2.4.1 Calculating qin, Case 1 

There are multiple methods to calculate the input beam complex radius, qin.  

I first consider the case (known as case 1) of a standard interferometer with an 

aperture stop immediately before the beam splitter.  The aperture stop is 

overfilled such that the real part of the complex curvature goes to zero, that is, 

the beam intensity and phase are constant along the stop.  The complex qin for 

this case is then 
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λ

π nw
iqin

2

−= . 

Equation 2-26 

where w is the radius of the aperture stop, n the index of the medium (here 

assumed to be 1) and λ is the wavelength of the incident light (632.8 nm in most 

cases).  For the case of a 4.5 mm radius aperture stop (approximately equivalent 

to the micro-interferometer used in this research), qin is 0 – i*100532.95 mm.    

2.4.2 Calculating qin, Case 2 

We next consider case 2, where the aperture stop is not immediately before 

the beam splitter, Figure 2-5.  The beam will propagate over the distance dA to 

the beam splitter.  This is shown in matrix form as 









=

10

1 Ad
M

. 

Equation 2-27 

The q at the aperture is found using Equation 2-26 and then qin is found 

using Equation 2-16 with the matrix from Equation 2-27, 

λ

π nw
idq Ain

2

−= . 

Equation 2-28 

The complex part of the curvature does not change; therefore qin is dA – 

i*100532.95 mm, for the nominal case.  Later, we will investigate the effect of dA 

on the qout.   
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Figure 2-5:  Schematic of case 2, the aperture stop is some distance, dA from the 

beam splitter. 

2.4.3 Calculating qin, Case 3, and focal length 

Case 3 describes a system without an aperture.  This is the only case that 

does not crop the Gaussian beam.  The input beam curvature at the beamsplitter 

is determined by working backwards from the focus point.  The inputs are the 

numerical aperture, NA, and the focal length.  The waist of a Gaussian beam at 

focus, w0 is defined as 

NA
w

π

λ
=0

. 

Equation 2-29 

The complex curvature at this point, q0 is then 

2

2

0

0
NA

i
w

iq
π

λ

λ

π
==

. 

Equation 2-30 

I then use another matrix to travel from the focus point to the input of the 

beam splitter as shown in Figure 2-6.  The beam starts with a complex curvature 

q0 at f, propagates a distance f, passes through the lens, f, and propagates a 

distance, dt, as in 
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Equation 2-31 

Using Equation 2-16 and q0, the qin can be calculated for varying focal 

lengths and numerical apertures shown by 

λ

π 22 fNA
ifdq tin −−= . 

Equation 2-32 

dt f
W0, 

q0

qin dt f
W0, 

q0

qin

 
Figure 2-6:  Schematic of case 3, determining qin. 

The focal length, f, and the NA of the focusing lenses are found from the 

information supplied by the manufacturer [32].  The focal lengths and NAs for the 

focusing lenses are shown in Table 2-1.  These numbers correspond to those of 

the microscope objectives used in the micro-interferometer MORTI.  The 

resultant qin for case 3 (rounded to the mm) as calculated using Equation 2-32 

also shown in Table 2-1 where 632.8 nm was used for the wavelength.  The dt 

parameter is adjusted based on the physical attributes of the micro-

interferometer.   
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Table 2-1:  The calculated qin from the NA and f for micro-scale parts.  

NA f (mm) 
Aperture 

Diameter, a (mm) qin (mm), Case 3 

0.28 20 13 dt  - 20 + i*155690     

0.42 10 9 dt  - 10 + i*87575 

0.55 4 6 dt  - 4 + i*24029 

0.7 2 4 dt  - 2 + i*1556 

 
 

This set of NA and focal lengths are from the microscope objectives used to 

measure micro-parts.  The measurement of a macro-part is typically performed 

using transmission spheres with a different set of NAs and focal lengths.  The 

transmission sphere information is normally reported using the F-number (f/#).  

The NA of the transmission sphere is then found using  

/#/5.0 fNA = . 

Equation 2-33 

Then, the focal length must be found from the geometrical relationships that 

define the NA, shown in Figure 2-7.  Using the aperture diameter, a, and the NA 

of the transmission sphere, the focal length of can be found using 

( )
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( )( )NA
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f
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=
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θ
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Equation 2-34 
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a θfa θf

 
Figure 2-7:  Schematic demonstrating the calculation of the focal length from the 

NA. 

Using F-numbers from typical transmission spheres, the focal length and qin 

from case 3 were calculated for two typical aperture sizes: 102 mm (4 in) and 

300 mm shown in Table 2-2 and Table 2-3.  The propagation distance dt for 

these cases was zero, because the beam splitter is the transmission sphere, 

therefore the distance between is zero.  These show considerably larger focal 

lengths for the macro-scale parts than for the micro-parts.   

Table 2-2:  The calculated qin and f from the NA for macro-scale parts for the 
Veeco Interferometer, a = 101.6 mm (4 in). 

F-Number NA f (mm) qin (mm), Case 3 

0.75 0.67 56.8 -56.8 + i*7190013 

1.5 0.33 143.7 -143.7 + i*11164128 

3.5 0.14 352.0 -352.0 + i*12056598 

 

Table 2-3:  The calculated qin and f from the NA for macro-scale parts for macro-
scale interferometer. 

F-number NA f (mm) qin (mm), Case 3 

 1.1 0.45 293.9  -293.9+ i*86837557 

3.2 0.16 948.2  -948.2+ i*114267643 

4 0.13 1190.6  -1190.6 + i*118932860 
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2.4.4 Summary of qin 

We have shown three methods for determining the parameter qin and 

shown the various NA and focal length parameters.  Case 2 for determining qin 

matches the experiment best, but case 3 is the most valid for the Gaussian 

model because the other cases consider cropped Gaussian beams.  The 

propagation model requires a full Gaussian beam, but general knowledge states 

the propagation model is valid when the beam is cropped at or greater than the 

1/e point of the curve.  Case 1 and 2 are then valid under the assumption that 

that the cropping occurs at or beyond the 1/e point. 

2.4.5 The Remaining Input Parameters 

The other relevant input parameters to be determined are dt, dr, and r.  For 

micro-scaled parts, the distances in the test arm (dt) and in the reference arm (dr) 

are based on values for the micro-interferometer, 50 mm to 100 mm and 150 mm 

to 300 mm, respectively. Finally r is defined by the test optics, and I am 

examining micro optics with radii ranging from 20 µm to 1 mm.   

For macro-scaled parts, the distances dt and dr will typically be zero.  This is 

because the measurement on the larger parts is performed on a Fizeau 

interferometer where the transmission flat is the beamsplitter, the reference 

mirror, and the focusing element.  The r range of interest from the macro-scaled 

parts is from 10 mm to 50 mm.   
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2.5 Obtaining Radius from the Model  

Our goal is to determine the output radius of the test part and resultant error 

based on the input parameters described above. First, qin and the focal length are 

calculated based on one of the methods described above.  Next, qout of the 

reference and test arms are calculated using Equation 2-16, Equation 2-19, and 

Equation 2-20.  A range of values are calculated for qtout by varying s, taking care 

to encompass the both the cat’s eye and confocal positions (f-2r < s < f+r).  The 

curvature, curv, for both the reference and test arms is defined as the real part of 

the inverse of qout and are given by  
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Equation 2-35 

Note that curvref has a single value for all positions and curvtest is a function of s, 

the distance between the lens and the test part. 

The cat’s eye and confocal positions occur when the curvtest and curvref 

match.  To do this, we define curvout as   
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Equation 2-36 

The cat’s eye and confocal positions occur at the s position where curvout is 

zero.  An example graph of the curvout function is shown in Figure 2-8 with the 

confocal and cat’s eye shown. The intermediate curvature match near 9.47 mm 
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is the result of a focusing issue discussed in Chapter 4 and is easily discarded as 

a solution. 

 
Figure 2-8:  Example of a curvout function, inputs are NA = 0.42, λ = 632.8 nm, dt 

= 100 mm, dr = 150 mm, r = 100 µm, and qin = 90.48 + 71991i (case 3).  The 
objective is located to the left at 0 mm. 

The cat’s eye and confocal positions were found by determining the s value 

where the function crossed the x-axis (in 0.1 nm sized steps) such that the 

position is certain to ±0.1 nm.  The radius is then found by subtracting the 

confocal position, sCF, from the cat’s eye position, sCE, and the radius error is 

computed: 

rRadiusRadius

ssRadius

outerror

CFCEout

−=

−=
. 

Equation 2-37 
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The error is positive when Radiusout > r input radius, indicating that the 

measured sphere is larger than actual, and negative if the Radiusout < r, 

indicating that the measured radius is smaller than actual.  I will also examine the 

error in radius in terms of “number of parts in 10x”, which is the Radiuserror divided 

by the nominal radius. Values of this are shown on the results graphs that follow.   

The offset of the cat’s eye position is the sCE position minus the nominal 

position (the focal length) and the confocal offset is the sCF position minus the 

nominal position (the focal length minus the input radius)  as shown by 

( )rfSCF

fSCE

CFoffset

CEoffset

−−=

−=
. 

Equation 2-38 

By this convention, an offset toward the lens is positive and away is 

negative.   

To summarize, the radius is found using the following steps: 

• Calculate qin and f 

• Calculate qtout (function of s) and qrout  

• Calculate curvout as a function of s 

• Determine the two s positions where curvout is zero  

• Radius is the difference between the two positions 

The Matlab code for the Gaussian Model can be found in Appendix B, 

Program 1, guassian.m. 
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2.6 Results of the Code for Micro-Scale Parts 

I am interested in testing the error in the radius of the test part as it depends 

on several parameters.  The nominal values for these parameters are based on 

the experimental setup.  They are varied in simulation to study their effect on 

radius.  The results of the simulations are given in the sections below.  The 

conclusions based on these results are discussed later. 

2.6.1 Testing Varying Radius for the Different qin Cases 

We first tested parts with varying radius using the difference cases to 

determine qin.  For all these cases: dt = 50 mm and dr = 150 mm, λ = 632.8 nm, 

the index of the air is 1, the NA is 0.42, the half aperture size is 4.5 mm diameter, 

and the focal length is 10 mm).  We are testing radius ranging from 0.02 mm to 1 

mm.  The radius error shown in Figure 2-9 was calculated using qin from case 1 

where the aperture is well defined at the beam splitter. 
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Figure 2-9:  Radius Error for varying input radius using qin from case 1 (qin = 0 –

i*100532 mm).  

The radius error shown in Figure 2-10 and Figure 2-11 were calculated 

using qin from case 2 where the aperture is well defined a distance dA before the 

beam splitter. The distance dA was tested at 20 mm (Figure 2-10) and 50 mm 

(Figure 2-11).  From these results, there is no effect from the propagation 

distance dA.   
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Figure 2-10:  Radius Error for varying input radius using qin from case 2 (qin = 20 

+ i*100532 mm , dA = 20 mm).  
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Figure 2-11:  Radius Error for varying input radius using qin from Case 2 (qin = 50 

+ i*100532 mm, dA = 50 mm). 

The radius error shown in Figure 2-12 was calculated using qin from Case 3, 

where qin is based on the a diffraction limited spot at the focal point. 
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Figure 2-12:  Radius Error for varying input radius using qin from Case 3 (qin = 40 

-  87575i  mm). 

From these results (Figure 2-9, Figure 2-10, Figure 2-11, and Figure 2-12) 

the following observations can be made.  The real part of the qin does not have 

an effect on the result, and the complex part of qin does have an effect on the 

results.   

The real part of qin has no bearing on the results shown, therefore the 

distinction between case 1 (aperture at the beam splitter) and case 2 (aperture 

before the beam splitter) is not necessary.  This is because the test and 

reference beams both travel the path between the aperture and the beam splitter. 

The complex part of qin does have an affect on the magnitude, but not the 

trend of the radius error.  While case 1 (rather than case 3) more closely models 

the actual interferometer, there is an assumption that the qin from case 1 (flat 

curvature) is accurately propagated using the Gaussian matrix model.  The more 
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accurate method is to use case 3 for the input of the system.  The comparison to 

the actual system will be done in a subsequent section.  

2.6.2 Testing the Effect of Varying NA  

I only consider case 3 for varying the microscope objective.  Case 3 is the 

aperture less system.  Cases 1 and 2 were not considered because varying the 

NA in these cases is not possible in experiment.   

The objective is varied, which affects the NA, focal length, and aperture 

diameter of the lens.  The propagation distances are set to dt = 50 mm, dr = 150 

mm, and λ = 632.8 nm.   The error in radius for a 500 µm part when using qin 

from case 3 is shown in Figure 2-13 and for a 250 µm part is shown in Figure 

2-14. 

CF Offset

CE Offset
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r = 0.5 mm
dt = 50 mm

dr = 150 mm
q3
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0.28 0.550.42 0.7

1 Part in 106

5 Parts in 105

CF Offset

CE Offset

Radius Error

r = 0.5 mm
dt = 50 mm

dr = 150 mm
q3

Microscope Objective NA

0.28 0.550.42 0.7

CF Offset

CE Offset

Radius Error

r = 0.5 mm
dt = 50 mm

dr = 150 mm
q3

Microscope Objective NA

0.28 0.550.42 0.7

1 Part in 106

5 Parts in 105

 
Figure 2-13:  Error in a 500 µm part, varying NA, qin from case 3. 
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CF Offset
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0.28 0.550.42 0.7
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q3

Microscope Objective NA

0.28 0.550.42 0.7

5 Parts in 106
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Figure 2-14: Error in a 250 µm part, varying NA, qin from case 3. 

 

The radius error increases as NA of the objective decreases even as the 

focal length increases.   

2.6.3 Varying the Propagation Distances, dt and dr 

The propagation distances, dt and dr, were varied and the resultant errors 

examined.  The aperture diameter is set to 9 mm, NA = 0.42, λ = 632.8 nm and 

an input part radius of 250 µm.  First dr was set at 150 mm and qin from case 1 

was used.  The radius error was tested for varying dt as shown in Figure 2-15.  

The results from case 2 are identical and are not shown here. 
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Figure 2-15:  Radius Error for varying dt using qin from case 1, r = 250 µm. 

I also tested varying dt using qin from case 3.  The radius errors for this case 

are shown in Figure 2-16. 
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Figure 2-16:  Radius Error for varying dt using qin from case 3, r = 250 µm. 
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Next, dt was held at 50 mm and dr was varied.  The results when using qin 

from case 1 and case 3 are shown in Figure 2-17 and Figure 2-18.  As before, 

the results from case 2 are the same as for case 1. 
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Figure 2-17: Radius Error for varying dr using qin from case 1, r = 250 µm. 
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Figure 2-18:  Radius Error for varying dr using qin from case 3, r = 250 µm. 
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The above results (Figure 2-15, Figure 2-16, Figure 2-17, and Figure 2-18) 

indicate that the magnitude of the radius error is similar to previous results, but 

does not vary with changing dt or dr.  However, the cat’s eye and confocal 

positions do vary, but, the difference between the two is always the same.  This 

is true regardless of the method to calculate qin.  Therefore, the propagation 

distance is not a factor in the radius measurement, but may be a factor in other 

types of interferometric measurements.  For example, propagation distance 

would matter if the measurement is absolute and not differential.   

2.7 Curvature at the Test Part  

The test beam has a real curvature at the part surface cat’s eye retro-

reflection because this position is offset from the minimum waist of the beam 

(where the curvature is zero).  This is counter to previous work that assumed that 

the cat’s eye retro-reflection occurred at the beam waist [27].  Therefore the test 

beam has curvature at the test optic surface for the cat’s eye position.   This was 

calculated using another matrix that propagated the test beam from the input 

through the focus lens to the cat’s eye position.  This is shown in Appendix B, 

Program 1.  Table 2-4  shows the results from this program.  In this test, dt = 50 

mm and dr = 150 mm, λ = 632.8 nm, the index of the air is 1, the NA is 0.42, the 

aperture size is 9 mm diameter, and qin from case 3 was used as the input.  In 

addition, the curvature of the wavefront at the test optic surface for the confocal 

position was also calculated to compare.  Also, the waist radius of the beam (1/e 

point) at the test optic surface was calculated using Equation 2-14. 
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Table 2-4:  Table of the Curvatures and Waists at the test optic surface for the 
cat’s eye and confocal positions. 

 
Input 

Radius 
(mm) 

Input 
Beam 

Curvature 
(1/mm 

Beam 
Curvature 

at CE 
(1/mm) 

Beam 
Curvature 

at CF 
(1/mm) 

Beam 
Waist 
at CE 

(µm) 

Beam 
Waist 
at CF 
(mm) 

0.25 4 -4.5 -4.0 0.72 0.07 

0.5 2 -2.5 -2.0 0.72 0.14 0.28 

1 1 -1.5 -1.0 0.72 0.28 

0.25 4 -5.9 -4.0 0.48 0.10 

0.5 2 -3.9 -2.0 0.48 0.21 0.42 

1 1 -2.9 -1.0 0.48 0.42 

0.25 4 -16.3 -4.0 0.37 0.14 

0.5 2 -14.3 -2.0 0.37 0.28 0.55 

1 1 -13.2 -1.0 0.37 0.55 

  

I am comparing the input part curvature to the beam curvature at the 

confocal and cat’s eye positions.  The input part curvature is positive, while the 

beam curvatures are negative.  This is due to how the positions are defined and 

is not a concern.  As expected, at confocal the curvature of the beam is equal to 

the curvature of the test part.  This is similar to a geometric model, where the 

curvature of the beam matches exactly with the curvature of the test part at 

confocal.  With more significant figures, the beam curvature at confocal does 

vary slightly as compared to the part curvature.  This is because there is a small 

offset in the confocal position when the Gaussian model is considered.   

In the geometric picture, the beam curvature at the focal point is undefined.  

In the Gaussian model, the beam curvature at the focal point is zero (the beam 

radius goes to infinity).  Because the cat’s eye position does not occur at the 
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Gaussian focal point, the beam curvature has value as shown.  The beam 

curvature is larger and the beam waist is smaller at cat’s eye for the larger NA 

measurements.   

2.8 Results for Macro-Scale Parts 

I also performed this Gaussian analysis for macro-scale parts, nominal 

radius from 5 to 45 mm to compare to studies to a larger interferometer with 

apertures in the range of 6 inches.  Varying the radius on the macro-scale 

interferometer using a f/1.1 transmission sphere is shown in Figure 2-19 and 

varying the transmission sphere for a 25 mm radius part is shown in Figure 2-20.   

CF Offset

CE Offset

Radius Error

dt,dr = 0 mm
F/# = 1.1
NA = 0.45
f  = 293.9 mm
q3

8 Parts in 108

Error = 0

CF Offset

CE Offset

Radius Error

dt,dr = 0 mm
F/# = 1.1
NA = 0.45
f  = 293.9 mm
q3

8 Parts in 108

Error = 0

 
Figure 2-19:  The error on the macro-scale interferometer for the 0.45 NA 

transmission sphere for varying radius.   
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Figure 2-20:  The error on the macro-scale interferometer for a 25 mm radius part 

with varying transmission sphere NA. 

As expected, the errors for these larger interferometers are much smaller 

than for the micro-interferometer and follow similar trends.  Schmitz, et al. [27] 

performed a Gaussian propagation model of the radius measurement on the 

XCALIBIR interferometer, a large scale interferometer, which found a 6 nm bias 

error in radius for a 25 mm radius test optic using the f/4 transmission sphere 

(NA = 0.13).  Using the model presented here, the bias in radius is -11 nm, 4 

parts in 107, shown in Figure 2-19.  The small difference between the two models 

is because the model used by Schmitz, et al. considered a wavefront with 

aberrations and the cat’s eye reflection occurring at the minimum waist (where 

the curvature is zero).  

2.9 Checking Assumptions 

Section 2.3 is based on the assumption that the amplitude of the electric 

field varies slowly enough that kψ’ >> ψ’’ << k2ψ, where prime indicates the 
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derivative with respect to z.  This assumption was required to derive the 

Gaussian propagation model and is verified here.  The area of interest is in the 

focal region, when the beam is converging, as shown in Figure 2-21.  The z 

direction is shown and as is the g direction (the square root of x2 + y2).  Only the 

part of ψ that depends on g is required to check this assumption.  From Equation 

2-10,    

( ) 





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32
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Equation 2-39 

where q3 is the complex curvature after the lens.   
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Figure 2-21:  Schematic for checking the assumptions. 

The complex curvature before the lens, q1, is 

2
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w
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λ
−= .  

Equation 2-40 

The complex curvature after the beam passes through the lens, q2, is found 

through matrix method and is 
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Equation 2-41 

where f is the focal length of the lens.  The complex curvature as the beam 

propagates after the lens, q3, is  
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Equation 2-42 

after substituting Equation 2-40 and Equation 2-41.  Now q3 is a function of the 

physical inputs to the system, R1, w1, and f.  The A is used for simplification 

purposes.   Returning to Equation 2-39, ψ is now 
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Equation 2-43 

where B is used to simplify the mathematics.  The first and second derivatives of  

ψ with respect to z are  
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Equation 2-44 

The assumption kψ’ >> ψ’’ << k2ψ can now be checked with the knowledge 

of the following inputs: R1, w1, f, λ, and g.  The radius of the wavefront, R1, is 

large, 1000 mm was used here.  The waist at the lens, w1, and the focal length, f, 

depend on the objective used, here tested at 4.5 mm and 10 mm for a 0.42 NA 

objective.  The area of interest for g (the distance perpendicular to the z axis) 

varies with position after the lens because the beam waist changes.  I must 

consider when g is at the waist or larger.  Where g is two times w3 is a good 

starting point.  Figure 2-22 shows a plot of the radius (R3) and waist (w3) of the 

wavefront after the lens for a 10 mm focal length lens, 4.5 mm input waist (w1), 

and 1000 mm input radius (R1).  The g for this case is then two times the waist 

and varies with the z position. 
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Figure 2-22:  The radius and waist of the wavefront after the lens, where f = 10 

mm and the objective is located at 0.  

The comparison between kψ’, ψ’’, and k2ψ is done using the amplitude of ψ, 

ψ’, and ψ’’, where amplitude is the square root of the real component squared 

plus the imaginary component squared.  I used the Matlab computer program 

der_test.m in Appendix B, Program 2 for the calculation.  The results of kψ’, ψ’’, 

and k2ψ as calculated using Equation 2-43 and Equation 2-44 are shown in 

Figure 2-23.  The values of kψ’, ψ’’, and k2ψ do not change with the propagation 

distance, this is because the value of g does vary.  For this case, kψ’ >> ψ’’ << 

k2ψ holds true.  Table 2-5 shows the comparison for all the objective lenses used 

in this experiment.  The statement kψ’ >> ψ’’ does not hold true for the 0.55 and 

0.7 NA objective lenses.  The kψ’ is larger than ψ’’, but not much much larger as 

required for the Gaussian propagation model.   It then appears that the Gaussian 

propagation model begins to break down in systems with numerical aperture of 
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0.55 and larger.  I must therefore be careful about the conclusions drawn from 

the simulation of the 0.55 and 0.7 NA objectives.  A full physical optics model is 

required to carefully investigate this limit, however it is likely that the Gaussian 

model captured the correct order of magnitude of the effect.  A more detailed 

physical optics model is discussed in the next chapter.   

k2ψ = 3.63e7    

kψ′ = 0.36e7  

ψ″ = 0.036e7

k2ψ = 3.63e7    

kψ′ = 0.36e7  

ψ″ = 0.036e7

 
Figure 2-23:  Comparison between kψ’, ψ’’, and k2ψ for f = 10 mm, w1 = 4.5 mm, 

and R1 = 1000 mm. 

Table 2-5:  The values of k2ψ, kψ’, and ψ’’ in units of electric field per µm2.  

NA k2 ψ  k ψ′ ψ″ 

0.28 36.27 1.84 0.09 

0.42 36.27 3.60 0.36 

0.55 36.27 10.12 2.82 

0.7 36.27 18.06 8.99 
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For comparison, I also tested a macro-scale case where f = 100 mm and w1 

= 25 mm.  For this case k2ψ = 36.27 electric field per µm2, kψ’ = 1.11 electric field 

per µm2, and ψ’’ = 0.03 electric field per µm2.  The assumption kψ’ >> ψ’’ << k2ψ  

holds true for this macro-scale case. 

2.10 Conclusions about the Model  

From the results above the following observations are made:   

• The measured part is smaller than the input radius.  

• The error in the cat’s eye position is normally slightly larger in magnitude 

than the error in the confocal position.   

• The cat’s eye position is shifted towards the objective lens, shown in 

Figure 2-24. 

• The confocal position is shifted away from the objective lens, shown in 

Figure 2-24. 

• Radius error increases (apparently exponentially) as the radius 

decreases.  

• Radius error increases (apparently exponentially) as NA decreases.   

• Propagation distances dt and dr do not affect the radius measurement.  

• There is beam curvature at the test optics surface for the cat’s eye 

position that varies with NA. 
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Figure 2-24:  Schematic showing the shirt of the confocal and cat’s eye position.  

The solid lines are the positions determined from the model.   

It is interesting to note that decreasing the NA (equivalent to stopping the 

beam down) will increase the errors in the radius.  Yet, often a beam is stopped 

down to reduce spherical aberration and therefore reduce a bias in the 

measurement due to the aberration. 

The model begins to break down for the 0.55 and 0.7 NA objective lenses.  

These objectives have a much smaller beam waist at the focus point.  A detailed 

physical optics model is required to more understand the measurements at these 

NAs.  In any case, the Gaussian model shows that an approximate treatment of 

diffraction effects and beam propagation introduces small errors, much smaller 

than errors caused by wavefront aberrations.  The following chapter describes a 

method for modeling the radius measurement with a physical optics sense using 

the software package FRED, where effects of diffraction and wavefront 

aberration are both included in principle.    
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It must be noted that aberrations cannot be added to this model.  The 

intensity of the beam is set to a Gaussian profile and cannot be changed.  The 

radius model in FRED can be used to add aberrations to the system.   



 
 

CHAPTER 3:  A PHYSICAL OPTICS MODEL OF THE RADIUS 

MEASUREMENT USING FRED 

3.1 Introduction to FRED 

The FRED software package, by Photon Engineering [33], is a physical 

optics modeling software package.  FRED approximates a physical optics model 

by approximating a source beam as a grid of points with each point sending out a 

Gaussian profile.  Each Gaussian beamlet is sent through the optical system in 

the same manner as the ABCD matrices used in Chapter 2 [34, 35].  After each 

beamlet passes through the system, wavefront of the beams on the “detector” 

are summed to approximate a physical optics model.   

FRED is a visual software package where the lens, mirrors, and sources 

are all displayed in their relative positions.  The “rays” of the source are then 

traced and read by a detector.  The term ray is used here to indicate the 

Gaussian beamlet of each point.  The detector is where the beamlets are all 

summed.   

First, each component (source, focusing lens, and detector) used to 

simulate the radius measurement is described.  Then the procedure for 

performing the simulated radius measurement is described.  Finally, the results 

from the various simulated radius measurements are shown. 
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3.2 Sources 

Two sources were tested:  a constant intensity beam with a circular 

aperture and a beam with a Gaussian intensity profile (used to compare to 

Chapter 2).  Both sources were set with a 632.8 nm, Helium-Neon wavelength 

and they were designated as coherent and unpolarized (random polarization).   

3.2.1 Circular Aperture Input Beam  

The circular input beam has a constant intensity over the entire aperture.  

That is, the beam has a top hat intensity profile and is collimated.  This beam is 

constructed by the FRED program from the sum of small Gaussian beamlets, 

called rays by the FRED program.  The term ray is used here to indicate the 

small Gaussian beamlet, not the geometric model ray.   

The key input to the circular source is the number of rays.  With more rays 

the top hat profile is more true to absolute.  But, the program is slower with more 

rays.  A source of 31 rays by 31 rays over the circular aperture was used.  This 

was decided upon after testing the 11x11, 31x31, 51x51, 81x81, and 101x101 

configurations.  The detail of this testing is not shown in full here but the results 

are summarized as follows.  The number of input rays was varied at different 

positions along the optical axis and the resultant phase output was examined for 

changes.  Varying the number of input rays caused an uncertainty of up to 

±0.027 waves in the defocus term of the output phase map.  This directly leads to 

an uncertainty of up to ±31 nm in both the cat’s eye and confocal positions.  This 

uncertainty is constant for a setup.  Therefore if the setup is not changed during 
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the simulated experiments, the uncertainty becomes a possible bias that must be 

considered.     

The energy density (proportional to intensity) of the circular aperture top hat 

beam (31x31) is shown in Figure 3-1.  The input beam aperture diameter is 8 

mm.  

 
Figure 3-1:  The energy density (proportional to intensity) of the circular beam.  
The units on the z-axis are inconsequential and are mm on the x- and y-axes. 

3.2.2 A Gaussian Beam Input 

For comparison to the Gaussian Model shown in Chapter 2, a Gaussian 

beam must be used as the input beam.  A special source was required for this.  A 

normal source uses the sum of many Gaussian beamlets to form a top hat 

intensity function.  For this special source, one Gaussian beamlet was used.  The 

parameters of that single beam were varied such that it would be the proper size.  

This is accomplished by changing the coherent beam parameters:   “Adjacent 
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Beams Overlap Factor” = 0.886226925, “Secondary Ray Scale Factor” = 0.1, 

and the beam semi aperture is 4 mm in X and Y.  Normal parameters are 1.5 for 

Adjacent Beams and 1 for Secondary Ray.  Figure 3-2 shows the energy density 

(proportional to intensity) of the single Gaussian beam.  Note how this compares 

to Figure 3-1 where the energy density is a top hat.  For the following simulated 

radius measurements in FRED, both the single Gaussian source and the top hat 

source will be used. 

 
Figure 3-2:  The energy density of the single Gaussian beam. The units on the z-

axis are inconsequential and are mm on the x- and y-axes. 

3.3 The Focusing Lens  

The next component in the measurement is the focusing lens.  In 

experiment this is a microscope objective with multiple lenses.  This objective 

can not be simulated in FRED due its proprietary nature.  In simulation, we are 

seeking a component that will produce a diffraction limited focal point.  This will 
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allow testing a prefect system (no aberrations) and then aberrations can be 

added to determine the effect on the radius measurement.   

3.3.1 Using a Spherical Lens 

A complicated part of building the FRED model is that the program does not 

allow the use of a perfect lens, i.e. a perfect “thin lens”.  The program uses 

lenses that could be manufactured.  In most cases, this creates spherical 

aberration in the beam.  I initially want to simulate the radius measurement using 

a prefect (non-aberrated) beam.  This non-prefect lens is demonstrated in the 

following example. 

The circular aperture 8 mm diameter beam was set at the origin.  A lens 

with focal length 10 mm, bending parameter of 1, diameter of 10 mm, and 

thickness of 4 mm is placed 1 mm from the source.  The bending parameter 

indicates the shape of each surface of the lens; here the parameter of 1 is a 

convex-plano lens.  Figure 3-3 shows this model with the rays traced. 

 
Figure 3-3: The FRED model with a Spherical Lens. 
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Even by looking at the figure, it is obvious that rays are very spread out at 

the focus point of the lens indicating spherical aberration.  We can perform a 

“Best Geometric Focus” analysis to determine the size of the spot.  The Best 

Geometric Focus as defined by FRED is the RMS smallest point of the ray 

package.  Figure 3-4 shows the output of this analysis.  The numbers of interest 

are boxed in a dotted line.  The Z position (the z direction is along the optical 

axis) is located at 11.06768 mm, not the 11 mm as expected.  The RMS of the 

ray bundle is 0.159 mm, quite large.  This analysis also reports the NA of the 

system, here 0.51.   

 
Figure 3-4:  The Best Focus Analysis for the example shown in Figure 3-3. 

3.3.2 Using a Spherical Lens with a Conic Surface 

A common solution to try and reduce the spherical aberration caused by 

lenses is to use conic surfaces on the lens.  Using a simple guess and test, I 

attempted to reduce the RMS number by using different conic numbers on the 

convex surface of the lens.  The FRED package does not have a optimization 



 
 

72

option that would solve for the best conic number like other software packages. 

Therefore, the guess and test method was used.  A conic number of -0.6 appears 

to have the best results and is shown in Figure 3-5 and Best Geometric Focus 

Analysis is shown in Figure 3-6. 

 
Figure 3-5:  The FRED model with a spherical lens with a conic surface on the 

front face. 

 
Figure 3-6:  The Best Focus Analysis for the example shown in Figure 3-5. 

The spread of the rays in Figure 3-5 is much smaller than in Figure 3-3 and 

the RMS of the spot has been reduced to 0.0037 mm from 0.1594 mm.  But, this 

spot is again too large.  The conic lens does not reduce the aberration enough.  
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3.3.3 Using a Parabola 

The next obvious step was to use a parabola.  Parabolas are used in 

experiments and simulation to create a diffraction limited spot or a non-aberrated 

beam.  Initially an off-axis parabola was tested for the radius model, but 

positioning the off-axis parabola was time prohibitive to do in FRED.  Aligning an 

off axis parabola in experiment is less difficult.   

The radius of the parabola is chosen to provide the desired NA.  The NA is 

found using the “Best Geometric Focus”.  The conic constant of the parabola is 

always -1.   

A full parabola was used to perform the radius measurement simulations in 

FRED, shown in Figure 3-7.  The parabola is placed at the origin and the source 

15 mm away.  The parabola has a 7 mm focal length and a diameter of 10 mm.  

The source is again He-Ne and is 6 mm in diameter.  Only every tenth ray was 

traced in Figure 3-7 for visualization purposes only.   The “Best Geometric 

Focus” information is shown in Figure 3-8.  The z position of the best focus is at 7 

mm as expected and the RMS of the spot is very small at 9.45*10-15 mm 

(considered here to be zero).   

 
Figure 3-7:  The parabolic model with rays traced. 
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Figure 3-8:  The Best Focus Analysis for the example shown in Figure 3-7. 

To use the full parabola for the radius measurement, a special step was 

required in the ray tracing.  When the part is placed at the focus, the rays from 

the source will be blocked by the test part.  Therefore the ray tracing must be 

done in these steps 1) source, 2) parabola, 3) test part, 4) parabola, and 5) 

detector.  This type of ray tracing (skipping components) is called a “User 

Defined Ray Path” in FRED.  The traced rays with the order of tracing are shown 

in Figure 3-9 (again only some of the rays are shown for visualization purposes).  

Figure 3-10 shows the FRED window where the user defined ray path is entered. 

1
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Figure 3-9:  The rays traced in the user defined ray path for the parabolic model 

shown in Figure 3-7. 
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Figure 3-10:  The user defined ray path:  Parabola, test part, Parabola, Camera.  

3.4 The Detector and Analysis  

The detector simulates the camera.  In the program, it is a plane where all 

the rays are summed.  The detector has a certain number of pixels over which 

the rays are averaged.  As with the source, more pixels are more accurate, but 

more time is required.  After testing the detector in a similar manor to testing the 

source, an 81 by 81 pixel array was decided upon.   

To determine the uncertainty due to the number of detector pixels, I 

performed an analysis similar to the one in Section 3.2.1 that showed an 

uncertainty of ±31 nm based on the number of input rays.  Varying the number of 

camera pixels resulted in an uncertainty in the Zernike defocus term of 0.0546 

waves, leading to a possible offset uncertainty of ±64 nm for the 0.42 NA 

objective. 

For the radius measurement, the phase at the detector is required.  First the 

rays are traced using the advanced ray trace described above.  Then a “coherent 

scalar ray analysis” (an option in the Analyses menu) was performed.  With this, 

the energy density was calculated and then the wrapped phase is found.   This 

phase data is then saved in a test file and then read into Matlab where the 
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Zernike Defocus term is calculated.  The phase map is reported in waves (where 

one wave is 632.8 nm). 

3.5 Reading the Phase Data in Matlab 

The Zernike coefficients (Appendix A) of the phase map are required for the 

radius measurement.  This analysis cannot be done in FRED; it must be done in 

Matlab. 

  The data from FRED is a text file and the Matlab program read_fred.m 

(Appendix B, Program 4) is used to read this file.  Next the program 

mask_circle.m (Appendix B, Program 4) masks the data to a circle.  The phase 

map is unwrapped using the built in Matlab function unwrap.m.  The Zernike 

coefficients are then found using zern_radius_angle.m (Appendix B, Program 5) 

and zern_estim.m (Appendix B, Program 6).  Programs 4, 5, and 6 were 

developed at the National Institute of Standards and Technology and are used 

here with permission.  The main program get_20_40_fred.m (Appendix B, 

Program 3) is used as a main program that calls Programs 7, 8, and 9 and plots 

the resultant phase map.      

3.5.1 Unwrapping 

The internal Matlab function unwrap.m is next used to unwrap the data.  

This is because the calculation of the phase requires the use of an arctangent 

function which only goes from –π to +π.  These discontinuities in the data need to 

be fixed in computation.   
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The Matlab function unwrap.m is not without errors.  There are rare times, 

even if the unwrap function is performed in both the X and Y directions, that the 

resultant dataset still has unwrapping errors.  There are more involved 

unwrapping functions than the simple Matlab function, but many of these are 

propriety.  The easiest solution is to discard the phase maps that have an 

unwrapping error.  This is valid because there are multiple data points when 

solving for the cat’s eye and confocal positions, but will increase the fitting error 

as described in Chapter 1.  After unwrapping, the phase data must be converted 

to height [26] data using 

πλ 4

Phaseheight
= . 

Equation 3-1 

The extra factor of two in this conversion is because a Tywman-Green 

interferometer is double pass in height. 

3.5.2 The Zernike Coefficients  

After the data has been unwrapped, the Zernike polynomial coefficients 

(Appendix A) of the height map are solved for using Programs 5 and 6.  

Generally, the program is set to solve for the first 36 Zernikes.  Program 6 returns 

the variable vpar which includes all 36 Zernike coefficients.  The Zernike defocus 

term, 0

2a  (used to find cat’s eye and confocal, Section 1.3.1) is the fifth term in 

this array and the spherical aberration, 0

4a  is the thirteenth term.  
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3.6 Setup of the Simulated Radius Measurements in FRED 

A radius measurement was set up in FRED using a source (circular 

aperture or Gaussian), a parabola (with the desired NA), a reference mirror, a 

test part, and a detector.  The test part is a reflecting spherical component with 

the desired radius.  The reference mirror is a flat reflecting surface.   

For comparison to the Gaussian model both the test and reference arms 

need to be traced.  This is done by placing the parabola at the dt propagation 

distance and a reference mirror is placed at the dr propagation distance from the 

source.  This is shown in Figure 3-11.  For the experiment, each arm of the 

interferometer is traced separately as shown in Figure 3-12.  The reference arm 

is only traced once.  The test arm is traced as follows. 

Source

Parabola

Ref Mirror

Test Part

Detector

dr

dt
Source

Parabola

Ref Mirror

Test Part

Detector

dr

dt

 
Figure 3-11:  Schematic of radius measurement in FRED showing the 

propagation distances. 
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Test Arm

Reference Arm

+Z

Test Arm

Reference Arm

Test Arm

Reference Arm

+Z

 
Figure 3-12:  The test arm and reference arm with rays traced.  Note that the test 

arm requires the use of the “user defined ray path.” 

 
The test part is placed at a Z position slightly (5 µm) less than the best 

focus position.  The rays are traced using the required user defined ray path.  

The “Coherent Scalar Wave Field” is computed by FRED at the camera.  The 

phase at that point is saved as a text file.  The test part is then stepped through 

the cat’s eye position in steps of 1 µm with the rays traced and the phase 

calculated and saved at every step.  The same is done around the confocal 

position.  The approximate confocal position is one radius more than the 

approximate cat’s eye positions. 

All of the phase map files (reference and test) are then read into Matlab and 

the Zernike coefficients are calculated.  First the reference defocus term is 

subtracted from the each of the test defocus terms.  Then two plots are formed: 

corrected defocus versus Z position for cat’s eye and confocal.  A line is fit to the 

data in each plot and the intercepts are the cat’s eye and confocal positions.  The 

difference between the two is the simulated measured radius.   
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The cat’s eye and confocal offset terms are also calculated in this step.  

The cone of light points to the left in the FRED model, but the cone of light points 

to the right in the Gaussian model in Chapter 2.  Because of this, the calculation 

of the bias in cat’s eye and confocal is different, but the convention remains the 

same.  A positive bias indicates a shift away from the parabola, while a negative 

bias indicates a shift toward the parabola.  A positive error in radius indicates that 

the measured sphere is larger than the input and a negative error in radius 

indicates that the measured sphere is smaller than the input. 

3.7 Summary of Radius Procedure 

The procedure for the simulated radius measurement is summarized in 

following list. 

1. In FRED, the test beam is turned off and the reference beam is 

traced.  The reference phase map is calculated and saved. 

2. In FRED, the reference beam is turned off and the test beam is 

traced (using the advanced ray trace).  The test phase map is 

calculated and saved.  This is done multiple times for ten phase 

maps near the cat’s eye positions and ten near the confocal position. 

3. Matlab is used to import the phase map, unwrap the data, convert the 

phase to height, mask the data to a circle, and calculate the Zernike 

Defocus term for each phase map.  It is in this step that any data with 

phase unwrapping error is discarded. 

4. In Matlab, the reference defocus value is subtracted from each test 

defocus value. 
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5. In Matlab, the corrected defocus value is plotted versus Z position for 

both cat’s eye and confocal and the intercepts are calculated.   

6. In Matlab, the radius is the difference between the two intercepts.   

7. In Matlab, the cat’s eye and confocal offset terms are calculated. 

3.8 Measurements using the Single Gaussian Beam. 

The single Gaussian beam was used as the input for the following 

simulated radius measurements.  The single Gaussian source described in 

Section 3.2.2 was used as the input. These results can be compared to the 

Chapter 2 simulations. The simulated measurements were performed as 

described in Section 3.6. 

3.8.1 Varying Radius 

I first tested varying the radius of the test part.  Only three radii (0.25 mm, 

0.5 mm, and 1 mm) were tested due to the amount of time one test takes.  The 

propagation distances dr and dt are 150 mm and 50 mm from the source.  The 

focal length of the parabola is 10 mm.  To achieve the desired 0.42 NA objective, 

I varied the input beam diameter and then check the NA of the parabola using 

the “Best Focus” function.  A beam diameter of 8.92 mm resulted in a NA of 

0.4185.   

Figure 3-13 shows the results from the 0.5 mm part.  The phase maps at 

each data point are shown.  The missing phase maps had unwrapping errors and 

were discarded.  The calculated radius of this part is 0.500022 mm, indicating an 
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error of 22 nm.  Figure 3-14 shows the radius error and position bias terms for 

various radii parts.  The radius error increases with the decreasing radius.   
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Figure 3-13:  The results from the FRED test of a 0.5 mm radius part single 

Gaussian beam input.  The parabola is to the right at 50 mm. 
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Figure 3-14:  Results from FRED, varying radius, single Gaussian beam input. 

3.8.2 Varying NA  

Next, I varied the numerical aperture of the parabola by setting the proper 

focal length and then adjusting the input beam diameter as required to achieve 

the desired NA.  The propagation distance are the same as before, dr = 150 and 

dt = 50.  The results for a part of 0.5 mm radius are shown in Figure 3-15 and for 

a 0.25 mm radius part in Figure 3-16. 
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Figure 3-15:  Results from FRED, varying NA, single Gaussian beam input, input 

radius = 0.5 mm. 
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Figure 3-16:  Results from FRED, varying NA, single Gaussian beam input, input 

radius = 0.25 mm. 

The error for the 0.7 objective for both the 0.25 mm and 0.5 mm input 

radius cases is quite large.  This does not compare well to the Gaussian 

simulation in Chapter 1 which showed an increasing error with decreasing NA.  
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This is due to the model beginning to break down.  The FRED model is under the 

same constraint as the Gaussian model, that the field can not vary quickly.  The 

analysis in Chapter 2 showed that the 0.55 NA and the 0.7 NA objectives may 

not meet this constraint.  This model break down is especially relevant in the 

Gaussian Beam input to FRED rather than the circular beam input because only 

one Gaussian beam is used.  The model break down leads to a large uncertainty 

in the fit of the defocus vs. position graph, Figure 3-13.  For most cases, the 

uncertainty in the radius due to the fit (as calculated as described in Chapter 1) is 

±40 nm to ±70 nm.  The uncertainty in the 0.7 NA objective fit for both the 0.25 

mm and 0.5 mm input radius part was near ±500 nm.   Because of this, the data 

for the 0.7 NA objective is invalid. 

3.8.3 Varying the Propagation Distances, dt and dr 

I next tested varying the reference arm propagation distance.  Only the 

reference arm propagation distance is shown here, varying the test arm 

propagation distance showed similar results.  The results from varying the 

reference propagation distance, dr, from 150 mm to 300 mm are shown in Figure 

3-17.  This model shows a very small effect in the position of the cat’s eye and 

confocal reflections.  But, the shift in each position is in the same direction, so 

there is no effect on the radius error. 
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Figure 3-17: Results from FRED, varying the reference propagation distance, dr, 

single Gaussian beam input, input radius = 0.5 mm. 

3.9 Measurements using the Circular Input  

I then changed the input source to a beam with a circular aperture top hat 

profile beam as described in Section 3.2.1 and the radius was measured as 

described in Section 3.7.  The circular aperture beam is closer to experiment but 

the actual wavefront is likely somewhere between the two. 

3.9.1 Varying Radius 

The results from varying the radius of the test part are shown in Figure 

3-18.  Only three radii (0.25 mm, 0.5 mm, and 1 mm) were tested due to the 

amount of time one test takes.  The propagation distances dr and dt are at 150 

mm and 50 mm from the source, the beam diameter is 8.92 mm, and the NA is 

0.4185 as before.  The radius error is larger than for the Gaussian single beam 

input but on the same order of magnitude.  The trend is similar, that the error 

increases with decreasing radius.  
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Figure 3-18:  Results from FRED, varying radius, circular aperture beam input. 

3.9.2 Varying NA  

The results for varying the NA of the parabola are for 0.5 mm radius part 

are shown in Figure 3-19 and for a 0.25 mm radius part in Figure 3-20.  The 

propagation distance are the same as before, dr = 150 and dt = 50.  The radius 

error increases with the decreasing NA (increasing spot size).  The radius error is 

much larger for the smaller radius parts, Figure 3-20 and is 2 parts in 103, which 

is significant when precision measurements are desired.       
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Figure 3-19:  Results from FRED, varying NA, circular aperture beam input, input 

radius = 0.5 mm. 
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Figure 3-20:  Results from FRED, varying NA, circular aperture beam input, input 

radius = 0.25 mm. 

3.9.3 Varying Propagation Distances 

The results for varying the propagation distance, dr, are shown in Figure 

3-21.  The propagation distances tested are comparable to the micro-
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interferometer.  As with the Gaussian model in Chapter 2, the varying the 

propagation distance shifts the confocal and cat’s eye positions slightly, but has 

no effect on the radius measurement.  Similar errors are shown when varying the 

test propagation distance, dt.    
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Figure 3-21:  Results from FRED, varying dr, circular aperture beam input, input 

radius = 0.5 mm. 

3.10 Adding Spherical Aberration 

The above results only consider a non-aberrated system, i.e. the light is 

focused to a diffraction limited focal spot.  Experimentally, all systems will have 

aberration.  Spherical aberration will have the largest impact on the radius 

measurement (from a symmetry consideration) and it is a common aberration in 

optical systems.  Spherical aberration is easily added to a system by inserting a 

parallel window in a converging beam, as shown in Figure 3-22.  The thickness 

of the window corresponds to the glass window used in experiments.   
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Figure 3-22:  Picture from FRED with the additional spherical aberration.   

Because the single Gaussian beam input can not have aberrations, adding 

spherical aberration would not affect the radius results.  The window would cause 

the cat’s eye and confocal positions to shift, but the difference between the two 

remains the same.  This is the same reason why aberration could not be added 

to the Gaussian model in Chapter 2.  I confirmed this by adding windows to the 

0.42 NA interferometer with a single Gaussian beam input.  For a 0.5 mm input 

radius the radius error remained 22 nm as shown in Figure 3-14 no matter the 

window thickness.     

3.10.1 Spherical Aberration with the Top Hat Beam 

Figure 3-23 shows the simulated radius measurement of a 0.5 mm radius 

sphere in a 0.42 NA interferometer with a 0.254 mm thick glass plate.  The output 

is 0.500176, an error of 176 nm.  The measured part is larger than the input.  The 

cat’s eye and confocal positions shifted away from the interferometer as 

expected by -1347 nm (cat’s eye) and -1523 nm (confocal).  Figure 3-24  and 

Figure 3-25 show the simulated measurement results for varying the thickness of 

the glass plate.  The large shift in the cat’s eye and confocal positions are due to 
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the primary effect of adding a glass plate, the focus shifts away from the 

objective.  The amount of spherical aberration ( 0

4a ) at cat’s eye is also shown.   
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Figure 3-23:  Results from a 0.5 mm input radius sphere with circular input beam 

with a 0.254 mm glass plate.  The parabola is located to the right at 50 mm. 
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Figure 3-24:  The bias in the radius measurement for varying spherical aberration 

for a 0.42 parabolic objective. Note that the error is now in micrometers. 

 



 
 

93

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8
Spherical Aberration,      near cat's eye (wv)

E
rr

o
r 

(m
ic

ro
m

e
te

rs
)

3 Parts in 103

2 Parts in 104

Radius Error

r = 0.5 mm
dt = 50 mm

dr = 150 mm
Circular Input Beam

0

4a

9 Parts in 104

0

0 0.5 1 1.5
Thickness of Glass Plate (mm)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8
Spherical Aberration,      near cat's eye (wv)

E
rr

o
r 

(m
ic

ro
m

e
te

rs
)

3 Parts in 103

2 Parts in 104

Radius Error

r = 0.5 mm
dt = 50 mm

dr = 150 mm
Circular Input Beam

0

4a

9 Parts in 104

0

0 0.5 1 1.5
Thickness of Glass Plate (mm)

 
Figure 3-25:  The error in radius when spherical aberration is introduced, an 
expanded view of Figure 3-24.  Note that the error is now in micrometers. 

The amount of spherical aberration per mm of glass plate is high as 

compared to the initial measurements shown in Chapter 4.  One glass plate in 

experiment results in about 0.3 waves of spherical aberration for a 1 mm radius 

part.  In FRED, one glass plate of the same thickness results in about 1.4 waves 

of spherical aberration (shown in Figure 3-23).  The difference between the 1.4 

waves and 0.3 waves can not be explained just by the different radius parts.      

Two additional factors can explain this difference.  The parabola in the 

FRED model focuses the “rays” of light in a different manner than the microscope 

objective will, explained in further detail in Chapter 6.  In addition, the 

experimental data is normally masked, which will reduce the amount of spherical 
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aberration.  I discuss the masking in Section 3.11 and Chapter 6 and the effect of 

the parabola in Chapter 6. 

Therefore, to better compare to the experimental results, I reduced the 

thickness of the glass plate in the simulation for the lower spherical aberration.  

This is shown in Figure 3-26 and Figure 3-27.  The amount of resultant 

aberration is much smaller for the thinner plates, as expected, and the shift is 

away from the objective and smaller for the thinner plates.  The radius error 

changes very little as the thickness of the glass plate is increased over this 

range, from 7 parts in 104 to 9 parts in 104.  This may demonstrate that the 

relationship between plate thickness and amount of spherical aberration in the 

wavefront is not linear.   
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Figure 3-26:  The bias in the radius measurement for varying spherical aberration 

for a 0.42 parabolic objective for an input radius of 0.25 mm. 
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Figure 3-27:  The bias in the radius measurement for varying spherical aberration 
for a 0.42 parabolic objective for a input radius of 0.25 mm, expansion of Figure 

3-26. 

3.11 Masking 

The masking of the data in the experiments causes the amount of spherical 

aberration to drop quickly with reduced mask size.  At the same time, masking 

causes the amount of defocus top rise.  This defocus will affect the data of the 

defocus vs. position graph and therefore the radius.  This effect is demonstrated 

in the Figure 3-28 and Figure 3-29.  A simulated wavefront with 1 wave of 

spherical aberration is shown in Figure 3-29, along with the masked data and the 

resultant defocus term.  This defocus term will cause the data to shift and 

therefore masking data can lead to an erroneous result.  As expected, smaller 

amounts of aberration cause smaller effects on the defocus term.  A calculation 
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of the amount of shift in the cat’s eye and confocal positions (and therefore the 

radius) due to the masking is shown in Chapter 6. 
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Figure 3-28:  Schematic showing how mask size affects the defocus term. 
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Figure 3-29:  Demonstration of mask size effect of the defocus term.   

In the FRED model, all of the data is captured at the detector and no 

masking is normally required.  If the mask size is reduced, though, the error in 

the radius and the amount of spherical aberration is reduced as shown in Figure 
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3-30.  This mask size reduction was done in the Matlab step of the analysis, after 

I imported the data and before unwrapping and fitting to Zernikes.  For 

comparison, the amount of spherical aberration when the part is near cat’s eye 

for the glass plate of the same thickness, 0.254 mm, is 0.0148 wv for a nominally 

1 mm radius sphere.  The smaller spheres have higher aberration.     
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Figure 3-30:  The radius error (blue diamond, left axis) and amount of spherical 

aberration (red square, right axis) as the mask size changes for a 0.5 mm radius 
sphere with a 0.254 mm thick glass plate. 

But, of course I can not just reduce the mask size in the FRED data to 

compare to the experimental data.  The number of pixels is not enough to 

accurately define the wavefront.  The best method for comparing to simulation is 

to reduce the thickness of the glass plate until the desired spherical aberration is 

obtained. 
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Reducing the mask size as described here is different than the analysis 

described in Section 3.2.1 and Section 3.4 where varying the number of input 

rays and the number of pixels in the camera showed an uncertainty of ±31 nm 

and ±64 nm, respectively.   In that analysis, the full wavefront on the detector 

was considered.  Here, only a portion of the wavefront is considered. 

3.12  Macro Scale Radius 

I also tested a model of a macro-scale interferometer with a f/4 transmission 

sphere.  The NA of the parabola used in the model was 0.128, the focal length 

1190 mm, and the source beam diameter is 306 mm.  The results for both the 

circular aperture input beam and the Gaussian input beam for a 25 mm input 

radius test part are shown in Table 3-1. 

Table 3-1:  Results of FRED model for a 25 mm input radius sphere. 

 
CF Offset 

(nm)  
CE Offset 

(nm) 
Radius Error 

(nm) 
Fractional 

Error 

Circular -231 230 461 2 parts in 105 

Gaussian 6 -6 -11 5 parts in 107 

 

3.13 Summary of Results 

3.13.1 Circular Aperture Input Beam 

The results from the circular aperture input beam, without aberration, show 

a measured sphere larger than the input, a shift in the cat’s eye position away 

from the objective, and a shift in the confocal position toward the objective as 

shown in Figure 3-31.  This error increases with smaller numerical aperture and 
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with smaller input radius.  The propagation distance has no effect on the radius 

and a small effect on the cat’s eye and confocal positions.  In general, the errors 

in the results from the circular aperture input beam are larger than for the 

Gaussian input beam.  

CF (f-r)CE (f)

CF shits toward 

Objective

CE Shifts away 

from Objective

CF (f-r)CE (f)

CF shits toward 

Objective

CE Shifts away 

from Objective

 
Figure 3-31:  Schematic of the results from the circular aperture input beam 

without aberration. 

When the spherical aberration is added the cat’s eye and confocal positions 

both shift away from the objective as shown in Figure 3-32.  But, because the 

cat’s eye position shifts more than the confocal position, there is an error in the 

radius, leading to a measured sphere larger than the input radius.  This error is 

quite large for the larger amount of aberration.  When the spherical aberration is 

0.3 waves and less, it is difficult to say divisively that the radius error changes 

with small increases in aberration.   
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Figure 3-32:  Schematic of the results from the circular aperture input beam when 
spherical aberration is added. 

3.13.2 Gaussian Input Beam  

The results from the Gaussian input beam, without aberration, show few 

divisive results.  The results from the 0.7 NA objective have a large uncertainty 

due to fitting and can not be used to look for trends.   The remaining errors are 

small, but, in general, the measured sphere is larger than the input, the shift in 

the cat’s eye position is away from the objective, and the shift in the confocal 

position is toward the objective as shown in Figure 3-31. Varying the propagation 

distance has virtually no effect on the error.   

3.14 Uncertainty 

Although the author of FRED enthusiastically supported the ability of FRED 

to simulate the cat’s eye reflection in early conversation [33, 36], I certainly 

expect the model assumptions to be challenged near the focal region, sometimes 

called the caustic.  Near the caustic the rays are not normal to the wavefront and 

the “phase go[es] astray” [37].  This is even the case for the non-aberrated 



 
 

101

wavefront. The analysis of the wave field has errors.  A recent publication 

summarized the situation well; “For example, the analysis of a wave field that has 

a caustic at a curved interface between different media remains a significant 

challenge…We are unaware of any existing ray-based models that can analyze 

such cases” [37].  The curved interface described here is the test part in a radius 

measurement.  In an attempt to fix this problem, Forbes and Alonso [37] propose 

modifying the Gaussian beamlets source in the optical modeling software (such 

as FRED) as follows.   

The wave field in the caustic region in FRED varies with the number of input 

rays as shown by an error in radius (Section 3.2.1).  In FRED, the parameters of 

the each ray, or beamlet, are fixed for all the rays in a single source.  These 

parameters describe the size of the beamlet, how fast it spreads, and the overlap 

between beamlets.  The new method [37, 38] determines the optimum beamlet 

parameters across the source so that the wave field at the caustic becomes 

insensitive to the parameter values.  In other words, the simulation will not be 

realistic if the results depend on simulation parameters to like beamlet size and 

density.  This approach reduces the uncertainty in the wave field in the caustic 

region, but does not yet completely solve the curved surface problem.  This 

method for optical modeling is obviously outside the scope of this work, but is 

introduced here to demonstrate the errors in FRED and as a direction for future 

study. 

The model break down is also demonstrated as described in Section 3.8.2.  

The FRED model must meet the same constraint as the Gaussian model, that is, 
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the field can not vary too fast.  In the Gaussian model, the constraint applied to 

the whole beam diameter.  In the FRED model, with the circular input beam, the 

constraint applies to each Gaussian beamlet.  The beamlets do not vary as fast 

as the whole beam diameter, and therefore the FRED model meets this criterion 

for beams with larger NAs (other errors persist, though).  Future work could 

include a detailed calculation to check where the beamlets vary too fast and 

therefore, where the FRED model breaks down based on the slowly varying 

criterion. 

The model break down is partially demonstrated by the uncertainty fitting of 

the defocus vs. position graph.  This uncertainty is also caused by other errors, 

like errors in the unwrapping algorithm, the pixel nature of the camera (the 

Zernike analysis would prefer a continuous function), errors in the Zernike fitting 

algorithm.  The uncertainty in the radius due to the fit for the circular aperture 

input beam varied in the range of ±20 nm to ±40 nm for most cases, but 

increased to ±190 nm for the 0.7 NA objective.  The uncertainty in the radius due 

to the fit for single Gaussian input beam varied in the range of ±40 nm to ±70 nm 

for most cases, but increased to ±500 nm for the 0.7 NA objective.  The high 

uncertainty at 0.7 NA demonstrates the model break down.  The uncertainty in 

the fit for the 25 mm part is ±1 nm or less, suggesting a correlation between 

small radii and a greater chance of the model breaking down, as expected.  For 

the small radii parts, the size of the caustic region is large compared to the size 

of the test part.   
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A source of uncertainty in the FRED model is choosing the number of input 

ray beamlets and the number of pixels in the camera.  These choices lead to an 

uncertainty of ±31 nm (source) and ±64 nm (detector) in the output radius. 

I used a simple root sum square method to combine these three sources of 

uncertainty, ±40 nm from fitting, ±31 from the source, and ±63 nm from the 

detector.  The uncertainty in the radius from the FRED model is estimated as ±81 

nm.  The uncertainty of ±81 is 8 parts in 105 for a 1 mm radius part, 2 parts in 104 

for a 0.5 mm radius part, and 3 parts in 104 for a 0.25 mm radius part.  Because 

this uncertainty is large, it is unlikely that FRED can be used to correct for biases 

not considered in the geometric model with high precision.  FRED can still be 

used to look for trends.  

The comparison between the results of the FRED model, the Gaussian 

model from Chapter 2, and the experimental results is in Chapter 6. 



 
 

CHAPTER 4:  EXPERIMENTAL VERIFICATION ON MORTI 

4.1 Introduction  

The Micro-Optic Reflection and Transmission Interferometer, MORTI, is 

located in a temperature controlled metrology lab in the Cameron Applied 

Research Center at the University of North Carolina at Charlotte.  The operating 

wavelength of the interferometer is helium-neon, 632.8 nm.  MORTI operates in 

either reflection mode (as a Twyman-Green interferometer) or transmission mode 

(as a Mach-Zehner interferometer).  In reflection mode, the user can measure the 

radius and figure error of micro-optic continuous relief refractive surfaces.  In 

transmission mode, the user can measure the back focal length and transmitted 

wavefront measurements of micro-optic refractive surfaces.  This work focuses 

on the radius measurement of spheres in the reflection mode. 

Throughout this description of MORTI, the z axis is the axis that the light 

travels and x-y is the plane perpendicular to this axis.  These axes change (with 

respect to gravity) as the light travels through the system. 

MORTI is built on the Mitutoyo microscope base with the following 

modifications, shown in Figure 4-1.  Replacing the top of the microscope is a 

large metal spacer and a breadboard.  This breadboard holds the collimating 

optics, the reference mirror, and the imaging optics of the reflection mode.  A 25 

mm diameter hole is located in the breadboard to allow light to travel down to the 
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microscope objectives.  On top of the breadboard is the trinocular head from the 

original microscope affixed with bases to elevate it over the hole in the 

breadboard.  This trinocular head is used to view the test part by eye. 

Collimation 
Package

Fiber Input

Reference 
and PZT

Laser Scale

Imaging Optics 
and Camera

Test Part

Collimation 
Package

Fiber Input

Reference 
and PZT

Laser Scale

Imaging Optics 
and Camera

Test Part

 
Figure 4-1:  The Micro-Optic Reflection and Transmission Interferometer.  

The fixture holding the microscope objectives is attached to the bottom of 

the breadboard and is shown Figure 4-1.  This fixture was original to the 

microscope has space for four objectives and rotates to change objectives.  

Below the objectives, there is a tip/tilt adjustment to the existing x-y translation 



 
 

106

measurement stage.  At the base of the measurement stage, there are two 

fixtures to hold the displacement scale, a Sony laser scale.   

4.2 Setup of MORTI for Reflection Measurements 

Light from the 5 mW He-Ne laser is coupled into a single mode fiber where 

it passes to the collimating leg.  A fixture to hold the fiber end, a microscope 

objective to collimate the light, and two lenses to expand the beam to 8 mm 

diameter are located in this collimating lens tube.  This collimating leg is attached 

to a tip/tilt stage which is fixed on four metal rods.  The tube passes through the 

middle of the rods.  The rods are fixed on to an x-y translation stage which is 

attached to the body of the microscope through the trinocular head.   

After the light passes through the collimating lens tube and through the hole 

in the x-y translation stage, it passes through a beamsplitter.  This beam splitter 

is held in a tip/tilt stage in a cube.  Also attached on this cube is the reference 

mirror (affixed to a PZT transducer) through four rods.  The cube is attached to 

the breadboard using two bases.  The light is split by the beamsplitter where half 

travels to the reference mirror and half travels below the breadboard through the 

microscope objective to measurement stage where the test optic is placed.   

After reflection from the test optic and the reference mirror, the light is 

added at the beamsplitter and is redirected to the imaging leg.  The imaging leg 

has two afocal systems designed to relay the image of the test optic to the 

camera.  The afocal systems used here are two lenses spaced at a distance 

equal to the sum of the two focal lengths.  The design of this system follows.  A 

z-translation stage is located between afocal system one and afocal system two.  
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This translation stage allows for focusing on parts of different sizes.  After the 

light passes through afocal system two, it is reflected from two plane mirrors.  

These mirrors are used to direct the light to the Pulnix CCD camera through a 

wavelength (632.8 nm) banded filter.  The schematic in Figure 4-2 shows the 

imaging leg of the MORTI.   

Test Part

Objective

Lens 2 Lens 1

Lens 3 Lens 4 Camera

FilterZ translation

Reference 

Mirror and PZT

Afocal System 1

Afocal System 2
Test Part

Objective

Lens 2 Lens 1

Lens 3 Lens 4 Camera

FilterZ translation

Reference 

Mirror and PZT

Afocal System 1

Afocal System 2  
Figure 4-2:  Schematic of MORTI in reflection mode.  Note that the trinocular 

head and collimating lens tube are not shown here but are mounted about the 
hole in the breadboard. 

4.2.1 Design of Imaging Leg 

The imaging optics must meet the following requirements; at confocal, the 

image of the test part surface must be located at the camera plane and the size 

of that image must fill (but not overfill) the camera array.  The parameters that 

are adjusted to achieve these requirements are the focal lengths of the lenses, 

the distance between the objective and Lens 1, the distance between lens 2 and 

lens 3, and the distance between lens 4 and the camera.  The parameters that 

can not be varied are the distance between lens 1 and lens 2 and the distance 
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between lens 3 and lens 4 as these are the afocal systems and must be spaced 

at the sum of the focal lengths. 

dO1
d12d23
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d12d23
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Figure 4-3:  The imaging leg of MORTI showing the distances involved.  Figure 

4-2 shows the label of the components.     

I will not describe the complete methodology for designing the imagining leg 

here, as it was a long iterative process among many people.  The process did 

involve testing various lenses and distances while trying to fit the system within 

the physical constraints defined by the breadboard.  A perfect system was not 

possible for all the microscope objectives for the full range of radii.  The current 

system is optimal for the 0.42 NA objective, but measurements are still possible 

for the other objectives.  The next iteration of MORTI will include a redesign of 

the imaging system to improve this. 

The lenses in the imaging system are achromatic lenses and are anti-

reflection coated.  The distances and focal lengths of the system are:   

• dO1 = 310 mm,  distance from the objective to lens 1, 

• d12 = 350 mm, distance from lens 1 to lens 2,  

• d23, distance from lens 2 to lens 3 (ranges from 150 mm to 400 mm), 
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• d34 = 205.6 mm, distance from lens 3 to lens 4, 

• d4C = 130 mm, distance from lens 4 to the camera, 

• fO, focal length of the objective (10 mm for the 0.42 NA objective), 

• f1 = 250 mm, focal length of lens 1, 

• f2 = 100 mm, focal length of lens 2, 

• f3 = 75.6 mm, focal length of lens 3, and 

• f4 = 130 mm, focal length of lens 4. 

The next step is to determine what d23 should be for the various nominal 

test part radii.  This is done using the imaging equations, where so indicates the 

location of the test part relative to the objective lens.  The part is located at the 

confocal position, 

rfs OO −= , 

Equation 4-1 

where fO is the focal length of the objective and r is the nominal part radius.  The 

location of the image of the test object through the objective is sO’ and is found 

from 

OOO fss

1

'

11
=+ . 

Equation 4-2 

This image is then relayed through lens 1 and lens 2 using  
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Equation 4-3 

The image is next relayed through lens 3 and lens 4, but the distance d23 is 

unknown.  To solve for d23, I worked backwards, starting by setting d4C equal to 

s4’.  This states that the final image is located on the camera plane.  From here 

s3’ is solved for using 
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Equation 4-4 

Then, s3 is found and d23 easily calculated using 
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. 

Equation 4-5 

The distance d23 for a range of radii of test part and for a range of objective 

lenses is shown in Figure 4-4.  I will use this chart when taking measurements on 

MORTI to help with focusing.  Figure 4-4 which will give a starting point for the 

distance d23.    
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Figure 4-4:  The distance between lens 2 and lens 3 for various part radii and 

objectives. 

Figure 4-4 is only a starting point for focusing on the part surface when at 

confocal.  Because this graph is not exact, fine tuning of d23 by eye is required.  

This is because the interferometer does not exactly correspond to the equations 

and numbers used to calculate d23.  There are multiple reasons for this deviation.  

I measured the distances on the interferometer base using a simple ruler, likely 

to within 5 mm.  I did not measure the focal lengths of the lenses; I used the 

values from the manufacturer.  Equation 4-1 through Equation 4-5 approximates 

all the lenses as thin lenses, which is not the case, especially for the microscope 

objective.  Because Figure 4-4 is used a starting point only and the focusing is 

done by eye, these approximations are acceptable.   
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The afocal systems were set up on the Veeco Interferometer by checking 

the retro-reflection from an optical flat to determine when the lenses two focal are 

lengths apart.   

4.3 Alignment of the Scale 

A Sony Laser Scale model BS77 is used to measure the distance the stage 

moves in the vertical z-axis.  The scale consists of two parts, a reader, and the 

glass scale, and works on the principle of a diffraction grating scan.  An 

electronics board processes the signal from the reader to in an A/B quadrature 

manner.  

The scale was attached so the glass scale is coincident with the optical axis 

to reduce the Abbe error.  The glass scale is attached to the bottom of the stage 

by steel rods and the reader is attached to the microscope base by an aluminum 

fixture as shown in Figure 4-5. 

Glass Scale

Reader

Glass Scale

Reader

 
Figure 4-5:  Picture of Sony Laser scale. 
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The alignment of the scale and the reader relative to each other is critical in 

spacing and angle.  To make this alignment easier, small springs were placed 

over the screws that attach the glass scale to the steel rod and also the reader to 

the aluminum fixture.  By rotating these screws either together or separately the 

spacing and the angle between the glass scale and reader can be adjusted with 

fine precision.  First, through, the initial alignment is done by eye.  The reader is 

attached to the aluminum fixture and then the glass scale is fixed to the steel 

rods such that the glass scale is centered in the reader and appears to be 

parallel to the reader.  The use of additional springs does not observably 

compromise the alignment stability.    

For the final alignment, the sine, cosine, and ground signals are picked off 

from the electronics box and feed into an oscilloscope.  On the oscilloscope, the 

sine and cosine signals are plotted versus one another, a Lissajous plot, which is 

a circular plot.  The diameter of this circle indicates the alignment of the glass 

scale to the reader.  For optimal alignment, the diameter must be near 0.5 V in 

diameter.  The screws on the glass scale and reader are adjusted until the circle 

grows in size and stays large for the entire range of the scale, approximately 8 

mm.  This alignment can easily be checked on the oscilloscope during 

measurements.    

4.4 Alignment of MORTI and Calibration of the Scale  

The following section describes the alignment of the interferometer and the 

calibration of the scale.  MORTI is unusual in that the calibration of the scale 
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does not rely on a calibration artifact, but instead uses a displacement measuring 

interferometer (DMI) for the length calibration.   

4.4.1 Mechanical Alignment 

The first step is to define the absolute reference axes (Xabs, Yabs, and Zabs).    

A beamsplitter is glued on to a reference optical flat which will be used to define 

the axes.  The alignment between the beamsplitter face and optical flat was 

checked on a CMM for a 90° angle. The optical flat is located in a fixture shown 

in Figure 4-6 that allows for course and fine rotation of the beamsplitter in the x-y 

plane.  The fixture is first coarsely rotated to align the edge of the beam splitter to 

the x-y axes by eye.  Then an indicator is placed on the x-face of the 

beamsplitter.  The stage is moved in the y-direction and the motion of the 

indicator needle is recorded.  The fixture is then finely rotated to reduce the 

amount the indicator needle moves as the stage is moved in the y-direction.  The 

process is repeated with the indicator on the y-face and the motion in the x-

direction.  The final alignment shows an approximate 5 µm error over the 10 mm 

length of the beamsplitter, an error of 0.5 millirad (1.7 arcmin).  The Xabs and Yabs 

are now defined by the edge of the beamsplitter. 
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Figure 4-6:  Picture of the optical flat, beamsplitter, and indicator used for 

alignment purposes. 

Next, the indicator is placed on the x-face and the stage is moved in the z-

direction and the indicator needle was observed.  The stage tip/tilt is adjusted to 

reduce the indicator needle motion.  The process is then repeated with the 

indicator on the y-face and the motion in the z-direction.   The Zabs is now defined 

as perpendicular to the reference optical flat. 

4.4.2 Alignment of DMI   

Next, the HP 5528 Displacement Measuring Interferometer (DMI) is set up.  

The DMI and an imaging interferometer are on a breadboard located above 

MORTI on a tripod as shown in Figure 4-7 and Figure 4-8.  The HP laserhead is 

set in the “straightness” mode because the beam is not offset as with typical DMI 

measurements.  The imaging interferometer (II) on the breadboard consists of a 

beamsplitter that allows 96% of the DMI light through and 4% is reflected to the II 

reference mirror.  The test arm of this imaging interferometer is redirected down 

by the fold mirror.  The fold mirror has tip/tilt adjustments and is on a stage for 
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motion in the direction shown in Figure 4-7.  After the beam travels through the 

hole in MORTI’s breadboard, it passes through the DMI polarizing beamsplitter 

where the two modes of the DMI beam are split to the DMI reference mirror and 

the optical flat.  The DMI polarizing beamsplitter and reference mirror are in a 

fixture that is held in the microscope objective holder.  This fixture allows for 

tip/tilt of the reference mirror and tip/tilt and rotation of the beamsplitter and is 

shown in Figure 4-9.  
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Figure 4-7:  Schematic of the DMI alignment. 
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Figure 4-8:  Picture of the DMI. 
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Figure 4-9:  Picture of DMI Interferometer showing polarizing beamsplitter and 

DMI reference mirror. 
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The DMI must be aligned such that it is parallel with the motion axis.  

Because the optical flat is aligned perpendicular to the motion axis, the DMI can 

be aligned perpendicular to the optical flat and will therefore be parallel to the 

motion axis.  The imaging interferometer is used to perform this alignment.  The 

beam is coarsely aligned by moving the tripod and DMI laserhead such that the 

beam passes to the imaging interferometer beamsplitter.  Four percent of the 

light passes to the imaging interferometer reference mirror, reflects, and then 

passes through the beamsplitter to the camera.  The remaining 96% of the light 

passes through the beamsplitter, reflects from the fold mirror, passes through the 

hole in the breadboard, and through the DMI polarizing beamsplitter.  A corner 

cube retroreflector is placed over the optical flat to align the imaging 

interferometer reference mirror.  The beam then reflects from this retroreflector 

and travels back to the imaging interferometer camera.  The tip and tilt of the 

imaging interferometer reference mirror is adjusted to remove the fringes 

between the two beams. 

The next step is to align the DMI beam perpendicular to the optical flat.  The 

retroreflector (which was sitting on the optical flat) is removed and the DMI 

reference mirror is blocked using a piece of paper.  An interference pattern 

between two beams is formed at the imagining interferometer camera: 1) the 

96% intensity beam that reflects from the optical flat and 2) the 4% intensity 

beam that reflects from the imaging interferometer reference mirror.  The fringe 

pattern is nulled by adjusting the tip/tilt of the fold mirror which simulates 

adjusting the tip/tilt of the entire DMI breadboard.  The bema that returns from the 
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optical flat must also return into the DMI laserhead.  This is done be adjusting 

translation on the fold mirror and the DMI tripod.  This translation is alternating 

with the tip/tilt adjustment until the fringe pattern is nulled and the beam returns 

into the DMI laserhead.  Now the DMI beam is perpendicular to the optical flat. 

4.4.3 Calibration of Scale 

Next, the Sony Laser scale model is calibrated using the DMI.  The imaging 

interferometer reference mirror is blocked during this step.  The DMI polarizing 

beamsplitter must be adjusted to provide the optimum splitting of the beam.  First 

one mode of the laser is blocked using a polarizer and the beam splitter is 

rotated in the turret until the beam to the optical flat is bright and the beam to the 

DMI reference mirror is dark.  Then the other mode of the laser is blocked by 

rotating the polarizer 90° and the beam to the optical flat should be dark and the 

beam to the DMI reference mirror should be bright.  When the rotation of the 

polarizing beamsplitter is adjust as best as possible, the beam to the optical flat 

is blocked using paper, and the DMI reference mirror is adjusted using tip/tilt so 

the return beam returns into the DMI laserhead.  The beam to the optical flat is 

unblocked.  At this point, DMI should register a reading as the stage (holding the 

optical flat) moves in the z-direction.  However, it is likely that fine tuning of the 

DMI polarizing beamsplitter is required.  This is done by rotating and adjusting 

the tip/tilt of the beamsplitter.  When this adjustment is correct, the DMI will 

register a reading throughout the travel range (approximately 6 mm). 

Now that the DMI and the Sony laser scale are both aligned, the scale can 

be calibrated.  This was done be moving the stage in the z-direction and 
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recording the reading from the DMI output and the edisplay software (laser 

scale).  This was repeated multiple times traveling up and down in varying step 

sizes.  The data for this calibration is shown in Appendix C.  The calibration 

factor is 0.8621535 in mm/edisplay unit. 

The laser scale is now calibrated and the DMI breadboard and the DMI 

interferometer are removed so the interferometer can be set up. 

4.5  Alignment of Twyman-Green Interferometer   

4.5.1 Input Beam and Beamsplitter 

The input beam is first collimated using a shear plate and the Veeco 

Interferometer.  The collimation package includes a fixture to hold the fiber, a 10x 

microscope objective to collimate the light, and two lenses to expand the beam to 

8 mm diameter.  The spacing of these components is critical.  The fiber tip is 

spaced at the microscope objective’s focal length.  For expansion, the two lenses 

are placed at a distance equal to the sum of the two focal lengths.  The spacing 

between the two lenses is done using the Veeco Interferometer with a return flat.  

The microscope objective is then added.  The fiber is then attached to the tube.  

With the laser on and light traveling through the fiber, a shear plate is placed on 

the other end of the tube (on the opposite side of lenses).  The fiber holder is 

then moved relative to the microscope objective until the pattern on the shear 

plate is nulled.  The components are then fixed with superglue.   

Before the collimation package can be placed on the interferometer, the 

trinocular head must be placed on the breadboard as shown in Figure 4-10.  The 

head was modified with legs so that it sits above the bread board and has x-y 
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stage and fixture to hold the collimation package.  The hole in the trinocular head 

was placed above the hole on the breadboard.  The collimation package is then 

attached to the trinocular head.  With the laser on, the position of the trinocular 

head is adjusted such that the light travels through the center of the hole in the 

breadboard.     
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Figure 4-10:  Picture of trinocular head and collimation package. 

Between the trinocular head and the breadboard is the beamsplitter and 

reference mirror.  For this part of the alignment, the reference mirror is replaced 

with a cornercube retro-reflector.  The beamsplitter is aligned so that the test 

beam passes through the beamsplitter to the optical flat.  The reference beam 

reflects from a retroreflector.  The interference pattern between the two beams 
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travels to the fold mirror assembly (located on a z-translation stage) and then to 

the camera.  At this point, the imaging lenses are not in the system.  The fold 

mirror assembly was aligned on the Veeco interferometer such that the two 

mirrors are 45° to the axis of motion of the z-translation stage.  The camera is 

also placed on the breadboard.   

The input beam (from the collimation package) is next aligned such that it is 

perpendicular to the optical flat.  This alignment is done by adjusting the tip/tilt 

and the x-y translation of the collimation package.  This is an iterative process 

and may require moving the trinocular head if the translation stage goes out of 

range.  This alignment is easier with a smaller input, accomplished by closing the 

aperture at the base of the collimation package.   

The two spots that must be aligned are from the corner cube and from the 

optical flat.  First the two spots are aligned coincident immediately after the 

beamsplitter (as viewed on paper) using the x-y translation.  Then the tip/tilt is 

adjusted so the spots are coincident on the camera, approximately 1000 mm 

from the beamsplitter.  Then the spots are again checked close to the 

beamsplitter, with an x-y translation if required.  And then, the tip/tilt is adjusted if 

required to null the fringe pattern between the two spots on the camera. 

After this alignment is complete, the rotation of the beamsplitter and the 

rotation of the z-translation stage (fold mirrors) needs to be checked.  The beam 

that travels from the beamspliltter to the camera should not change height.  This 

can be checked using a ruler and changing the rotation of the beamsplitter if 

required, while making sure the reference beam still hits the retroreflector.  The 
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rotation of the z-translation stage is checked by moving the stage and observing 

the fringe pattern on the screen.  A very small spot is best here.  If the spot 

moves left/right on the screen as the stage translates, the rotation must be 

changed using the screws that attach the stage to the breadboard.  When the 

spot doesn’t move on the screen as the stage translates, the alignment is correct.   

After the beamsplitter and translation stage alignment, the alignment of the 

collimation package should be checked again using the same method as before, 

the two spots overlap close to the beamsplitter and form a null fringe pattern at 

the camera. 

4.5.2 Reference Mirror 

The next step is to align the reference mirror.  The retro-reflector is 

removed, and the reference mirror with attached PZT is placed on the rods as 

shown in Figure 4-11.  The reference mirror is mounted on a tip/tilt stage.  This 

tip/tilt is adjusted to align the reference mirror to the optical flat by nulling the 

fringe pattern on the camera. 
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Figure 4-11:  Picture of the reference mirror with attached PZT. 

4.5.3 Objective Lens 

After the reference mirror is aligned, the objective is rotated into place and a 

cat’s eye reflection is obtained from the optical flat.  The objective lenses are 

shown in Figure 4-6.  The output of the objective lens is checked to be certain 

that the input aperture of the objective is overfilled.  If not, the fixture that holds 

the objective lenses can be moved slightly.  The reference mirror might need 

adjustment because the objective is not perfectly aligned to the microscope body.  

This adjustment is required to remove any tilt fringes at the cat’s eye position. 

4.5.4 Imaging Optics 

The final step in assembling MORTI is the imaging optics.  The optics are 

first setup using the Veeco Interferometer using two afocal systems as described 

in Section 4.2.1.  The z-spacing of the lenses in the afocal systems are fixed.  
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The two afocal systems are placed on the breadboard in their required positions 

(as measured with a ruler) as shown in Figure 4-12.  The x-y position of the two 

afocal systems must be adjusted to achieve the proper height off the breadboard 

and to center the beam in the lenses.  An alignment tool (shown in Figure 4-12), 

which is sized for the cage system used, makes the alignment easier.    
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Figure 4-12:  Picture of imaging optics.   

4.6 The Focusing Effect 

There was an interesting effect observed while setting up the 

interferometer.  As the optical flat moved through cat’s eye, a circular fringe 

interference pattern and a bright spot appeared on the camera unexpectedly.   I 

will show that this effect is inherent in all interferometers, but is very prominent in 

micro-interferometers.  It will not affect the measurement to first order with careful 

planning.    
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4.6.1 Demonstration of the Focusing Issue 

I aligned the interferometer as described in Section 4.5 above, without the 

imaging leg in.  The light from the beamsplitter traveled directly to the focusing 

fold mirror assembly to the fold mirrors that directed the beam onto the camera.  

Using the 0.42 NA objective, I positioned the optical flat at cat’s eye.  The 

schematic of this is shown in Figure 4-13 where f is the focal length of the 

objective and dOC indicates the distance that the light travels from the objective, 

through the beam splitter to the camera.  Note that this schematic has omitted 

the focusing fold mirror assembly and the other fold mirrors that occur between 

the beamsplitter and the camera.   
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Figure 4-13:  Schematic of simplified interferometer.  

I observed an unexpected interference pattern as the optical flat moved 

through cat’s eye.  The optical flat was above cat’s eye where circular fringes 

resulted with a positive defocus value (region A in Figure 4-14) as expected.  As 

the flat moved through cat’s eye, the circular fringe pattern fluffed out to form 



 
 

127

large tilt fringes at the cat’s eye (point B in Figure 4-14).  As the flat moved 

further down, circular fringes with a negative defocus value formed as expected 

(region C in Figure 4-14).  But, as the flat moved even further, the fringes got 

very dense and a small bright spot formed on the camera (Point D in Figure 

4-14).  A measurement was not possible at this point.  Then, as the part moved 

even further down, a circular fringe pattern formed with positive defocus value 

(region E on Figure 4-14).  This was most unexpected.  All previous research in 

radius measurements shows the trend line from region C continuing in a negative 

direction.   
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Figure 4-14:  Measurement of Optical Flat on simplified MORTI using the 042 NA 

objective (f = 10 mm) and dOC = 540 mm.   

Initial observations pointed to stray light causing the odd interference 

pattern in region E.  This led to me testing each component in the system for a 
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stray light effect.  In this analysis, I removed a window in the camera, improved 

the collimation package, and tested different objective lenses, but still the pattern 

persisted.   

This pattern is not a stray light effect, but rather a continuation of the 

standard interference pattern and is inherent in micro-interferometers due to the 

short focal length of the objective.  This is explained as follows and is 

demonstrated in Figure 4-16.  It is necessary to examine the wavefront for each 

region at the camera.  Only the wavefront from the test arm is considered in the 

analysis, the reference arm wavefront is assumed to be flat.  The curvature of the 

wavefront at the camera is calculated from the location of the image of the optical 

flat.  The optical flat is located at a distance dPART from the objective lens.  It is 

the location of the focus point (cat’s eye position) that is of interest, though.  The 

distance from the objective, sO, to the apparent location of the focus point is 

 ( ) OOPARTO ffds +−= 2  

Equation 4-6 

as shown in Figure 4-15.   
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(a)       (b) 

Figure 4-15:  Schematic showing the relationship between dPART and s with the 
optical flat (a) before cat’s eye and (b) beyond cat’s eye. 

The distance dPART is set to range around the focus point.  Then the location 

of the image of the part can then be calculated using the simple ray tracing 

formula 

fssO

111
=

′
+ , 

Equation 4-7 

where sO is the distance from the lens to the part and s’ is the distance from the 

lens to the image.  I confirmed the results from this equation, and the schematic 

based on it (Figure 4-14), by drawing the rays by hand.  The schematic is 

explained as follows. 
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Figure 4-16:  Schematic of the wavefront at the camera as the optical flat is 

moved through cat’s eye.  The heights of the images are arbitrary. 

In region A, the flat is inside of the optical (dPART<f); the image of the object 

is virtual and is located to the left of the objective lens.  This results in a diverging 

beam at the camera and the expected positive defocus value from the 

interference between this wavefront and the flat wavefront from the reference 

mirror. 

As the optical flat moves from region A to point B, the image moves more to 

the left until the optical flat is at cat’s eye (dPART =f).  Here, the image of the flat is 
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at infinity and the test arm wavefront is flat resulting in a zero defocus value of 

the interference pattern. 

The optical flat then moves from point B to region C, where the optical flat is 

located past the focus point (dPART >f).  The image formed is real and far to the 

right, beyond the camera plane.  This results in a converging beam at the camera 

and a negative defocus value of the interference pattern. 

Between region C and point D, the image is moving from the far right to the 

left until the optical flat reaches point D.  At this point, the image is coincident 

with the camera plane.  I observed this experimentally with the small bright spot 

on the camera. 

Beyond point D and in region E, the image is formed between the lens and 

the camera plane.  This results in a diverging beam at the camera plane and a 

positive defocus value of the interference pattern.  Experimentally, this was the 

interference pattern that was so unexpected.   

The following analysis calculates the location of each of these regions and 

demonstrates why this is a factor in micro-scale radius measurements and not 

macro-scale.  

4.6.2 Simulation of the Focusing Issue, Without the Imagining Leg 

I wrote a Matlab program (Appendix B, Program 8, foc_effect_no_image.m) 

to perform this simple analysis.  The program uses the following logic.  The 

optical flat moves through the cat’s eye position and for each position of dPART, 

the following are calculated: the location of the focus point (sO), the location of 

the image (s’), the radius of the wavefront (R) at the camera, the half aperture 
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size of the wavefront (a’) at the camera, and the sag of the wavefront at the 

camera (h).  The location of the image, s’ is calculated using Equation 4-7 with f 

= 10 mm (the 0.42 objective).  The radius of the wavefront, R, is s’ minus dOC 

(distance from the objective to the camera), with the sign convention of a 

diverging beam has a positive radius and a converging beam has a negative 

radius.  The half aperture size of the wavefront at the camera (a’) is calculated 

from the simple ratio  

'

'

s

R

a

a
=   

Equation 4-8 

using similar triangles.  The sag of the wavefront at the camera is then calculated 

using 

22 ')( aRRabsh +−=  

Equation 4-9. 

The absolute value of R in the sag equation is mainly for visualization purposes.  

Therefore the sag reported here is related to the defocus value.  The slope of the 

sag vs. position graph is not equal to the slope of the defocus vs. position graph, 

but the zero crossing values will correspond to the same position value.  The 

graph of sag vs. part position for varying values of distance dOC is shown in 

Figure 4-17.  Points B (part is at cat’s eye) and D (image is on camera) are 

shown with dOC having different values for the varying camera distances.  Region 

A (part is inside the focal length), is to the left of point B, region C (part is outside 

focal length) is between points B and D, and region E (part is outside focal length 

and the image is between the objective and camera) is to the right of point D. 
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Figure 4-17:  Sag at the camera in simplified micro-interferometer.  Each line is a 

different dOC value, the focal length of the objective is 10 mm, and the half 
aperture, a, is 4 mm.  The objective is located to the left, at 0 on the x-axis. 

In addition, varying the objective is shown in Figure 4-18.  The aperture and 

focal length change for each objective.  The values for the given focal lengths 

and aperture size correspond to the actual objective lenses used in experiments.  

This graph demonstrates why this focus effect is not seen in macro-scale 

experiments where the focal length is on the order of 150 mm.      
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Figure 4-18:  Sag at the camera in simplified micro-interferometer.  Each line is a 

different focal length and aperture (corresponding to the different objective 
lenses) value and the distance dOC is 1000 mm.  The objective is located to the 

left, on focal length away from zero. 

The radius of the wavefront at the camera (R) results are as expected as 

shown for dOC = 1000 mm in Figure 4-19.  When the optical flat is located inside 

cat’s eye the radius is positive and moves to positive infinity.  Outside the cat’s 

eye position, the radius moves from negative infinity through zero (this is point D) 

to positive. 
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Figure 4-19:  Radius of wavefront for f = 10 mm, a = 4 mm and dOC = 1000 mm.  

The objective is located to the left, at 0 on the x-axis. 

The above is summarized as follows.  The cat’s eye position does not move 

with varying the input parameters.  The distance between the cat’s eye position 

and the image focus point does vary with changing focal length and the distance 

from the objective to the camera.   

4.6.3 Effect on Radius Measurement 

Now that we understand why this focusing issue occurs, we must determine 

how it affects the radius measurement.  The goal is to determine how far in 

region C (from Figure 4-16) are valid measurements obtainable.  The two effects 

that will determine this are the linearity of the sag vs. position curve (and 

therefore the defocus vs. position curve) and the half width of the beam at the 

camera.  These two effects are related and it may be that they give the same 

answer to the permitted length.   

To demonstrate the linearity effect, see Figure 4-20.  Region A (above cat’s 

eye) appears linear for 30 µm, and possibly longer, for all focal lengths.   The 
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length that region C remains linear varies with the focal length of the objective.  

The 4 mm focal length objective has an approximate length of only 2 µm whereas 

the 20 mm objective is clearly linear up to 30 µm and possibly longer.  

Remember that the distance from the objective to the camera will also affect this 

linearity distance.  This again demonstrates why this effect is not a concern with 

macro-scale measurements which have much longer focal lengths. 
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Figure 4-20:  Sag at camera from micro-interferometer for varying focal lengths.  

Close up view of Figure 4-18.  Note that the sag is now in µm.  The objective is 
located to the left, one focal length from zero. 

The second effect is the size of the beam at the camera (a’).  When the part 

is in region A, a’ is always larger than a (the beam diameter at the objective).  As 

soon as the part enters region C, a’ becomes smaller that a.  This leads to a 

masking issue and can be shown by examining Figure 4-21, a graph of a’ vs. 

position of the optical flat.  Note that a’ here is negative before region D because 
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the image is inverted, an inconsequential effect.  At point B a’ is equal to a and at 

point D a’ is zero, both as expected.  Now, to determine how the mask should be 

set.  From Figure 4-20 we can say that the 10 mm focal length curve is linear up 

to 20 µm.  Using the data from Figure 4-21, a’ is 2.4 mm at 10.02 mm.  This 

shows that the mask size of the data must be set at 2.4 mm or smaller for all 

measurements through the cat’s eye position.  If the mask is set at 4 mm (the 

size of a’ at cat’s eye), the measurements in region C will be erroneous because 

of bad data on the edge of the measurement.        

a=4 mm

dOC=1000 mm

f=10 mm

B

D

a=4 mm

dOC=1000 mm

f=10 mm

B

D

 
Figure 4-21:  The size of the beam at the camera, a’.  The objective is located to 

the left, at 0 on the x-axis. 

4.6.4 Considering Spherical Aberration 

The analysis thus far has considered a perfect wavefront and has shown 

that the mask size and the length of region C are critical issues when measuring 

the radius of micro-optics.  We next consider if the test arm wavefront has 
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spherical aberration, a common error in interferometers.  This analysis is not 

complete, but is presented here to demonstrate the possible bias that would arise 

from a spherical aberration error. 

Figure 4-22 shows a schematic of the measurement with spherical 

aberration.  The mask size is chosen from the size of the wavefront in region C.  

The same size mask is used (and shown) for point B and region A.  In each 

region the spherical aberration (shown in gray) spreads from edge to edge on the 

wavefront.  The measurement in region C will show a spherical aberration.  But in 

region A and at point B, the spherical aberration is clipped and therefore will 

present itself as a defocus error.  This defocus error will lead directly to a bias in 

the measurement of position. 
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Figure 4-22:  Schematic of measurement with spherical aberration.   
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4.6.5 Focusing Effect with Imaging Leg 

The results above are for an interferometer without imaging optics.  Radius 

measurements are, of course, taken with imaging optics, so that the part can be 

in focus when at the confocal position.  The interferometer is set so that the part 

is in focus at confocal (for the figure measurement).  The required configuration 

of the micro-interferometer for focusing on the part was discussed in Section 

4.2.1.  The distances and focal lengths are the same for this analysis.   

An analysis similar to the one in Section 4.6.2 was performed to determine 

if a similar focusing effect occurred and if it affected the radius measurement.  

The analysis was similar, but more complicated because the image of the object 

passes through the objective plus the four lenses instead of just the lenses.  The 

goal is to determine the sag of the wavefront at the camera.  To do this, the 

radius of the wavefront at the camera (R) and the height of the wavefront at the 

camera (ac) are required.   

To find the radius of the wavefront at the camera, the location of the image 

(of the part) relative to the camera must be found.  This is done by determining 

the location of the image through objective and then each of the subsequent 

lenses.  These distances are sO’, s1’, s2’, s3’, and s4’ and are defined relative to 

their respective lenses.  First, the distance from the test part to the objective, so is 

set.  From this point, sO’ is calculated.  Then, s1 (the distance from this image to 

lens 1) is found from dO1 minus sO’.  This process is repeated until the radius of 

the wavefront at the camera is known.  This process is shown in 
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Equation 4-10. 

Next, the height of the wavefront at the camera, aC is determined.  First, the 

magnification of the two focal systems, MAF, is calculated from 

3

4

1

2

f

f

f

f
M AF =    

Equation 4-11. 

Then the ac is found from similar triangles as in Equation 4-8 and is 

'4s

MRa
a AF

C =  

Equation 4-12, 

where a is the half aperture width of the objective and R the radius of the 

wavefront at the camera.  Finally the sag equation is the same as Equation 4-9.  

The Matlab program in Appendix B, Program 9, foc_effect_w_image.m) shows 

the focusing effect when imaging is considered. 
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The sag at the camera for the MORTI (with the imaging leg) is shown in 

Figure 4-23.  The distance d23 was set as if a 0.5 mm radius part was being 

measured, as shown in Figure 4-4.  The cat’s eye position, point B, is as 

expected, at the focal value.  Point D, on the other hand, changes for the 

different objective lenses, even so far as to be above cat’s eye for the 0.28 NA 

and 0.42 NA objectives and below for the 0.55 NA and 0.7 NA objectives.  The 

radius of the wavefront at the camera plane for the same conditions is shown in 

Figure 4-24.  This is as expected, that the radius goes to infinity at the cat’s eye 

(point B) and goes to zero at point D.  Varying the distance between lens 2 and 

lens 3, d23, was tested as shown in Figure 4-25.  The position of point D is 

sensitive to the value of d23, much more so than in Section 4.6.2 where a small 

change in dOC had a much smaller change in the location of point D. 
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a = 4 mm
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f = 20 mm
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d23 = 50 mm

f = 4 mm
a = 3 mm
d23 = 169 mm
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d23 = 173 mm

B
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a = 4 mm
d23 = 142 mm

f = 20 mm
a = 6.5 mm

d23 = 50 mm

f = 4 mm
a = 3 mm
d23 = 169 mm

f = 2 mm
a = 2 mm 
d23 = 173 mm

B
DD

 
Figure 4-23:  Sag at the camera for MORTI for the objective lenses.  The 

objective is located to the left, one focal length from zero. 
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Figure 4-24:  Radius of wavefront at the camera for MORTI for the various 

objective lenses.  The objective is located to the left, one focal length from zero. 
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d23 = 140 mm

f = 10 mm

a = 4 mm

 
Figure 4-25:  The sag at the camera for MORTI when the distance between lens 
two and three is varied.  The objective is located to the left, one focal length from 

zero. 

The nonlinearity effect discussed in Section 4.6.3 is still an effect when the 

imaging leg is considered.  This is obvious in Figure 4-25 below cat’s eye where 
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the curve appears nonlinear below 0.05 mm.  This demonstrates that data should 

not be taken after this point.   

4.6.6 Focusing Effect on the Macro-Scale 

This focusing effect is not normally seen on macro-scale measurements 

mainly because the transmission spheres have much longer focal lengths.  For 

example, a measurement on the Veeco RTI interferometer was simulated using 

the f/1.5 transmission sphere (focal length is 144 mm) with a half aperture of 50 

mm.  Because the interferometer is enclosed, the distance to the camera is not 

known and was assumed to be in the range of 400 mm to 1000 mm.  The results 

showing the sag at the camera for varying distances to the camera is shown in 

Figure 4-26.  Point B (the cat’s eye position) is located at 144 mm as expected.  

Point D (the point at which the part is focused on the camera) varies with varying 

the distance to the camera.  But, the distance between points B and D is quite 

large, around 15 mm in the case of dOC = 800 mm.  This shows that the part 

would have to be moved over 1.5 cm for this effect to be seen on the macro-

scale.  At this long distance, the fringes will be so dense and cannot be 

measured.  For comparison, on the micro-scale the distance between points B 

and D is less than 0.1 mm.  
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Figure 4-26:  Sag at the camera in simplified macro-scale interferometer.  Each 
line is a different dOC value, the focal length of the objective is 144 mm, and the 
half aperture, a, is 50 mm.  The transmission flat is located to the left, at zero on 

the x-axis. 

Of course, the imaging components in the Veeco interferometer will affect 

the location of Point D.  But, in general, it is the long focal lengths in macro-scale 

interferometers that eliminate this focusing issue. 

4.6.7 Comparison to Theoretical, Without Imaging Leg 

The following is a comparison between the theories described in Section 

4.6.2 and data taken on MORTI without the imaging leg.  This data is 

summarized in Figure 4-27 where the distance between the objective and 

camera was varied.  This data is similar to the data shown in Figure 4-14, with 

the unexpected positive values for defocus as the optical flat traveled past cat’s 

eye.  Figure 4-28 shows the same data as Figure 4-27, but on a smaller scale to 

show the area around the cat’s eye position.    
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Figure 4-27:  Defocus vs.  Location of Part on MORTI without an imaging leg, as 

measured on an optical flat using the 0.42 NA objective, f = 10 mm.  The 
objective is located to the right.   
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Figure 4-28:  Defocus vs. Location of Part on MORTI without an imaging leg, 

same data as Figure 4-27, different scale.  The objective is located to the right.   
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The distance between points B and D are used to compare between the 

Matlab simulation (Figure 4-17) and data from MORTI (Figure 4-27) when dOC 

was varied for the 0.24 NA objective.   Table 4-1 shows a summary of this data.  

The uncertainty values shown for the location indicate the repeatability in 

determining the location of the cats’s eye position (Point B) and the bright spot 

(Point D).  The uncertainty shown in the simulation indicates the uncertainty in 

knowing dOC to only 5 mm.  The values for the distance between points B and D 

compare well as shown.     

Table 4-1:  Comparison between the simulation and actual positions of points B 
(cat’s eye) and D (bright spot) without imaging leg for 0.42 NA objective. 

  dOC (mm) 

  540 1100 1720 

Point B (mm) ±0.001 mm -0.0575 -0.0585 -0.0633 

Point D (mm) ±0.008 mm -0.1486 -0.0994 -0.0995 MORTI 

abs(Point B - Point D) (µm) 91 ±8 41 ±8 36 ±8 

Point B (mm) ±0.000 mm 10.0000 10.0000 10.0000 

Point D (mm) ±0.004 mm 10.0943 10.0459 10.0292 Simulation 

abs(Point B - Point D) (µm) 94 ±4 56 ±4 29 ±4 

 

4.6.8 Comparison to Theoretical, With Imaging Leg 

The next step was to consider MORTI with the imaging optics in and 

compare the simulation results to actual data taken on MORTI.  The data from 

the measurements from the optical flat for the 0.42 NA and 0.28 NA objectives 

are shown in Figure 4-29 and Figure 4-30 where the distance between lens two 

and three was varied.  The comparison between the simulation and this data is 
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shown in Table 4-2 and Table 4-3.  The uncertainty values for the simulation are 

much higher when the imaging leg is considered than when it is not.  This is due 

to the sensitivity of the location of point D to the distances used in the 

interferometer.   
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Figure 4-29:  Defocus vs.  Location of Part on MORTI with the imaging leg, as 

measured on an optical flat using the 0.42 NA objective, f = 10 mm.  The 
objective is located to the right.   
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Table 4-2:  Comparison between the simulation and actual positions of points B 
(cat’s eye) and D (bright spot) with imaging leg for the 0.42 NA objective. 

    dOC (mm) 

NA = 0.42, f = 10 mm Location of D 
relative to B 

145 195 275 

Point B (mm) 
±0.001 mm Above -1.0354 -1.0305 -1.031 

Point D (mm) 
±0.008 mm Below -0.74 -1.5256 -1.526 MORTI 

abs(Point B - 
Point D) (mm) 

Below 
0.295 
±0.008 

0.495 
±0.008 

0.494 
±0.008 

Point B (mm) 
±0.000 mm 

Above 0 0 0 

Point D (mm) 
±0.2 mm 

Below -0.354 0.2919 0.074 Simulation 

abs(Point B - 
Point D) (mm) 

Below 
0.354 
±0.2 

0.292 
±0.2 

0.074 
±0.2 
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Figure 4-30:  Defocus vs.  Location of Part on MORTI with the imaging leg, as 

measured on an optical flat using the 0.28 NA objective, f = 20 mm.  The 
objective is located to the right.   

Table 4-3:  Comparison between the simulation and actual positions of points B 
(cat’s eye) and D (bright spot) with imaging leg for the 0.28 NA objective. 

    dOC (mm) 

NA = 0.28, f = 20 mm Location of D 
relative to B 

145 215 275 

Point B (mm) 
±0.001 mm Above 

-1.001 -1.018 -1.015 

Point D (mm) 
±0.008 mm Below 

0.0638 -2.092 -1.409 MORTI 

abs(Point B - 
Point D) (mm) 

Below 
1.065  

±0.008 
1.074  
±0.008  

0.393  
±0.008  

Point B (mm) 
±0.000 mm 

Above 0 0 0 

Point D (mm) 
±0.4 mm 

Below -1.322 0.6987 0.3025 Simulation 

abs(Point B - 
Point D) (mm) 

Below 
1.322 
±0.4 

0.699 
±0.4 

0.302 
±0.4 
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 There are effects that cause differences between the simulation and the 

experimental data on MORTI.  The simulation modeled the microscope objective 

and the imaging optics as thin lenses.  The objective is actually a much more 

complex set of lenses.  The focal length and NA of the objective and the focal 

lengths of the imaging lenses used in the simulation are as reported by the 

manufacturer and were not measured.  The spherical aberration effect discussed 

in Section 4.6.4 was not considered.  The main cause of uncertainty, though, was 

that the d23 and the other distances in the interferometer can not be measured to 

high precision.  These effects show why there is the discrepancy between the 

simulation and the measurements on MORTI.  There is a correlation though 

between the simulation and experiment, mainly the location of point D relative to 

point B (the cat’s eye).  This value was correct for each distance tested.   

4.6.9 Conclusion of the Focusing Effect 

The analysis presented here considered an optical flat, not a sphere 

(required for a radius measurement) and did not consider the confocal position.  

The analysis for the confocal position would be similar, in examining when the 

apparent focus point comes from.  

The main consideration to take away from this analysis is that the mask 

size for a radius measurement needs to be picked very carefully and that 

measurements can only be taken in the linear range.  It is likely that a test 

measurement through confocal and cat’s eye is necessary before the true 

measurement can be taken.  The mask must be set when the wavefront at the 

camera is the smallest, but still large enough to obtain a valid measurement.    
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This is shown in Figure 4-31 where the radius of the spot at the camera, ac, is 

shown for varying objectives.  The size of the beam at the camera changes at 

different rates for the different objectives.  This is a consequence of the different 

numerical apertures. Therefore care must be taken when measuring parts with 

different objectives.  The possible step size and total distance traveled at cat’s 

eye or confocal will not be constant for all the objectives.   
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a = 6.5 mm
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f = 2 mm

a = 2 mm 
d23 = 173 mm

  
Figure 4-31:  The radius of the spot at the camera, ac, for varying objective 

lenses near the cat’s eye position.  The objective is location to the left at one 
focal length away.   

4.7 Operation of MORTI 

The software package Intelliwave is used to gather the data and analyze 

the interference pattern.  A standard interferometer measurement occurs as 

follows.  The software captures a camera frame and then the software 

commands the PZT to step a quarter of a wave (90°).  Another camera frame is 
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captured and the pzt steps again.  This is repeated until 5 frames have been 

captured (at 0, ¼ wave, ½ wave, ¾ wave, and 1 wave distances of the PZT).  

Note in this setup, a double pass interferometer, the physical step of the PZT is 

only an ⅛ of a wave, while the optical step is a ¼ of a wave.  The PZT actuator is 

controlled through a digital to analog converter through Intelliwave.   The PZT is 

calibrated through the software to produce the required quarter wave (90°) steps 

for the phase shifting interferometry.   

The feed from the Pulnix TM-62EX camera is split by a co-axial splitter 

between a television screen for viewing and a frame grabber.  Intelliwave 

controls the timing of the PZT and frame grabber. 

The software then processes these frames through a phase shifting 

algorithm [39], here a four bucket algorithm, to determine the phase map of the 

surface.  I then masked the data to the area of interest using the mask feature.  

The unwrapping algorithm minimum discontinuity then converts the wrapped 

phase map to a height map, known as the optical path difference.  The Zernike 

aberration terms are then calculated in software through a fitting algorithm.  The 

height map and mask data are saved in an .esd file.      

4.8 Measurement of Spheres 

4.8.1 The Spheres 

The results reported here show the nominal radius minus the measured 

radius.  The nominal radius is found from the manufacture of the stainless steel 

spheres.  The spheres used were reported as 5/64 (0.078) inch, 3/64 (0.047) 

inch, and 1/32 (0.031) inch, all in diameter.  This corresponds to nominal values 
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of 0.992 mm, 0.595 mm, and 0.397 mm in radius.  I measured two of the spheres 

using a pair of calipers.  The 5/64 sphere measured at 0.078 inch (1.98 mm) 

diameter and the 3/64 sphere measured at = 0.046 inch (1.17 mm) diameter.  

The 1/32 sphere was too small to measure using the calipers.   

A picture of the measurement of a sphere is in Figure 4-32.  An example 

measurement of the 0.99 mm radius sphere without aberration is shown in Figure 

4-33 and with one glass plate, thickness of 1.39 mm, is shown in Figure 4-34. 

 
Figure 4-32:  Picture of a sphere measurement, the objective is at the top of the 

picture. 

 



 
 

154

y = 51.2792x - 44.4002

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.855 0.86 0.865 0.87 0.875

z position (mm)

 D
e

fo
c

u
s

 (
w

v
)

Cofocal
0.55

0.4

0.2

waves

0

-0.2

-0.4

-0.55

y = 51.2792x - 44.4002

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.855 0.86 0.865 0.87 0.875

z position (mm)

 D
e

fo
c

u
s

 (
w

v
)

Cofocal
0.55

0.4

0.2

waves

0

-0.2

-0.4

-0.55

0.55

0.4

0.2

waves

0

-0.2

-0.4

-0.55  

y = 49.1994x + 6.2285

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.134 -0.132 -0.13 -0.128 -0.126 -0.124 -0.122

z position (mm)

D
e
fo

c
u

s
 (

w
v
)

Cat's Eye
0.55

0.4

0.2

waves

0

-0.2

-0.4

-0.55

y = 49.1994x + 6.2285

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.134 -0.132 -0.13 -0.128 -0.126 -0.124 -0.122

z position (mm)

D
e
fo

c
u

s
 (

w
v
)

Cat's Eye
0.55

0.4

0.2

waves

0

-0.2

-0.4

-0.55

0.55

0.4

0.2

waves

0

-0.2

-0.4

-0.55  
Figure 4-33:  A measurement of the 0.99 mm radius sphere.  The objective is to 

the right. 
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Figure 4-34: A measurement of the 0.99 radius sphere with one glass plate to 

add spherical aberration.  The objective is to the right.  
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4.8.2 Uncertainty due to Fitting 

Errors in the linear fit led to an uncertainty in the radius as introduced in 

Chapter 1.  This uncertainty in radius due to the fit inherently includes uncertainty 

due to other effects such as masking, spherical and other aberrations, 

environmental effects such as temperature and vibration, repeatability in phase 

shifting, unwrapping errors, and figure errors in the part.  Examples of the fit 

uncertainty in radius for different conditions are shown in Table 4-4.  The 

uncertainty in radius due to the fit ranges, but does not seem to correlate to 

either the objective NA (when the 0.42 and 0.55 NA objective are considered) or 

the amount of spherical aberration.  Previous work [27] shows that the 

uncertainty in radius due to the fit will dramatically increase with smaller NAs.  My 

initial investigations on MORTI showed this with the 0.28 NA objective.  But, the 

data from the 0.28 NA objective was not used in this research due to imaging 

problems.  Imaging on the surface was not always possible and the wavefront on 

the camera was too large.  In this analysis, the average of 0.4 µm will be used as 

the fit uncertainty.   
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Table 4-4:  The fit uncertainty in radius in the measured data.   

Nominal 
Radius (mm) 

Added 
Aberration? 

Objective 
NA 

Fit Uncertainty 
(nm) 

0.99 No 0.42 214 

0.99 Yes 0.42 242 

0.99 No 0.55 176 

0.99 No 0.55 550 

0.59 No 0.42 482 

0.59 Yes 0.42 447 

0.39 No 0.42 482 

0.39 No 0.55 447 

  Average 380 (nm) 

 

4.8.3 Repeatability 

I tested the repeatability of the radius measurement by performing one full 

radius measurement (starting above confocal and moving below cat’s eye) and 

then repeating the measurement as shown in Figure 4-35.  The standard 

deviation of this data is 0.1 µm.  
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Figure 4-35:  Measurements of the 0.99 mm radius sphere to test for 

repeatability. 
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4.8.4 Varying L23 

I next tested varying the distance between Lens 2 and Lens 3 as shown in 

Figure 4-36.  This distance is used to focus of the part at confocal.  The apparent 

best focus was L23 = 164 mm, as determined by eye.  Figure 4-4 shows that the 

ray tracing predicated the best focus at 160 mm.  Varying the distance over 

approximately 40 mm did not affect the radius output when compared to the 

repeatability of 0.1 µm as shown in Figure 4-36.    
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Figure 4-36:  Measurements of the 0.99 mm radius sphere while varying the 
distance between lens 2 and lens 3. 

4.8.5 Changing the Mask Size 

I next tested reducing the mask size and examining the resultant radius as 

shown in Figure 4-37, without added spherical aberration and in Figure 4-38, with 

added spherical aberration.  The mask size affects the radius measurement as 

shown because reducing the mask will change the fit of the Zernike polynomials.  

What was spherical aberration (with the full mask) is now defocus (with the 

reduced mask).  This causes an offset in the defocus vs. position curve and a 

bias is the radius (if the spherical aberration is different at confocal and cat’s eye, 
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as it is).  The effect of changing the mask size is larger when spherical aberration 

is added as expected because there is more spherical aberration that will lead to 

a larger offset in radius.  The proper mask size is a trade off.  The focusing effect 

discussed in Section 4.6 will cause bad data on the edges if the mask is set too 

large.  If there is no aberration, the mask size effect will be greatly reduced as 

shown.  Reducing the mask size will reduce the spherical aberration, but may led 

to not enough data for a good measurement.  Many radius measurements 

include a figure (also known as form) error measurement at confocal which 

requires a large mask. 
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Figure 4-37:  The measured radius as the mask size was varied, NA = 0.42 with 

no added aberration.   
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Figure 4-38:  The measured radius as the mask size was varied, NA = 0.42, 

added spherical aberration with glass plat 1.39 mm thick. 

4.8.6 Vary the Objective Lens NA 

Figure 4-39 shows the measured radius as the objective lens is varied.  

Figure 4-40 and Figure 4-41 show the cat’s eye and confocal positions as the 

objective lens is changed.  The objective NA shown is as reported by the 

company, but is not the full NA from the experiment due to the masking.  The 

masking of the data causes the NA to be reduced to some extent.  This does 

make it difficult to compare between data points and between the different radii.  I 

am unable decisively to say what the trends are when the objective is changed.  

The 0.397 mm radius sphere indicates that the radius increases with the smaller 

aperture, but the other size spheres do not follow that trend. 



 
 

161

0.5 µm

O
u

tp
u

t 
R

a
d

iu
s

 (
m

m
)

5/64 inch sphere
r~0.992 mm

3/64 inch sphere
r~0.595 mm

1/32 inch sphere
r~0.397 mm

Various mask size and L23 distances

Microscope Objective

0.42 0.55 0.7

0.5 µm0.5 µm

O
u

tp
u

t 
R

a
d

iu
s

 (
m

m
)

5/64 inch sphere
r~0.992 mm

3/64 inch sphere
r~0.595 mm

1/32 inch sphere
r~0.397 mm

Various mask size and L23 distances

Microscope Objective

0.42 0.55 0.7

 
Figure 4-39:  The measured radius as the microscope objective is varied.   
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Figure 4-40:  The cat’s eye position as the microscope objective is varied.   
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Figure 4-41:  The confocal position as the microscope objective is varied.   

The variation in the confocal and cat’s eye position is not a concern and is 

not due to an optical effect.  I recall a typical microscope when switching to high 

power objectives.  While the mechanical system was designed such the focus of 

all the objectives would coincide, it never did and I had to refocus for each 

objective.  The variation shown in Figure 4-40 and Figure 4-41 is the same 

mechanical effect and should not affect the radius measurement except to 

possible change the focusing effect to a small amount. 

4.8.7 Adding Spherical Aberration 

Spherical aberration was added to the measurement by inserting a glass 

plate between the test optic and the microscope objective.  The glass plate is a 

microscope slide, thickness of approximately 1.4 mm.  Two glass slides were 

also used to add more spherical aberration.  Also, I tested using a thin piece of 
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clear plastic, thickness of approximately 0.25 mm thick. The glass plates have 

imperfections and are likely not parallel to a high degree of precision, but these 

errors will have secondary effects.  The primary effect is that a converging beam 

passing through a glass plate will cause the focus to offset and spherical 

aberration to form in the wavefront.   

 
Figure 4-42:  The glass plate used to add spherical aberration.  The fixture that 

holds the test sphere (a piece of shim sandwiched between two washers) is 
unique because the glass plate does not touch the test part. 

The measured radius versus the thickness of the glass plate is shown in 

Figure 4-43.  But, we are more interested in the how the radius is affected by the 

spherical aberration, as shown in Figure 4-44.  The spherical aberration shown 

here is of the wavefront at the camera when the part is located near the cat’s eye 

position.  The spherical aberration is not linearly related to the thickness of the 

glass plate because of the mask size.   
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Figure 4-43:  The measured radius vs. the thickness of the glass plate as 

spherical aberration is added.  The mask size is constant for each data set.  
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Figure 4-44:  The measured radius vs. the spherical aberration as spherical 

aberration is added.   

To compare results, each data set (a dotted line) shown in Figure 4-44 uses 

the same mask for the measurements.  As the spherical aberration increases, 

the size of the data at the camera reduced, an effect of the focusing effect 

discussed in Section 4.6.  In the green data set in the 0.99 radius sphere, the 

glass plate with thickness of 2.7 mm required that the mask for all the green data 

be set small.  There is a large difference in the amount of aberration for the for a 

plate thickness of 1.4 mm in the green data to the red data.  This is because the 

mask is smaller for the green data than the red, and therefore the aberration is 

smaller in the reduced mask.  While the masking does explain the differences 

between the data sets, it is apparent that increasing the amount of spherical 

aberration causes the measured radius to increase.    
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The blue data from the 0.99 mm radius spheres is from using the thin 

pieces of clear plastic.  A large amount of noise was added to the height map 

when the plastic was used (rather than the glass plate).  This shows that even 

with errors in the glass plate, the primary effect on the radius is to increase the 

measurement result.  

Figure 4-45  and Figure 4-46 show the cat’s eye and the confocal positions 

as aberration was added, note that the scale is now in mm.  As is obvious, the 

dominant effect is that both positions shift down, away from the objective.  This 

effect is so large, it does not matter what the mask size is as shown in the 0.99 

mm radius data. 
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Figure 4-45:  The cat’s eye position as spherical aberration was added. 
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Figure 4-46:  The confocal position as spherical aberration was added. 

4.9 Measurement of the Microscope Objective 

I measured the 0.42 NA microscope objective on the Veeco Interferometer 

to gain a general knowledge about the aberrations that are in MORTI.  I was not 

able to do a full random ball test to determine the actual errors. The objective 

was measured in the configured shown in Figure 4-47 which will only measure 

the Zernike components that are rotationally invariant, like spherical aberration 

[40].  The measurement of the microscope objective has 0.041 waves of 

spherical aberration.  This measurement is actually the sum of the errors in the 

microscope objective and the errors in the transmission flat of the Veeco 

Interferometer.  Because only a small part of the transmission flat (8 mm) is used 
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for this measurement, the error due to the transmission flat is likely small.  

Therefore the error in the microscope objective is near the 0.041 waves 

spherical.  But, the error in the full interferometric is larger due to the other others 

in the interferometer and varies with the radius of the sphere tested [41] but is 

likely on the same order of magnate as the 0.041 waves.  The spherical 

aberration in Figure 4-44 with additional aberration shows a spherical aberration 

of near 0.01 waves, which is much lower due to the reduced mask.   
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Figure 4-47:  The measurement of the 0.42 NA microscope objective on the 
Veeco interferometer in the configuration shown. 

4.10 Uncertainty 

A full uncertainty budget for the radius measurement on MORTI is outside 

the scope of this work.  I am more concerned with the trends in the radius 

measurement as conditions vary, rather than the absolute value of radius.  The 

major source of radius uncertainty is the fitting of the lines to the Zernike defocus 

vs. position graphs, here calculated at 0.4 µm.  As discussed in Section 4.8.2 this 

uncertainty includes other effects.  The repeatability of the radius measurements 
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was 0.1 µm.  While I did not explicitly study the reproducibility, the zero thickness 

glass plate data in Figure 4-43 gives an indication of  reproducibility, estimated 

here as 0.2 µm. 

There are error motions errors when the part moves between cat’s eye and 

confocal.  This error motions cause an error in the absolute radius, but are 

applicable here when comparing between different part radii.  This effect would 

only be considered if the error motions are different over the different part radii.  

This is likely not the case here since the size range of parts is so small.  

Therefore, the uncertainty due to the error motions is not a concern for this 

analysis. 

The current interferometer configuration does not allow for the microscope 

objectives to be aligned relative to the motion axis.  This possible misalignment 

would cause a bias in the radius measurement, not a concern here.  But, I am 

changing between microscope objectives and comparing the results.  If the 

different microscope objectives have different misalignments (with the motion 

axis), the biases are different for the various objectives.  This may explain why I 

am unable to draw conclusions about changing the objective.  MORTI needs to 

be modified to check for and correct this misalignment.      

The figure error in the sphere can cause a bias in the both the cat’s eye and 

confocal positions. On this scale, the uncertainty due to this is likely small 

compared to the uncertainty due to fitting.   

There are errors in the phase shifting, that is, the PZT may not move in 90° 

steps as required.  This uncertainty may take the form of noise and would 
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therefore be part of the uncertainty due to fitting.  Or this uncertainty may take 

the form of a bias and therefore would bias all the measurements the same.  This 

is not a concern here because I am looking for trends, not absolute radius. 

The absolute radius of the measured part is biased if the temperature is not 

at 20°C.  But, because I am not concerned with absolute radius, it is temperature 

variations during the course of a measurement that affects the measured radius.  

Measurement of this effect is outside the scope of this work.  I consider the 

repeatability and reproducibility to account for the temperature variations and 

other environmental concerns such as vibration. 

Combining the three calculated uncertainties in a root sum square method 

gives an estimated uncertainty for radius of 0.46 µm, equating to 1 part in 104 for 

a 0.4 mm radius test part.  This is not the full combined standard uncertainty in 

the radius measurement, but is valid for comparison.  Future research includes 

investigating methods for reducing uncertainty. 

4.11 Conclusions 

In this chapter, I described the Micro-Opitc Reflection and Transmission 

Interferometer, MORTI, and the radius measurements experiments.  The 

transmission component of the interferometer is not required for the radius 

measurement and therefore has not been discussed here.  In reflection, the 

figure measuring interferometer and the laser scale are used for the radius 

measurement.  The imaging leg is designed to relay the image of the part at 

confocal to the camera.  I listed the steps for the alignment of the laser scale, 

mechanical alignment, calibration of the laser scale, and the optical alignment of 
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the figure measuring interferometer.  The focusing issue described may create 

problems in the radius measurement, but can be corrected with careful planning.  

I described and showed the measurements of three different sized stainless 

spheres with different microscope objectives, varying mask sizes, and with added 

spherical aberration.  A discussion of the uncertainty in the radius measurement 

followed.   

Further discussion of the experimental results and a comparison to the 

Gaussian and FRED models are in Chapter 6.  A discussion of further work, 

including modifications on MORTI is in Chapter 7. 



 
 

CHAPTER 5:  THE EFFECT OF PHASE CHANGE ON REFLECTION ON THE 

CAT’S EYE POSITION 

5.1 Introduction and Background 

Many precision dimensional measurements, including the radius 

measurement, are based on interferometry which inherently relies on the 

reflection of light from a target.  Upon reflection, light undergoes a phase change.  

This phase change depends on the material properties and can introduce a bias 

in the measurement.  The phase change on reflection varies with incident angle, 

material properties, wavelength, and material depth.  This variation affects 

measurements ranging from precision radius of curvature (by changing the cat’s 

eye position), center thickness, gage block calibration, to scanning white light 

interferometry (SWLI) [42].  The goal of this research is to determine the effect of 

the phase change on the radius measurement.  

The phase change on reflection depends on the material properties on both 

sides of the interface which are represented by the refractive index.  For non-

absorbing material, the phase change is identically zero or 180 degrees, 

depending on the refractive index change across the interface.  Values other 

than zero or 180 degrees only occur when one or both of the materials are 

absorbing.  The absorption of the material is captured by the imaginary 

component of a complex refractive index.  Absorption is strong for metals and the 
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full complex refractive index must always be considered.  In some precision 

applications the small imaginary component of nominally transparent materials 

cannot be ignored.  Refractive index values are published for many materials 

[43,44,45], however these values are often contradictory, presumably due to 

variations in material composition and/or film thickness and measurement 

uncertainty.  Furthermore, the optical properties of many alloys are not well 

known.  Thin films, like those used in MEMS devices (which are commonly 

measured with SWLI), often do not have the same material properties as the bulk 

material.   

Interferometry is well suited to measure phase changes, but a difference 

measurement must be made to measure the phase change on reflection.  A 

typical configuration is to deposit a region of material A on a substrate of material 

B and then measure the apparent step height of material A.  A schematic of this 

is shown in Figure 5-1.  However, the physical step height must be known to 

determine phase change on reflection differences [46].   

Material A
Material B
Substrate

Interferometer

Output is 
Step Height +
Phase Change

Material A
Material B
Substrate

Interferometer

Output is 
Step Height +
Phase Change

 
Figure 5-1:  Schematic of interferometric phase change measurement where step 

height is inherently included in the measurement result.  
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The physical step height contribution can be intrinsically removed by 

depositing regions of the metal on the back side of a glass substrate and 

measuring the phase profile of light reflected internally from the back surface as 

shown in Figure 5-2.  Such investigations have been carried out with SWLI [47], 

but the angle of incidence and wavelength dependence cannot be easily 

investigated with this method.  In an early experiment [48], fringes of equal 

chromatic order were used to investigate the phase change on reflection over a 

range of wavelengths.  In this experiment, the phase was not directly measured, 

but calculated through fringe counting. 

Material A

Material B
SubstrateInterferometer

Output is 
Phase Change

Material A

Material B
SubstrateInterferometer

Output is 
Phase Change

 
Figure 5-2: Schematic of interferometric phase change measurement where step 

height is inherently included in the measurement result. 

We have investigated the phase change on reflection by using a 

combination of methods discussed in the literature.  We are using phase shifting 

interferometry (PSI) and a sample geometry where an internal reflection is 

exploited to intrinsically remove the step height from the measurement.  Our 

initial studies focus on normal incidence reflection for a range of metals with 
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632.8 nm wavelength light and varying the angle of incidence for a gold sample. 

Future work will investigate film thickness and wavelength dependence.  In this 

work, we describe the theory behind the measurement, the experimental 

configuration, present examples of experimental results, and the connection to 

the cat’s eye reflection and radius measurements. 

5.1.1 Connection to Radius and Cat’s Eye 

The radius measurement, discussed in Chapter 1, requires two 

measurements, at confocal and at cat’s eye.  The geometrical model with a non-

aberrated incoming beam is considered here.  In this case, at the confocal 

position, all the rays hit the surface at normal incidence.  Therefore, if there is a 

phase change, it is constant along the entire aperture.  There will be a phase 

change on reflection at confocal if the test part has a complex component of the 

index of refraction, but there is no phase change if the complex component is 

zero.  In either case, since the angle of incidence is always zero, the phase 

change is constant. 

But, at cat’s eye, in a geometrical model, the angle of incidence is not 

constant.  It varies from 0° to a value dependent on the numerical aperture of the 

objective.  This is the case of interest.  Because the phase change is not 

constant, there may be a bias in the cat’s eye position that does not occur in the 

confocal position.  This suggested bias is dependant on polarization state of the 

incoming beam, the NA of the system, and the material properties of the test 

optic.  If the imaginary component of the complex refractive index of the test 

optics is zero or can be approximated as zero (most glasses) the phase change 
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is constant at zero degrees for all incident angles and the bias will not occur.  

Therefore the suggested phase change bias is only a factor for metals and other 

materials with a complex component of the index of refraction.  

The geometric model used here to predict the error due to the phase 

change, is of course, not accurate, especially for smaller parts.  The focal region 

has a spread of rays and a much more complicated wavefront.  Therefore, the 

angles that the rays hit the surface does are not the large angles as predicated 

by the in the geometric model.  This leads to a smaller effect of the phase 

change on the radius measurement.  Therefore, the effect calculated here is a 

worst case error.  A method for calculating the phase change in the focal region 

for a diffracted model is not known. 

The purpose of part of this work is to determine if this bias can be 

calculated and corrected for.  Also, I am introducing a method of measuring the 

phase change using phase shifting interferometry and a new background 

subtraction method to reduce uncertainty.   

5.2 Theoretical Calculations of the Phase Change 

The experiments in this work focus on determining the phase change when 

light reflected from a non-absorbing media (glass) to an absorbing media (metal) 

interface, as indicated in Figure 5-3.  The glass has an index of refraction of n1, 

and the metal has a complex index of refraction, n̂  = n2(1 - iκ2).  There is 

confusion in the literature over the definition of κ2.  In some cases the complex 

index is defined as n + ik (the letter k).  Here we will use the Born and Wolf [49] 

convention of n(1 - iκ), the Greek letter kappa not the letter k.   
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Figure 5-3: An electric field, Ei, from glass is incident from a glass substrate on 

bulk metal at an angle of θ1.  The electric field is reflected (Er) and transmitted in 
part (Et). 

The phase change, φ, of the reflected electric beam (Er)) is desired.  We will 

first derive the case for non-normal angle of incidence, that is, θ1≠0°.  Then the 

normal case will be derived from the non-normal case. 

5.2.1 Non-Normal Angle of Incidence 

This derivation comes from Born and Wolf [49].  I first define two new 

variables, u2 and v2 to be  

2222 cosˆ θnivu =+ , 

Equation 5-1 

where θ2 is not physically defined, but is the angle of the transmitted electric field, 

Et, to the surface normal in the metal.  The law of refraction is used to remove the 

θ2 term and to solve for u2 and v2.  The law of refraction and its square is 
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Equation 5-2 (a) and (b). 
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Squaring Equation 5-1 and solving for the cosine term, I find that 
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Equation 5-3. 

By using the trigonometric identity sin2+ cos2 = 1 (Equation 5-2 and 

Equation 5-3) and setting the real and imaginary components equal, I derive 
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The variables u2 and v2 are found using the quadric equation and substitution 
and are 
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Equation 5-5. 

Now u2 and v2 can be found using only physical attributes: the incident 

angle and the material properties of both materials.  The next step is to 

determine the reflection coefficients at the interface.  This is done by starting with 

the Fresnel formulae for reflection which are defined for both the TE and TM 

components of the light.  TE and TM symbolize the transverse electric and 

transverse magnetic modes of the light and depend on the polarization state.  

The TE mode occurs when the polarization state is such that the electric field of 

the incident light is perpendicular to the plane of incidence and the TM mode 

occurs when the electric is parallel to the plan of incidence.  TE and TM are also 

called the s- and p- polarization states. 
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The Fresnel formulae for reflection are 
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Equation 5-6 [49] 

where Amp is the amplitude of the electric vector of the incident field.  By 

substituting Equation 5-1 into Equation 5-6, the amplitude, p, and phase, φ, of the 

reflected field is calculated.  The Fresnel formulae is then represented by 
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Equation 5-7. 

The Amp terms drop out because they are just multipliers.  The phase is found 

from the tangent of the imaginary over real components of Equation 5-7 and is 

shown by 
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Equation 5-8. 

To explicitly solve for the phase change values, Equation 5-5 for u2 and v2 

is substituted into Equation 5-8.  This is not shown here for clarity.  Also, the 

amplitude of the reflection term and the amplitude and phase of the transmission 

term are not defined here.  While these are required for a full description of the 
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light beyond the interface, they are not required here; only the phase change of 

the reflected light is necessary.  

5.2.2 Normal Angle of Incidence 

At normal incidence, �θ1=0° the state of polarization is inconsequential.  The 

phase change for both the TM and TE mode are equal [50].  By substituting θ=0° 

in Equation 5-5, u2 + v2 is equal to n2(1+ κ2). Therefore, for normal incidence, the 

Fresnel amplitude reflection coefficient, r, is  
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Equation 5-9 

And the phase change, φ, is calculated using 
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Equation 5-10 

5.2.3 Determining the Values of the Index of Refraction  

While the phase change on reflection is a function of the thickness of the 

metal, I first consider the case of a bulk material.  The refractive indices of the 

materials are in published literature.  Many of the published values list k for the 

complex part of the refractive index; k is then divided by n to find κ (kappa) (see 

Section 5.2).  Published values of n and k [43,44,45] vary, even within the same 

source.  Also, in each source, the values are listed in a table form relative to the 

measured (or calculated) wavelength.  I used various methods of interpolation to 
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find the values required at 632.8 nm:  a two point fit around 632.8 nm, a 10 point 

linear fit, and a 10 point two-degree polynomial fit.  Table 5-1 shows an average 

value for the complex index of refraction for copper and gold.  The average is of 

three sources [43,44,45] and three different interpolation methods for each 

source.  The percent variation is one standard deviation of all the values as a 

percentage of the average. 

Table 5-1:  Table of published n, k, and κ values and their percent variation (one 
standard deviation).  

 
n, 

average 
k, 

average 
κ, 

average 

n, 
%variation 

k, 
%variation 

κ, 
%variation 

Copper 0.294 3.370 12.426 27.0 1.7 35.0 

Gold 0.182 3.188 19.729 41.5 2.0 34.4 

 

5.2.4 Phase Change Values at Normal Incidence 

Using the complex index of refraction for copper and gold from Table 5-1 

and Equation 5-10 I calculated the phase change on reflection for normal 

incidence, shown in Table 5-2.  The variation in the φ,° column shows one 

standard deviation of the phase change due to the variation in the n and κ 

values.  The glass substrate is fused silica with a refractive index of 1.457 [51].  

The uncertainty in the index of the glass is very low as compared to the metal 

and can be neglected.  One can see that the phase change on gold has a large 

variation due to the large variations in n and κ . 
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Table 5-2: The complex index of refraction and the calculated phase change 
values at normal incidence, for glass to metal. 

 φ,° Uncertainty in φ,° 

Copper 43.3 +36.3, -23.1 

Gold 44.0 +48.2, -20.0 

 

5.2.5 Phase Change Values at Non-Normal Incidence 

The phase change on reflection from a glass to gold interface as the angle 

of incidence varies for both the TE and TM modes is shown in Figure 5-4.  As a 

check, I calculated the reflection coefficients, Equation 5-7, for a glass/gold 

interface, shown in Figure 5-5.  As expected, the reflection is above 90%. Also, 

the phase change for an air/gold interface is shown in Figure 5-6.  This is 

required for further models. 
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Figure 5-4:  Phase change at glass/gold interface for varying angle of incidence.  

The governing equation is Equation 5-8 and the complex refractive index of 
refraction in Table 5-1. 
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Figure 5-5: The reflection coefficients at glass/gold interface for varying angle of 

incidence. 
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Figure 5-6: Phase change at air/gold interface for varying angle of incidence. 

5.3 Impact on the Cat’s Eye Position  

5.3.1 Added Defocus Due to the Phase Change 

As shown in Section 5.2.5, the phase change varies as the angle of 

incidence varies.  This section shows the relationship between this phase 

variation and the determination of the cat’s eye position, assuming a geometric 

model for the cat’s eye reflection.  I am initially only investigating the TE mode for 
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two reasons.  The Vereco interferometer used in for the experiments is linearly 

polarized in the TE mode and the TE mode has a larger variation (than the TM 

mode) in phase change.  Investigating the TE mode demonstrates the worst case 

bias in the cat’s eye position due to the phase change.  First, the phase shown in 

Figure 5-6 is converted to a height using  

λ

π Height
Phase

4
=  

Equation 5-11 

where λ is the wavelength of the light, 632.8 nm.  The additional factor of 2 in 

Equation 5-11 corrects the phase change measurement, which is double pass for 

height measurements but single pass for phase change measurements.  This 

equation is true for the radius measurements.  Then, I consider the largest NA of 

interest (0.7), where the maximum angle of incidence at the cat’s eye position is 

44.4°.  At this aperture, the phase change is well approximated with a quadratic 

line fit, as shown in Figure 5-7.  A quadratic fit is also valid at the smaller NAs. 
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Figure 5-7:  Height error due to phase change at air/gold interface for TE mode 

showing the fit line and parameters for NA = 0.7. 

Using this phase change profile, I created a map of apparent height for the 

full aperture at each NA of interest (0.28, 0.42, 0.55, and 0.7) by rotating the 

above profile around the height axis.  These results are shown in Figure 5-8.  

The Zernike defocus term was calculated for each map and is also shown. 
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Figure 5-8:  Height error maps (8 mm diameter, all) due to phase change at 

varying NA showing the Zernike defocus term. 

5.3.2 The Offset Due to Phase Change 

In the radius measurement, a chart of Zernike defocus vs. position (along 

the optical axis) is required to determine the cat’s eye position.  The slope of this 

chart is required to determine the offset in the cat’s eye position due to the phase 

change.  Also required is the Zernike defocus value from the height error maps 

shown in Figure 5-8.  The slope is best determined from experimental data, but 

can be approximated theoretically using [52] 

211 NA
nm

nm
Slope −−=





.   

Equation 5-12 
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By simple multiplication the worst possible case of offset in the cat’s eye 

position due to the phase change on reflection is determined.  The results are 

summarized in Table 5-3.  It is important to note that the aperture of the objective 

was used for visualization purposes only and does not affect the offset of the 

cat’s eye position if the NA of the objective does not vary.   

Table 5-3:  The worst case offset values due to phase change. 

NA 

Theoretical Slope 

(nm (defocus) per 
nm (position)) 

Zernike 
Defocus Term 

(nm) 
Offset (nm) 

0.28 0.04 -0.6 -0.0 

0.42 0.09 -1.3 -0.1 

0.55 0.16 -2.2 -0.4 

0.7 0.28 -3.9 -1.1 

  
 

The phase change adds a negative Zernike defocus value to all the phase 

maps at cat’s eye.  Therefore, the offset due to the phase change is toward the 

interferometer and the measured radius is smaller than the actual.  This can be 

seen in the following data set in Figure 5-9 (created for example purposes only).  

One set of data demonstrates the dependence of defocus on position without 

consideration of phase change on reflection.  The phase change on reflection 

effect is considered in the other data set by adding a (negative) defocus.  The 

true cat’s eye reflection at the intercept of the no phase change data, but the 

interferometer measures the cat’s eye position at the intercept of the phase 

change data. 
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Figure 5-9:  Example data set demonstrating the shift toward the interferometer 

with phase change.  The amount of defocus added is exaggerated.    

The offset is small, less than one nm in most cases.  This demonstrates 

that this phase change does not have a large effect on the cat’s eye position.  

Next, I will test to determine how much the offset varies with the uncertainty in 

the refractive index.   

5.3.3 Offset as a Function of Uncertainty in the Refractive Index 

If the uncertainty in the refractive index demonstrated in Section 5.2.3 is 

considered, the Zernike defocus values shown in Figure 5-8 vary and 

consequentially the offset varies, as shown in Table 5-4.  One standard deviation 

on both sides of the average n and κ were considered.  As shown, the offset 

does vary, but the magnitude still remains small, less than 3 nm for the worst 

case.  For the most accurate offset results, the slope from the radius experiment 

(not the theoretical values) and the actual phase change of the test optic material 

are required.    
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Table 5-4:  Offset in the cat’s eye position when considering the variation in the 
complex index of refraction. 

 Offset (nm) Away From Interferometer 

NA 
Original 

 (n = 0.18, κ = 19.73) 

n+un, κ+uκ  

(n = 0.26, κ = 26.44) 

n-un, κ-uκ,   

(n = 0.11, κ = 13.02) 

0.28 -0.0 -0.1 -0.0 

0.42 -0.1 -0.3 -0.1 

0.55 -0.4 -0.9 -0.2 

0.7 -1.1 -2.7 -0.6 

 

5.3.4 Offset due to the TM mode 

The above analysis shows the TE mode of polarization as a worst case 

offset.  The actual cat’s eye refection is a combination of the TE and TM modes 

and is interferometer dependent.  Consider the case of the Veeco interferometer 

where the light is polarized linearly up and down.  As the light is focused by a 

transmission sphere, the polarization does not change.  But, because the part is 

spherical, the plane of incidence changes, therefore both TE and TM modes are 

reflected from the surface.  This is shown in Figure 5-10.  Before the reflection, 

Figure 5-10(a), all light is linearly polarized up and down.  The cross sections at 

1, 2, and 3 demonstrate how the light is reflected.  At 1 (Figure 5-10 (b)), the TM 

light coming in is reflection as TM light.  At 2, Figure 5-10(c), the TE light coming 

in is reflection as TE light.  At 3, Figure 5-10(d), the light is both TE and TM 

coming in, but because the TE and TM modes have different phase changes, the 

TM will be delayed.  This delay will result in elliptically polarized light.   
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(a)       (b)   (c)          (d) 

Figure 5-10:  A schematic of the polarization state at the CE reflection:  (a) before 
reflection, (b) TM Mode (parallel to plane of incidence), (c) TE mode 

(perpendicular to plane of incidence), and (d) TE and TM modes.  

With an input of linearly polarized light, astigmatism will result because the 

TE and TM modes have different phase change values, but the defocus value 

will be dominated by the TE mode phase change value because it is larger than 

the TM mode.   It is important to note that the defocus is depends in a 

complicated way on the input polarization state. 

5.4 Experimental Plan   

The above analysis demonstrates the need to accurately know the phase 

change on reflection value for the test optic.  I used the experiment and sample 

design introduced in Figure 5-2 to measure the phase change as described in the 

following sections.  

5.4.1 Sample Preparation  

The samples were 12.7 mm diameter glass substrates with 3.0 mm wide 

strips of evaporated metal as shown in Figure 5-11(a).  The metal was deposited 

using a Varian 3125 Vacuum Thin Film System.  The metal strips have a nominal 
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height of 500 nm.  The height was determined by a quartz crystal thickness 

monitor in the evaporator and confirmed using a calibrated profilometer.  The 

mask used in the evaporator is shown in Figure 5-11(b).   

 12.7 mm 

 
(a)     (b) 

Figure 5-11 (a) The samples with Au, Al, or Cu and (b) The 50 mm square metal 
mask. 

5.4.2 Measurement Plan, Normal Incidence 

A Veeco/Wyco PSI was used to measure the phase change.  The sample 

was configured for a back measurement as shown in Figure 5-12.  By measuring 

through the sample, we are directly measuring the phase change difference 

between the glass/air interface and the glass/metal interface.  A front 

configuration would measure the phase change plus the step height.  A 

Claphamdue flat was used as the transmission flat which provides a reasonable 

fringe contrast between the glass and metal regions of the sample and greatly 

improves measurement quality.  A picture of the measurement is shown in Figure 

5-13. 
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Figure 5-12: The measurement configuration for normal incidence.  The 

substrate is wedged to prevent interference from the front surface. 

Veeco

Flat

Sample

Veeco

Flat

Sample

 
Figure 5-13: The sample as measured in the interferometer for normal incidence. 

The apparent step height observed in the data is the phase change at the 

glass/metal interface relative to a glass/air interface.  The absorption of fused 

silica is very low; consequently, the phase change on reflection for the glass/air 

interface is approximately zero (an internal reflection).  This assumption leads to 

a negligibly small contribution to the final uncertainty.   

5.4.3 Determining the Phase Change at a Air/Metal Interface 

In the experiment described above, the phase change occurs at glass/metal 

interface and Equation 5-10 is used to determine the theoretical phase change.  

But, many interferometric measurements involve a different interface 
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combination, namely reflection at an air/metal interface.  The air/metal change 

cannot be directly determined from a single measurement of the glass/metal 

interface. But, the measurement of the glass/metal interface can be repeated for 

different glass substrates and the results used to estimate the value of the phase 

change at an air/metal interface.  

The desired quantity is φAM, phase change at the air/metal interface.  Using 

Equation 5-10 and substituting the appropriate material properties, the tangent of 

φAM is 
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Equation 5-13 

where A indicates air and M, metal.  The phase change for the glass to metal 

interface, φG1M and φG2M, is measured experimentally for the two samples with 

different substrate glass (nG1 and nG2, known) and the same metal (nM and κM, 

unknown).  The equations for this phase change are 
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Equation 5-14. 

Assuming that the indices of refraction of the glasses are known, the remaining 

unknowns in the equation, nM and κM, can be solved for.  By substituting these 

values into Equation 5-13 and assuming the index of refraction of air is 1, the 

phase change at the air/metal interface can be calculated. 
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This method for determining the phase change at the air/metal interface is 

outside the scope of this work and is presented here only to demonstrate the 

method. 

5.4.4 Measurement Plan, Non-Normal Incidence 

Initial measurements were performed on the Veeco interferometer for non-

normal incident angles.   In this measurement, the sample is placed in a skip-flat 

geometry, [53] as shown in Figure 5-14 and Figure 5-15.  The sample is on a 

rotary stage that rotates in the plane of the paper as shown in the figure.  First 

the sample is aligned straight on, as in a normal angle of incidence 

measurement.  Then the rotary stage is turned to the desired incident angle.  At 

each angle, the return flat is aligned such that the light reflected from the back of 

the sample reflects off the return flat to the back of the sample and then back to 

the Veeco.  Two areas of concern are that the measurement of the phase 

change occurs twice; therefore the conversion from height to phase is not the 

same as the normal angle of incidence measurement.  In addition, the angle of 

incidence on the glass/metal interface is not the same angle of the rotary stage 

due to the wedge geometry of the sample and the refraction of the light.  The 

relationship between the angle of the rotary stage and the angle of incidence can 

be solved for using simple geometric relationships. 
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Figure 5-14:  The sample for a non-normal incidence measurement. 
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Figure 5-15: The sample in the non-normal incidence configuration.   

5.5 Analysis and Results 

Because the measurements are conducted through the glass substrate, the 

inhomogeneities and surface figure error of the glass are included in the phase 

change measurement.  This will limit how well the phase change difference 

between the two regions can be estimated. To minimize uncertainty due to this, 
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the back of the substrate is measured in the same configuration and nominally 

the same position before the metal is deposited.  This background measurement 

is then subtracted from all subsequent measurements.  This was done for each 

substrate and for both the normal and varying angle of incidence measurements.  

The subtraction process leads to a significant contribution to the uncertainty and 

is discussed in more detail in Section 5.5.3. 

5.5.1 Analysis, Normal Angle of Incidence  

An example measurement after background subtraction is shown in Figure 

5-16.  Note that the apparent height shown in Figure 5-16 is not a physical 

height, but an artifact of the phase change on reflection.  All of the light is 

reflected from the nominally flat back of the glass substrate.  The apparent 

height, h, is converted to phase, φ, using Equation 5-11 because the normal 

angle of incidence experiment is double pass for height features but single pass 

for phase change measurements.   
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Figure 5-16: A measurement of the normal angle of incidence post background 

subtraction. 
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The multiple region analysis tool in the Vision software was used to 

separate the metal and air regions and to calculate the RMS, the number of 

points, and the mean value of each region.  The difference between the mean 

value for the air and metal regions is the phase change on reflection for the 

glass/metal interface.  The number of points and RMS are used to calculate the 

uncertainty in the mean value. 

5.5.2 Analysis, Varying Angle of Incidence 

Only one sample, gold, was measured for the effect of varying incident 

angle.  The analysis for this measurement is the same as for the normal angle 

analysis, including the phase to height conversion.  The skip flat test is double 

pass in phase and quadruple in height leading to Equation 5-11.  As above, the 

multiple region analysis tool was used to separate the metal and glass regions.   

Again, the difference in the mean value of the metal region and the mean value 

in the height region is the phase change. 

5.5.3 Uncertainty  

I have investigated the primary sources of uncertainty and estimated their 

contribution to the measured phase change using a gold measurement as an 

example for all of the following cases.  Variations in the evaporation process 

create a level of uncertainty not studied here.   

The RMS of each area (metal and air), when divided by the square root of 

the number of points indicates the uncertainty in the mean value (phase).  

Without subtraction, the uncertainty in the phase of the metal and air regions are 
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both 0.09°, with subtraction, they are 0.07° and 0.06°, respectively.  This 

reduction demonstrates the importance of the background subtraction.  

The background subtraction is a major source of uncertainty.  The pre- and 

post-deposition samples can not be exactly repositioned in the same orientation 

in the interferometer.  Rotation, translation, and zoom differences occur between 

the two measurements.  Also, shadowing effects required that the edge of each 

strip be trimmed in the measurement; this trimming is subjective and also 

contributes to uncertainty.      

A simplified Monte Carlo simulation was performed to determine the 

uncertainty associated with repositioning and trimming.  In software, I 

manipulated the data, performed the normal subtraction process, and calculated 

the resultant phase change.  The manipulation was done such that it would 

represent reasonable uncertainty in repositioning in the lab: translating ±20 pixels 

in both x and y, rotating ±10°, zooming 5%, and trimming 0 to 5 pixels.  I then 

calculated the phase change for each of the above manipulations.  The worst 

case for each situation is shown in Table 5-5.  The difference from the non-

manipulated case is indicated in the difference column.  These differences were 

then combined in a root sum square method to estimate the uncertainty 

associated with repositioning and trimming, 3.8°. 
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Table 5-5: Calculated phase change for the worst case for each case for an 
example measurement of gold. 

Without Subtraction 140.5°   

 With Subtraction 132.1°   

With Subtraction and Manipulation Difference 

   Trim  133.8° 1.7° 

   Rotate  132.5° 0.4° 

   Zoom  135.5° 3.3° 

   Translate 132.2° 0.1° 

 Subtraction Uncertainty: 3.8° 

 
 

Repeatability and reproducibility studies helped determine uncertainty due 

to environmental effects.  Reproducibility was estimated by removing the sample 

from the interferometer, waiting a day, and repeating the measurement.  The 

repeatability of the measurement is 0.26° and reproducibility 0.50°.   The final 

uncertainty is then estimated by combining all the above uncertainties in a root 

sum square method.  The final combined uncertainty for phase change is on 

reflection for this experimental method is 3.8°. 

5.5.4 Results, Normal Angle of Incidence   

I measured the gold sample on three days, twenty times each, for a total of 

60 measurements, where each measurement is an average of eight.  The 

calculated average phase change for gold is 131.4° ±3.8, corresponding to a 

height change of 115 nm ±3.8 nm.  This compares well to the values in Table 5-2 

from the literature. 

The result for the copper sample is only preliminary because 

measurements of the substrate before the metal was deposited were not 
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possible.  I used the following modified background subtraction, though.  In 

software, I masked the metal region of the measurement and preformed a 

Zernike analysis on the remaining glass region.  Using these Zernike coefficients, 

I generated a simulated substrate, which was used for subtracting the blank 

substrate.   

I measured the copper sample 20 times each, where each measurement is 

an average of eight.  The calculated phase change for copper is 173.73° ±3.8°.  

This does not agree well with the values from Table 5-2.  For comparison, the 

phase change for gold using the same method is 137°.  Repeated experiments 

would have to be carried out to pinpoint the cause of the discrepancy.  

Contamination of the copper source in the evaporator, which would significantly 

change the refractive index, is a likely cause.     

5.5.5 Results, Varying Angle of Incidence   

Results from the non-normal incidence measurements are not presented 

here because of the following.   The range of allowable incident angles is 17° to 

33° due to physical constraints.  At an incident angle of 17°, the theoretical phase 

change for the TE mode is approximately 42° (Figure 5-4) and at 33° it is 

approximately 36°.  Therefore, the measurement requirement is to distinguish 

between 8° (and smaller for incident angles between 17° and 33°) of phase 

change. 

The uncertainty for the phase change measurement in a normal incidence 

setup is ±4°.  The uncertainty for the non-normal phase change measurement is 

not calculated here, but will be larger than ±4°.  It will be larger due to the 
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roughness of the return flat, traveling through the sample twice, and the incident 

angle measurement.   

The approximately 8° phase change that I am trying to distinguish is not 

that much larger than the 4° uncertainty.  The measurement uncertainty must be 

reduced to achieve a useful measurement of the angle dependence.  This could 

be done with improved fixturing and is beyond the scope of this project.  The 

method presented is meant to demonstrate the possible effect of phase change 

on reflection on the radius measurement, and to offer a methodology to estimate 

and measure the effect. 

5.6 Conclusions and Continuing Work 

The effect of the phase change on interferometric radius measurements 

was presented along with some initial measurements of the phase change and 

normal and non-normal incidence. 

The worst-case offset in the cat’s eye position for a gold test part is on the 

order of 3 nm toward the interferometer.  Therefore the measured radius of a 

typical metal sphere is too small by 0 to 3 nm. 

Using an internal reflection at a glass/metal interface, interferometric 

measurement show a phase change for normal incidence glass to gold is 131.4° 

±3.8° and glass to copper of 173.73° ±3.8°.  The measured values agree well 

with theoretical calculations for gold, but not for copper, presumably to copper 

contamination in the evaporator.  Initial measurements of the phase change for 

glass to gold at varying incident angle were performed, but not presented due to 

the high uncertainty. 
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The uncertainty in the phase change measurement is dominated by the 

background subtraction process.  This uncertainty could be reduced with more 

improved fixturing and careful planning of the blank substrate measurement.  The 

blank substrate and the sample with metal must be measured at the same zoom, 

x-y position, and rotation.  The best way to reduce the position contribution would 

be to build a kinematic fixture for the sample.  The substrate would go into the 

fixture and be measured on the interferometer with the opposing side of the 

kinematic fixture constraining it to one position.  Then the fixture (with the 

substrate) would go directly to the evaporator.  After evaporation, the fixture with 

the sample (with metal) would be measured in the same opposing fixture on the 

interferometer.   



 
 

CHAPTER 6:  DISCUSSION OF RESULTS AND COMPARISON 

6.1 Introduction 

In this chapter I discuss and compare the results from the Gaussian model 

(Chapter 2), the FRED Physical Optics model (Chapter 3), and the experimental 

data from MORTI (Chapter 4).  There are limitations on how well the comparison 

can be preformed.  There is no “known” radius for experimental data.  The 

uncertainty in radius in the FRED model, like with all physical optics modeling 

packages, is large.  The model depends to a high degree on the actual 

experimental setup, such as the imaging optics, the spacing of the components, 

aberrations in the system, the microscope objective (which is proprietary 

information), and the masking.  These parameters can not be modeled exactly.  

The final limitation on comparison is that the measurement uncertainty is large.  

Future work includes reducing this uncertainty. 

The results from the Gaussian model, the FRED model, and the phase 

change calculations are summarized in Figure 6-1.  This chart is a reprint of 

Figure 1-5 and shows the error in the simulated radius measurement when a 

geometric model is used instead of a Gaussian or FRED Model.  The spread in 

the data from the Gaussian and FRED models is due to the different input 

parameters (NA, input beam type, aberrations, etc.) and the uncertainty in the 

model. 
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Figure 6-1:  The error in the radius measurement when the geometric model is 

used instead of a more detailed model. 

6.2 Numerical Aperture and Part Size  

I varied the numerical aperture in experiment by using different microscope 

objectives but am unable to draw any conclusions about these experiments due 

to the observed small changes and the high uncertainty.  The cat’s eye and 

confocal positions did shift when the objective was changed.  This is most likely a 

mechanical effect, not optical, and should not affect the measured radius.   

I varied the numerical aperture in simulation by varying the focal length and 

input aperture size of the lens (or parabola) in the Gaussian and FRED models.  

A schematic of these results is shown in Figure 6-2.  The numerical results are 

shown in Section 2.6.2 (Gaussian Model) and Sections 3.8.2  and 3.9.2 (FRED 

Model). The error is larger for smaller input part size and for smaller NAs (smaller 

light cone angle).  This is expected because the smaller NA leads to a larger 
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caustic region. The error in the radius is larger in the FRED model than the 

Gaussian Model, by about an order of magnitude.  This is likely because the 

FRED model takes into account more effects than the Gaussian model.   
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Figure 6-2:  Error in the simulated radius measurement from the FRED and 

Gaussian models with varying the NA. 

Results for varying part radii at 0.42 NA for the Gaussian and FRED models 

are shown in Table 6-1.  These results can not be compared to experiment 

because I do not know the error in the measured radius.  The errors in radius 

increase for the smaller parts for both models.  The errors are larger in the FRED 

model than the Gaussian model for both the Gaussian and the circular aperture 

input beams.  The results from the FRED model Gaussian input and the Matlab 

Gaussian model do not compare well, even though they were nominally the 

same setup.  They differ by at least an order of magnitude.  Some of this 
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difference is due to the pixilation of the camera in FRED, the lens (Gaussian) 

parabola (FRED) difference, errors in the Zernike fitting algorithm, and most 

likely, the clipping of the data in FRED.  When the single Gaussian beam (infinite 

in area) is propagated in FRED, the program must clip the beam when it interacts 

with the parabola and the camera.  In addition, by forcing FRED to propagate a 

single Gaussian beam, I am asking the program to do something it was not 

intended to do.  Because of this, the results from FRED using the single 

Gaussian beam are questionable.   

Table 6-1:  The results when varying the radius. 

Radius 
Gaussian 

Model 
FRED, 

Gaussian Input 
FRED, Circular 

Aperture 

0.2 or 0.25 5 parts in 105 1 part in 104 7 parts in 104 

1 2 parts in 106 1 part in 105 4 parts in 105 

 

6.3 Spherical Aberration  

An explanation of retrace errors is required for this discussion.  Retrace 

errors occur in systems with aberrations, that is, for all the experimental 

measurements and in the FRED simulation with added spherical aberration.  All 

of the experimental measurements have inherent aberrations, even without the 

added spherical aberration of a glass plate.   
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6.3.1 Ray Trace Model 

I first consider retrace errors in a geometric ray model of the radius 

measurement.  At confocal, in a system with aberrations, the rays are not normal 

to the sphere surface.  Therefore, the rays reflect from the surface at an angle 

and travel back through the interferometer along a different path than they came 

in on, causing an interferometer bias in the surface map that is not exactly twice 

the aberration from a single pass.  This interferometer bias will offset the defocus 

terms that are used to determine the confocal position and therefore will cause 

an error in the position.  The retrace errors at confocal will be larger for smaller 

radii (larger curvature) parts because the highly curved surfaces will cause the 

angle of the reflected rays to be even larger meaning the incoming and outgoing 

beams will be more offset in the interferometer.  

This retrace error is normally not a large concern in precision macro-scale 

radius measurements because the error is considered to be the same at confocal 

and cat’s eye position.  In this case, the error will cause an offset in both 

positions, but the difference between the two positions, and therefore the radius, 

will remain the same.  But, for micro-scale parts, the retrace error is different for 

confocal and cat’s eye positions.  Figure 6-3 shows a geometric ray model of 

cat’s eye with no aberration and with a half wave of added spherical aberration 

from a geometric ray trace Zemax simulation by Davies [41].  Without aberration, 

there is no retrace error at cat’s eye (or confocal).  With the aberration, the beam 

spot size at cat’s eye is approximately 4 µm.  With this relativity large spot size as 

compared to the radius of the part, the rays are reflecting from the surfaces at 
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large angles and causing larger retrace errors at cat’s eye than at confocal.  The 

analysis of the retrace errors at confocal is not shown here. 
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Figure 6-3:  Picture of cat’s eye reflection from a Zemax model of a radius 

measurement [54].   

These retrace errors are the reason the measured radius changed in 

experiment and the FRED simulation when the glass plate was introduced into 

the system.  The error in the radius measurement from the geometric Zemax 

model is shown in Figure 6-4 [54]. 



 
 

209

Impact of Wavefront Aberrations on Radius 

Measurement (f/1.1, 0.41 NA beam)

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

0.00 0.50 1.00 1.50 2.00

Ball Radius (mm)

0.5 Waves PV,

Spherical Aberration

0.2 Waves PV,

Spherical Aberration 

Measurement Goal

Micro-Optics

Impact of Wavefront Aberrations on Radius 

Measurement (f/1.1, 0.41 NA beam)

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

0.00 0.50 1.00 1.50 2.00

Ball Radius (mm)

0.5 Waves PV,

Spherical Aberration

0.2 Waves PV,

Spherical Aberration 

Measurement Goal

Micro-Optics
1 part in 10-1

1 part in 10-2

1 part in 10-3

1 part in 10-4

1 part in 10-5

1 part in 10-6

1 part in 100
E

rr
o

r 
in

 R
a
d

iu
s
 M

e
a
s

u
re

m
e

n
t 0.33 Waves 

0

4a

0.13 Waves 
0

4a

Impact of Wavefront Aberrations on Radius 

Measurement (f/1.1, 0.41 NA beam)

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

0.00 0.50 1.00 1.50 2.00

Ball Radius (mm)

0.5 Waves PV,

Spherical Aberration

0.2 Waves PV,

Spherical Aberration 

Measurement Goal

Micro-Optics

Impact of Wavefront Aberrations on Radius 

Measurement (f/1.1, 0.41 NA beam)

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

0.00 0.50 1.00 1.50 2.00

Ball Radius (mm)

0.5 Waves PV,

Spherical Aberration

0.2 Waves PV,

Spherical Aberration 

Measurement Goal

Micro-Optics
1 part in 10-1

1 part in 10-2

1 part in 10-3

1 part in 10-4

1 part in 10-5

1 part in 10-6

1 part in 100
E

rr
o

r 
in

 R
a
d

iu
s
 M

e
a
s

u
re

m
e

n
t 0.33 Waves 

0

4a

0.13 Waves 
0

4a

 
Figure 6-4:  Error in radius from a Zemax model of a radius measurement with 

added spherical aberration.   

Schmitz, et. al [27], considered this retrace error in the measurement of a 

nominally 25 mm radius sphere.  Schmitz performed a ray trace simulation of the 

radius measurement in Zemax.  For the transmission sphere in the model, he 

used the actual errors in an f/1.1 transmission sphere.  This simulation led to an 

18 nm bias in radius, a bias of 7 parts in 107.  This simulation also showed a 

larger bias in radius with smaller parts, similar to the error shown in Figure 6-4.  

Schmitz did not describe in detail how much spherical aberration ( 0

4a ) was 

present in the transmission sphere, but is likely less than 0.20 waves of 0

4a .   
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6.3.2 Retrace in the FRED Model and in Experiment 

The FRED model and the results from the experiment both show this 

retrace error.  This is easily shown by comparing the amount of spherical 

aberration at confocal to the amount of spherical aberration at cat’s eye.  Of 

course, in experiment, the spherical aberration of the test part will contribute to 

the spherical aberration at confocal, and but not at cat’s eye.  The spherical 

aberration that was added in the form of the glass plates is so much larger than 

the spherical aberration contribution from the test part; therefore the test part 

contribution is negligible.    

The difference in the confocal 0

4a  term and the cat’s eye 0

4a  in a FRED 

model with one 1.397 mm thick glass plate are shown in Figure 6-5.  The height 

maps shown are near, but not exactly at confocal and cat’s eye, because the 

exact cat’s eye and confocal positions are found through the linear fit.    
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Figure 6-5:  Phase Maps from FRED model when part is positioned at cat’s eye 
and confocal for 0.42 NA system with a 1.397 mm thick glass plate for a 

nominally 0.5 mm radius sphere.   
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Figure 6-6:  Experimental measurements on 0.99 mm radius stainless steel 

sphere on MORTI using 0.42 NA objective with 1.397 mm glass slide.   
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6.3.3 Spherical Aberration 

There is a large difference between the amounts of 0

4a  as predicated by 

FRED and the experimental data.  This is due in part to using a parabola in 

FRED instead of a thin lens, but mainly due to masking as described elsewhere.  

The parabola was used because FRED cannot model the perfect “thin lens” 

required to obtain a perfect focus point.  Figure 6-7  shows the schematics of the 

focusing of a perfect thin lens and a parabolic reflector used in FRED.  The 

experimental microscope objective is, of course, not a prefect thin lens, but is 

modeled as such because the design of the components in the objective is 

proprietary.    
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(a)       (b)  

Figure 6-7:  Schematic of (a) “prefect” thin lens focusing and (b) a parabola 
focusing.   

The calculation of the angle, θ, that each ray approaches the focal region is 

shown in Figure 6-7.  It is because the angles of corresponding rays of the thin 
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lens and the parabola are not the same that the spherical aberration is different 

in the thin lens and the parabola.  The calculated results of angle θ are shown in 

Figure 6-8 for a 0.42 NA objective where the aperture radius (corresponding to 

the distance along the y-axis) is 4.5 mm.  This shows the deviation between the 

parabola and the thin lens which leads directly to a difference in the amount of 

spherical aberration when a glass plate is inserted in the converging beam.  This 

is also demonstrated in Figure 6-9, which shows the results from a FRED model 

simulating the measurement of a 0.25 mm radius sphere.  The amount of 

spherical aberration, 0

4a , of each height map is shown in the black triangles.  This 

simulation had no additional aberration.  Without aberration, the offset of the test 

part should only result in additional defocus, not spherical aberration as is shown.  

The amount of spherical aberration is not insignificant either.  This shows that the 

parabola instead of the thin lens does have an effect on the simulated radius 

measurement. 
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Figure 6-8:  Angle that each ray approaches the focus point. 
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Figure 6-9:  Results of parabolic FRED model.  
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But, the larger effect (that explains the difference in the amount of spherical 

aberration) is the masking of the data as described in Chapter 4.  The quadratic 

shape of the spherical aberration curve causes a large reduction in the amount of 

0

4a  with masking.   

6.3.4 The Focal Shift 

The major affect of introducing the glass plate in the converging beam is 

that the focus point shifts away from the objective.  This shift is given by 














−=

gn
thicknessShiftFocus

1
1  

Equation 6-1 

as derived from the paraxial geometric ray model using Snell’s Law and 

geometric principles.  The index of refraction, ng of the glass is near 1.5.  A plot 

of the theoretical focus shift and the results from the experiments and the FRED 

Model are shown in Figure 6-10.  Both the FRED model and the experiment 

show a shift in the cat’s eye position away from the objective, as expected. The 

magnitude of the shift is comparable between the experiments, FRED, and the 

theoretical shift.  The differences are due to the uncertainty discussed earlier in 

the FRED chapter and the experimental chapter, the uncertainty in the index of 

refraction of the glass plate, and that a paraxial geometric ray model is used to 

derive the theoretical focus shift.         



 
 

216

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08
Thickness Glass Plate (mm)

F
o

c
u

s
 S

h
if

t 
(m

m
)

FRED 0.25 

mm radius

Theory 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3
Thickness Glass Plate (mm)

F
o

c
u

s
 S

h
if

t 
(m

m
)

Experiment, r=0.99 mm 

Experiment, 

r=0.59 mm 

Theory 

FRED,

r=0.5 

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08
Thickness Glass Plate (mm)

F
o

c
u

s
 S

h
if

t 
(m

m
)

FRED 0.25 

mm radius

Theory 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3
Thickness Glass Plate (mm)

F
o

c
u

s
 S

h
if

t 
(m

m
)

Experiment, r=0.99 mm 

Experiment, 

r=0.59 mm 

Theory 

FRED,

r=0.5 

 
Figure 6-10:  The focus shift as calculated using Equation 6-1 compared to the 

focus shift from the FRED model and the experimental results.   

6.3.5 Comparing FRED and Experiment with Spherical Aberration 

While the FRED model showed a larger amount of spherical aberration than 

the experiments, for the same thickness of plate, the data can still be examined 

for trends.  I have shown that the shift in the cat’s eye position is similar in FRED 

and in experiment, both away from the objective (or parabola).  The shift in the 
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confocal position follows a similar pattern and is comparable between FRED and 

the experiments. 

Both FRED and the experiments show an increasing radius with increased 

aberration as shown by the geometric ray model by Davies [41], Figure 6-4.  This 

comparison is shown by schematically in Figure 6-11 and numerically in Table 

6-2.  In the schematic, the experimental data is shown in the red stars.  This data 

is the maximum change in the radius measurement when spherical aberration is 

added.  In Table 6-2, the left hand column is the amount of spherical aberration 

in the wavefront at the camera when the part is located near cat’s eye.  The top 

rows are the methods of simulation or measurement and the nominal (or input) 

radius.  The error in the radius is shown in the blocks for the different conditions 

as shown.  Because I am unable to plot the absolute radius error of the 

experiment, I only plot the change from no aberration to aberration.  This change 

is shown with the lines in the experiment columns.  There is a break in the rows 

because the aberration is so much larger than the other cases. 
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Figure 6-11:  The error in the radius measurement showing the experimental 
data with added spherical aberration (red star).  The value of the red star is the 

amount that the radius changed with added spherical aberration. 
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Table 6-2:  The comparison of the error in the radius measurement with added 
spherical aberration. 
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I draw the following conclusions based on these results.  The change in the 

measured radius is larger in experiment than predicated by the model.  This is 

due to the uncertainty in the experimental radius measurement and because the 

experimental aberrations are more than just spherical aberration.  The error in 

FRED is larger than the geometric ray model, but is on the same order of 

magnitude.  The error increases with more aberration.  Over this small range of 
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radii (0.25 mm to 1 mm), the experimental errors do not correlate well to the size 

of the test part.  That is, the error does not seem to grow as the radius 

decreases.  The ray trace simulation predicts this however.  It is likely that the 

experimental uncertainty is too high to see this effect.  

6.4 Masking 

The masking of the data in the FRED model and in experiments affects the 

measured radius as shown in schematic in Figure 6-12 and numerically in Table 

6-3 in the presence of added spherical aberration.  The radius changes when the 

data is masked because when the spherical aberration is clipped it presents as 

defocus, as described in Section 3.11.  This defocus will cause the defocus vs. 

position curves to offset and therefore will change the radius.  The change in 

radius is larger in experiment because of the much more complex wavefront in 

experiment.  Masking this data changes how the defocus term fits much more so 

than in the more “prefect” simulation data.  The simulation data has very little, if 

any, higher order amounts of aberration, whereas the experimental does.      
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Figure 6-12:  The effect of changing the mask size on the radius measurement. 

Table 6-3:  The change in the radius when the mask is varied. 

 Change in Radius from 100% 

% of Original 
FRED,  Spherical 

Aberration ~ 1.2 wv, 
r= 0.5 mm 

Experiment, Spherical 
Aberration ~ 0.2 wv,     

r = 0.39 mm 

50 
4 parts in 104  

(200 nm) 

2 parts in 103 

(780 nm) 

75 
3 parts in 104 

(150 nm) 

1 part in 103 

(390 nm) 

 

6.5 Macro-Scale Parts 

I tested a 25 mm radius macro-scale part in the Gaussian simulation and in 

the FRED model.  The error in the radius as calculated from the Gaussian model 

is 4 parts in 107 (11 nm).  This model compares well to the 6 nm radius error as 
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calculated by Schmitz, et.al [27] even though Gaussian propagation was treated 

only approximately in this study.  The FRED model with the circular aperture 

input beam showed a radius error of 2 parts in 105, 461 nm.  This error is much 

larger than the Gaussian model and may explain the discrepancy between the 

interferometric and mechanical radius measurements found by Schmitz.  The 

simulation of macro-scale measurements needs more work to further investigate 

this possibility, including adding aberration.      

6.6 Uncertainty 

I described the estimated uncertainty of the modeling in FRED and in the 

experiment.  These are not combined uncertainty estimates, but rather capture 

either repeatability or sensitivity to model parameters.  The results are shown in 

Table 6-4.  It is difficult to estimate an uncertainty for the Gaussian model.  I am 

able to step in 0.1 nm steps in this model, so a position error in Z is not an effect.  

One method to estimate an uncertainty contribution is to compare the two 

different input beam types, the apertured and the un-apertured beam.  The 

difference between these two input beams is shown in Table 6-4.  An affect not 

shown here, is the model break down for the 0.55 0.7 NA objectives.  This would 

affect the uncertainty but and estimate of the amount is difficult.            
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Table 6-4:  The estimated uncertainty in the radius measurement. 

Radius (mm) 
Gaussian 

Model 
FRED Experiment 

0.2 or 0.25 1 part in 105 3 parts in 104 2 parts in 103 

0.5   2 parts in 104 9 parts in 104 

1 1 part in 106 8 parts in 105 5 parts in 104 

 

The uncertainty increases by about an order of magnitude for the Gaussian 

model, the FRED model, and in experiment.  The uncertainty increases for the 

smaller radii parts.     



 
 

CHAPTER 7:  FUTURE WORK AND CONCLUSIONS  

7.1 Future Work 

7.1.1 Retrace Errors 

The retrace errors that occur when the interferometer has aberration lead to 

an uncertainty in the radius measurement.  This uncertainty could be reduced as 

follows.  Ultimately, the inherent spherical aberration needs to be as low as 

possible.  This is accomplished by using well designed microscope objectives 

and transmission spheres and by having a well collimated aberration free input 

wavefront.  After the inherent aberration is reduced, the remaining can be 

measured.   

The inherent aberration in an interferometer can be measured by 

performing a random ball test [41].  This random ball test eliminates the error in 

the height map that is caused by errors in the test part.  The output of the random 

ball test is a height map that is then subtracted from all subsequent 

measurements.  The data remaining after subtraction is then just the error in the 

test part (and any alignment errors, such as the z-axis offset leading to defocus).  

But Gardner [41] has shown that the results from the random ball test will be 

different for different size test spheres.  In addition the result of the random ball 

test at confocal is not equal to the aberration in the interferometer at cat’s eye.   



 
 

225

Therefore, the retro-reflection test at cat’s eye must be used to determine 

the rotationally invariant components of the wavefront at cat’s eye [40].  Because 

the part can not be positioned exactly at cat’s eye, I must step through cat’s eye 

and determine the cat’s eye position at defocus equal to zero.  Then, the value of 

the spherical aberration (and higher order aberrations) is found at the 

corresponding z-value.  This now gives us a value of the spherical aberration at   

cat’s eye, but only for that specific radius part. 

In summation, a random ball test (~100 measurements) and then a 

measurement through cat’s eye is required can tell how much spherical 

aberration is present for the measurement.  But this information is still not 

enough to correct for the error in the radius measurement caused by the 

interferometer bias.   

7.1.2 Phase Change 

While the results from the phase change model predict small errors in the 

radius measurement due to the phase change, other areas of research could be 

explored.  The effect of the polarization state in the converging beam will change 

the offset due to the polarization which could be examined in theory and through 

experiments.  Some of this current research could be extended in examining the 

phase change effect in scanning white light interferometers which are used 

measure surface finish.  The current calculation of the phase change considered 

the geometric model of the focus point.  The calculation of the phase change 

when diffraction is considered is not known, but future work could include 

examining this effect.     
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To extend the current measurements, the uncertainty in the background 

subtraction must be reduced as discussed.  Then, the measurements of the 

phase change with varying incident angle could be performed along with 

measurements that examine the phase change as a function of material 

thickness.  

7.1.3 MORTI 

The interferometer needs to be improved to reduce the uncertainty in the 

radius measurement.  The uncertainties due to the fit and to the repeatability are 

too high. The uncertainty due to the fit includes many components including 

repeatability, wavefront aberration and phase shifting errors.  This uncertainty 

can be reduced by taking more data points for the defocus vs. position graph and 

reducing the aberration in the wavefront.  Improving the mechanical stability of 

the instrument and using a motor to control the z-axis motion could also reduce 

the uncertainty.  The automatic motion control reduces the amount of heat near 

the instrument and can be controlled with more precision.  The part test stage is 

currently on an x-y stage that is good for course motions but a new fine motion  

x-y stage for the test part would help in positioning.   

The mechanical alignment of the axis of the objective lens to the motion 

axis is not a current option in MORTI.  To fix this, a tip/tilt stage must be added to 

the microscope objective fixture.  Then the base of an indicator is placed on the 

test part stage (after the mechanical alignment of this stage) and the point of the 

indicator is on the side the microscope objective.  As the stages moves up and 

down, the indicator point varies.  With adjusting the tip/tilt of the objective, I could 
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align the microscope objective to the mechanical axis. A problem in this method 

occurs when switching to a different objective.  The new objective has a different 

alignment and therefore would need to be checked for each objective.  

The imaging leg on MORTI needs to be able to focus on a range of radii 

with the whole range of objectives.  Currently the wavefront on the camera is too 

large for the 0.28 NA objective and may be too small for the 0.7 NA objective.  

The current configuration also does not allow for good focusing when the 0.28 

NA objective is used for smaller parts.  It may not be possible to arrange the 

current imaging lenses in such a manner to fix this problem.  New lenses may be 

required, but the best likely solution is that different imaging lenses must be used 

for the different objectives.  

Another improvement related to the experiment is calculating the effect that 

the focusing effect (changing spot size) has on the radius measurement when 

spherical aberration is present.  This was presented here only to demonstrate 

that this could be a factor.  The calculation of this requires an estimate of the 

amount of spherical aberration, the definition of the spherical aberration and 

defocus terms, and the amount that the spot size changes. 

7.1.4 Model of Focal Region 

It is apparent that the FRED model does not accurately describe the wave 

field in the focal region.  New models still being researched [37] may describe 

this wave field better.  The new model removes the uncertainty due to variations 

in the source. The application of these models to the cat’s eye reflection (and 

radius measurement) is an area for future research.   
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7.1.5 FRED 

The uncertainty in FRED must be reduced if I want to use FRED to correct 

for the biases in the radius measurement.  Some of the uncertainty in FRED 

comes from using the parabola instead of a thin lens.  A method to correct this 

may be to create a converging beam that simulates the thin lens.  I would direct 

each ray in this beam to focus on the same spot, with the proper angle of 

incidence.  This is not an easy solution because each ray (the beamlet) would 

have to be input as a new source leading to near 1000 different sources.  I am 

unsure if FRED could handle this type of ray trace.  The Gaussian model may be 

able to do this by replacing the single large Gaussian beam with smaller 

beamlets in the same manner as FRED.  The combination of the beams at the 

detector is a problem though, because it is not a simple sum. 

If the model of the microscope objective is available, I could use it in the 

FRED simulation for the comparison to the experimental results.  It is unlikely 

though, that the manufacturer would ever divulge this information.  The wavefront 

of the microscope objective that I measured on the Veeco could be used in 

FRED to simulate (with an uncertainty) the actual aberrations of the objective. 

7.2 Conclusions 

Figure 1-5, reprinted here as Figure 7-1, shows the error in radius 

measurement when the geometric model is used instead of a more detailed 

model.  If the desired measurement uncertainty and the nominal radius of the 

measured part are known, this graph can be used to determine if the geometric 

model is valid.  For example, if the part radius is 2 mm, the spherical aberration is 
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0.1 waves, and the desired measurement uncertainty is 1 part in 104, the non-

aberrated geometric model will likely give an acceptable result.  For low 

uncertainty measurements, the more complex methods need to be considered.  

Another example is the effect of phase change on the radius measurement, 

which does not need consideration until ultra-precision measurements are 

required. 
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Figure 7-1:  The error in the radius measurement when the geometric model is 

used instead of a more detailed model [41, 54, 27]. 

Not shown on this graph is the uncertainty in using the model to correct for 

the bias in the radius measurement.  The uncertainly in using the FRED model to 

correct for the bias in radius is a few parts in 104.  This means that if the error is 
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smaller than a few parts in 104 (as is the case for 1 mm radius part with a desired 

uncertainty of 1 part 104), there is no point in using FRED to correct the bias.   

I have drawn conclusions throughout this work about when the models are 

valid and what parameters affect the measured radius.  These conclusions are 

summarized here.  The Gaussian and FRED models predict increased errors 

with smaller radius parts and with smaller NA objectives.  Both the confocal and 

cat’s eye positions shift in both models.  The simple Gaussian model loses 

validity with higher numerical apertures.  The FRED model shows an increased 

error in radius with increased spherical aberration.  The uncertainty in the FRED 

model is too high to use the model to correct for biases in many cases.  The 

phase change has a very small effect on the measured radius. 

The experiments show an effect on the measured radius with increased 

aberration and reducing the mask size.  The key issue in the experiments is the 

combination of the focusing effect, spherical aberration, and the mask size.   In 

the presence of spherical aberration, the focusing effect will change the radius of 

curvature and the mask size will have an effect.  This interplay is not completely 

understood, but the effect should be reduced if the mask size is checked and the 

measured data stays in the linear range. 
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APPENDIX A: ZERNIKES  

The set of Zernike polynomials were developed to represent wavefront 

aberration over a circular aperture.  The center of the circular aperture defines 

the center x,y of the Zernike set and the r, θ coordinates are set as usual.  The 

Zernikes are orthogonal and separate the rotationally invariant and rotationally 

variant.  Rotationally invariant indicates that the surface height (or phase) at any r 

value is the same or all theta values.  The two terms of interest for the radius 

measurement are the spherical aberration and the defocus and are shown in a 

Figure A-1.  Other Zernike terms, such as x-coma, astigmatism, and others, are 

relevant in other applications. 

Zernike Spherical

166 24 +− rr

Zernike Defocus

12 2 −r

Zernike Spherical

166 24 +− rr

Zernike Spherical

166 24 +− rr

Zernike Defocus

12 2 −r

Zernike Defocus

12 2 −r  
Figure A-1:  Two Zernike Terms 

Commonly, the first 36 Zernike terms are used to describe a wavefront.  

But, different systems use different numbering orders, which is why I specially 

say defocus and spherical.  Defocus is the 0

2a  term because it is the zero-order 

term in theta and the second-order term in radius.  Spherical is the 0

4a  term 

because it is the zero-order term in theta and the fourth-order term in radius. 
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APPENDIX B: MATLAB PROGRAMS 

______________________________________________________________ 

Program 1: guassian.m 

 
close all; 
clear all; 
 
%inputs 
 
r=0.5; 
NA = 0.42;  %the na 
f = 10; %the focal length, mm 
ha = 4.5;    %the half aperature, mm 
     
dt = 50;      %mm distance to focusing lens from bs 
dr = 150;     %mm distance to reference mirror from bs 
da = 50;      %mm distance from aperature to bs 
 
n = 1;              %index of air 
lam = 632.8e-6;     %wavelength mm 
 
     
%finding the input q, different cases 
 
qin_1 = -sqrt(-1)*pi*ha^2*n/lam;                %case1 
qin_2 = da - i*pi*ha^2*n/lam;           %case2 
qin_3 = (dt-f - sqrt(-1)*f.^2.*NA.^2*pi/lam)'; %case3 
%picking which case to use 
qin  = qin_3 
    
     
    %this section is just to find where in z to look for the solutions.  
    %this is just for the general case - both ce and cf 
    %soultions will be near f and f-r. so we look from f -2r to f+r 
    maxs = f+r; 
    mins = f-2*r; 
     
    %the position of the test part for the general case 
    s = mins:1e-3:maxs; 
     
    %the reference arm: 
    % 
    %propagation matrix for the reference arm (travels 2*dr) 
    ref_matrix = [1 2*dr; 0 1]; 
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    %calcuating the output complex curv and curv of the reference arm 
    qref_out = 
(qin*ref_matrix(1,1)+ref_matrix(1,2))/(qin*ref_matrix(2,1)+ref_matrix(2,2)); 
    curv_ref_out = real(1./qref_out); 
     
    %the test arm matrices 
    % 
    %matirx for mirror (test part) 
    mirror = [1 0 ; 2/r 1]; 
    %matrix for lens 
    lens = [ 1 0 ; -1/f 1]; 
    %matrix for propagation of test arm from bs to lens 
    dt_prop = [1 dt; 0 1]; 
     
    %initalizing variables to make it run faster 
    qtest_out = zeros(size(s)); 
    curv_test_out = zeros(size(s)); 
    qreal_test_out = zeros(size(s)); 
 
     
    %this is for the general case, both ce and cf, in large steps. 
    for i = 1:length(s) 
        %prop matix for distance from lens to part 
        s_prop = [1 s(i); 0 1]; 
        %full matrix for test arm 
        test_matrix = dt_prop*lens*s_prop*mirror*s_prop*lens*dt_prop; 
        %output complex curv for test arm 

        qtest_out(i) = (test_matrix(1,1)*qin + test_matrix(1,2))/(test_matrix(2,1)*qin + 
test_matrix(2,2)); 
    end % i loop 
     
    %real curv of test arm 
    curv_test_out = real(1./qtest_out); 
    qreal_test_out = real(qtest_out); 
    %ploting the general case 
    % 
%     figure 
%     plot(s,curv_test_out-curv_ref_out) 
%     title('Curv test general') 
%      
     
    %this section will find a point inbetween ce and cf, split the s vector in 
    %two at this point,  find the max and min values of the curv in the 2 
    %sections, and then build new s vectors that have small steps inbetween the 
    %max and min values 
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    %split point inbetween ce and cf 
    split_point = single(f-r/2) ; 
    %index of spilt point 
    index_split = find(single(s) == split_point); 
     
    %the cf curv - long 
    qreal_cf_long = qreal_test_out(1:index_split); 
    %the ce curv - long 
    qreal_ce_long = qreal_test_out(index_split+1:length(s)); 
     
    %finding the max and min values in ce curv long and the index of them 
    max_ce_qreal = max(qreal_ce_long); 
    index_max_ce = find(qreal_test_out == max_ce_qreal); 
    min_ce_qreal = min(qreal_ce_long); 
    index_min_ce = find(qreal_test_out == min_ce_qreal); 
     
    %bulding the new ce s vector from s at the max value to s at the min value 
    s_ce = s(index_max_ce):1e-7:s(index_min_ce); 
     
    %finding the max and min values in cf curv long and the index of them 
    max_cf_qreal = max(qreal_cf_long); 
    index_max_cf = find(qreal_test_out == max_cf_qreal); 
    min_cf_qreal = min(qreal_cf_long); 
    index_min_cf = find(qreal_test_out == min_cf_qreal); 
     
    %bulding the new cf s vector from s at the max value to s at the min value 
    s_cf = s(index_max_cf):1e-7:s(index_min_cf); 
     
     
    %ce 
    %initalizing variables to make it run faster 
    qtest_out_ce = zeros(size(s_ce)); 
    curv_test_out_ce = zeros(size(s_ce)); 
    %this is for the ce, in small steps. 
    for i = 1:length(s_ce) 
        %prop matix for distance from lens to part 
        s_prop = [1 s_ce(i); 0 1]; 
        %full matrix for test arm 
        test_matrix = dt_prop*lens*s_prop*mirror*s_prop*lens*dt_prop; 
        %output complex curv for test arm 
        qtest_out_ce(i) = ( test_matrix(1,1)*qin+ test_matrix(1,2))/( 
test_matrix(2,1)*qin+ test_matrix(2,2)); 
         
    end  %i loop 
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    %real curv of test arm for ce 
    curv_test_out_ce = real(1./qtest_out_ce); 
   
    %ploting ce 
%    figure 
%    plot(s_ce,curv_test_out_ce,'*') 
%    title('CE curv') 
%      
    
    %cf 
    %initalizing variables to make it run faster 
    qtest_out_cf = zeros(size(s_cf)); 
    curv_test_out_cf = zeros(size(s_cf)); 
     
    %this is for the cf, in small steps. 
    for i = 1:length(s_cf) 
        %prop matix for distance from lens to part 
        s_prop = [1 s_cf(i); 0 1]; 
        %full matrix for test arm 
        test_matrix = dt_prop*lens*s_prop*mirror*s_prop*lens*dt_prop; 
        %output complex curv for test arm 
        qtest_out_cf(i) = (test_matrix(1,1)*qin + 
test_matrix(1,2))/(test_matrix(2,1)*qin + test_matrix(2,2)); 
    end 
     
    %real curv of test arm for cf 
    curv_test_out_cf = real(1./qtest_out_cf); 
    rad_test_out_cf = 1./curv_test_out_cf; 
      
    %ploting cf 
 %    figure 
 %    plot(s_cf,curv_test_out_cf,'*') 
  %   title('CF curv') 
 
       %finding where the curvature matches, cf 
       %offset the test curv, so the it easiest, i can just find the find, instead 
    %of searching for a number match ce 
    curv_inter_cf = curv_test_out_cf - curv_ref_out;  
    abs_curv_inter_cf = abs(curv_inter_cf); 
    cf_min = min(abs_curv_inter_cf); 
    cf_index = find( abs_curv_inter_cf == cf_min); 
    cf_position = s_cf(cf_index); 
    
            
    %finding where the curvature matches, ce 
       %offset the test curv, so the it easiest, i can just find the find, instead 
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    %of searching for a number match ce 
    curv_inter_ce = curv_test_out_ce - curv_ref_out;  
    abs_curv_inter_ce = abs(curv_inter_ce); 
    ce_min = min(abs_curv_inter_ce); 
    ce_index = find( abs_curv_inter_ce == ce_min); 
    ce_position = s_ce(ce_index); 
  
 
    %the radius of the part is the difference in position. 
   output_radius = ce_position-cf_position; 
     
   radius_error = output_radius - r ; 
    
   ce_offset= ce_position-f; 
   cf_offset = cf_position-(f-r); 
    
%outputs 
cf_position=cf_position' 
ce_position=ce_position' 
ce_offset=ce_offset'*1e6  
cf_offset=cf_offset'*1e6  
output_radius=output_radius' 
r 
radius_error = radius_error'*1e6 
 
 
______________________________________________________________ 

Program 2: der_test.m 

 
close all; 
clear all; 
 
R1 = 1e4; %input radius 
w1 = 25; % mm, input waist 
n=1; %index of air 
lam = 632.8e-6; % mm, wavelength 
 
f=100; %focal length 
k = 2*pi/lam; %k number, wave number 
 
A = 1/((1/R1)-(i*lam/(pi*w1^2))-(1/f));%from equation 
 
%counting distance past lens 
dist = 50:1e-2:110; 
for v = 1:length(dist) 
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    d = dist(v); 
    q3(v) = A +d; %new q 
    R3 = 1./real(1./q3); %new radius 
    w3(v) = sqrt(-lam./(pi*imag(1./q3(v)))); %new waist 
 
    r = w3(v); %position too lok at derivative (g in equation) 
    B = k*r.^2/2;  
    phi(v) = exp(-i*B./(A+d));  %phi 
    phi1(v) = exp(-i*B./(A+d)).*(i*B./(A+d).^2);    %frist derivative of phi 
    phi2(v) = exp(-i*B./(A+d)).*(-i*B./(A+d).^2).^2 +exp(-i*B./(A+d)).*((-
2*i*B)./(A+d).^3); %second derivative of phi 
end 
 
%the amplitude of each of the phis and derivatives 
amp_phi = sqrt(real(phi).^2+imag(phi).^2); 
amp_phi1 = sqrt(real(phi1).^2+imag(phi1).^2); 
amp_phi2 = sqrt(real(phi2).^2+imag(phi2).^2); 
 
%plotting, phi, and the ders 
plot(dist,(k^2*amp_phi),dist,(k*amp_phi1),dist,(amp_phi2)) 
ylabel('Amplitude Electric Field per mm^2') 
xlabel('Distance from Objective (mm)') 
grid 
 
%plotting R and w 
figure 
subplot(2,1,2) 
plot(dist,w3) 
ylabel('w_3 (mm)') 
xlabel('Distance from Objective (mm)') 
grid 
 
subplot(2,1,1) 
plot(dist,R3) 
ylabel('R_3 (mm)') 
xlabel('Distance from Objective (mm)')  
grid 
 
%the values of the amplitude to compare 
[(k^2*amp_phi(1:15))' (k*amp_phi1(1:15))' (amp_phi2(1:15))'] 
k^2*amp_phi(1) 
k*amp_phi1(1) 
amp_phi2(1) 
 
 
______________________________________________________________ 
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Program 3: get_20_40_from_fred.m 

 
function [z_a20, z_a40] = 
get_20_40_from_fred(file_name,matrix_size,want_plot,i) 
% 
%inputs: file_name (with .dat), matrix_size (pixels) 
%want plot( 'y' if want to plot the data), i, a number for the title of the plot 
%outputs: z_a20 (defocus),z_a40 (spherical) 
 
num_zerns = 36; 
%the zern parameters we want 1 to 36 
viz = 1:1:num_zerns; 
 
%getting the data from the fred file in phase 
[x_vect,y_vect,z_rad] = read_fred(file_name); 
 
%center and radius of data 
pos = [round(matrix_size/2) round(matrix_size/2)]; 
r = round(matrix_size/2); 
 
%masking the data to a circle 
[z_rad] = mask_circle(z_rad,pos,r); 
          
%unwrapping 
 z_rad = unwrap(z_rad); 
 z_rad = unwrap(z_rad,[],2); 
  
   z = z_rad./4*pi;  %phase map is now in waves (2 pi rads = 1 wave) 
 
   %plotting the data 
 if want_plot == 'y' 
   
       figure 
       pcolor(x_vect,y_vect,z) 
      shading interp 
     % colormap gray 
       
       axis equal 
       colorbar 
       axis off 
       tit_str = ['the ' num2str(i) 'th dataset']; 
      title(tit_str) 
   end 
    
    %size of map 
    vsize= size(z); 
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    %getting mr and ma from the function 
   [mr,ma] = zern_radius_angle(vsize,pos,r); 
     
    %getting the zens 
[zern,rmse,spar,tpar,ppar] = zern_estim(z,mr,ma,viz); 
 
%outputing the defocus and spherical 
z_a20 = zern(5,:); 
z_a40 = zern(13,:); 
 
______________________________________________________________ 

Program 4: read_fred.m 

 

function [x_vect,y_vect,z]=read_fred(fname_str) 
%read_fred.m 
% 
%a subfunction program to read in the .dat files exported by fred's intensity map 
function 
% 
%input  
%   fname_str   string of the file name (including the .dat) 
% 
%output  
% x_vect,y_vect     x and y coords in units from fred (likely mm?) 
%       z           Height map of data in units from fred (likely mm?) 
 
%open the file up 
fid = fopen(fname_str); 
 
%we can discard the first 5 lines 
for i = 1:5 
    tline1 = fgetl(fid); 
end 
 
%getting the infor about the size of the data 
matrix_size_info = fgetl(fid); 
ignore = fgetl(fid); 
step_size_x_y = fgetl(fid); 
min_x_y = fgetl(fid); 
 
%getting this info in the correct form 
[min_x min_y] = strread(min_x_y,'%n%n'); 
[step_size_x step_size_y] = strread(step_size_x_y,'%n%n'); 
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[ignore lengthx lengthy] = strread(matrix_size_info,'%s%n%n'); 
 
%forming the vectors for x and y 
max_x = lengthx*(step_size_x) + min_x-step_size_x; 
max_y = lengthy*(step_size_y) + min_y-step_size_y; 
 
x_vect = min_x:step_size_x:max_x; 
y_vect = min_y:step_size_y:max_y; 
 
for i = 1:lengthy 
    line = fgetl(fid); 
    z(:,i) = str2num(line)'; 
end 
 
fclose(fid); 
 
______________________________________________________________ 

Program 5: mask_cricle.m 

 
function [map] = mask_circle(map,pos,r,binner,mval) 
% function [map] = mask_circle(map,pos,r,binner,mval) 
% 
% mask_circle: apply one or more circular masks to an image or 
%              generate circular masks. 
%  
% map   : image array 
% pos   : each row contains the center of a circle (in pixels) 
% r     : circle radii in pixels (can be a vector) 
% binner: OPTIONAL, for each circle, a value of 1 indicates that  
%         the inner part of the circle will be removed from the 
%         image. Default is 0 i.e. mask the outside. 
% mval  : OPTIONAL, value to which the masked areas will be set. 
%         Default is NaN. 
% 
% EXAMPLES: 
% 
%    img = mask_circle(img,[550,500],350); 
% 
%       Masks an image 'img' with a circular mask. The outside of 
%       the circle is masked with NaN values. 
% 
%    mask = mask_circle(ones(size(img)),[550,500],350,0,0); 
% 
%       Generates a mask with the dimensions of 'img' with the area 
%       inside the circle set to one and the area outside the 
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%       circle set to 0. The mask can then be applied (with .*) to  
%       several images. 
% 
 
% This software was developed at the National Institute of Standards and 
Technology 
% by employees of the Federal Government in the course of their official duties. 
% Pursuant to title 17 Section 105 of the United States Code this software is not 
% subject to copyright protection and is in the public domain. This software is an 
% experimental system. NIST assumes no responsibility whatsoever for its use 
by other 
% parties, and makes no guarantees, expressed or implied, about its quality, 
reliability, 
% or any other characteristic. We would appreciate acknowledgement if the 
software is used. 
%   
% This software can be redistributed and/or modified freely provided that any 
derivative 
% works bear some notice that they are derived from it, and any modified 
versions bear 
% some notice that they have been modified. 
%  
% Revision history: 
% Hans Soons, NIST, November 2001    initial version 
% Ulf Griesmann,    11 Jan 2002,     allow masking with something 
%                                    other than NaN. 
% --------------------------------------------------------- 
 
% check parameters 
  if nargin <= 4, mval = NaN; end; 
  if nargin <= 3, binner = zeros(1,size(pos,1)); end; 
 
  [n1,n2] = size(map); 
 
  vx = (1:1:n2)'; 
  vy = (1:1:n1)'; 
 
  [mx,my] = meshgrid(vx,vy); 
 
% transform y offset to proper coordinate frame 
  pos(:,2) = (n1-pos(:,2)+1); 
  for i = 1:length(pos(:,1)), 
    if binner(i) == 1, 
      map((((mx-pos(i,1)).^2+(my-pos(i,2)).^2) <= r(i)^2)) = mval; 
    else 
      map((((mx-pos(i,1)).^2+(my-pos(i,2)).^2) > r(i)^2)) = mval; 
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    end; 
  end; 
 
 
______________________________________________________________ 

Program 6: zern_radius_angle.m 

 
function [mr,ma] = zern_radius_angle(vsize,vpos,radius) 
%  function [mr,ma] = zern_radius_angle(vsize,vpos,radius) 
% 
%  zern_radius_angle: calculate normalized radii and angles for  
%                     each point of a map 
% 
%  mr     : array with normalized radii at each point of the map 
%  ma     : array with angles at each point of the map 
%           (defined relative to y, x corresponds to pi/2) 
%  vsize  : vertical and horizontal dimension of the map  
%           (i.e. result of size(map)) 
%  vpos   : center position circle within which to estimate 
%  radius : radius circle  
 
% This software was developed at the National Institute of Standards and 
Technology 
% by employees of the Federal Government in the course of their official duties. 
% Pursuant to title 17 Section 105 of the United States Code this software is not 
% subject to copyright protection and is in the public domain. This software is an 
% experimental system. NIST assumes no responsibility whatsoever for its use 
by other 
% parties, and makes no guarantees, expressed or implied, about its quality, 
reliability, 
% or any other characteristic. We would appreciate acknowledgement if the 
software is used. 
%   
% This software can be redistributed and/or modified freely provided that any 
derivative 
% works bear some notice that they are derived from it, and any modified 
versions bear 
% some notice that they have been modified. 
%  
% Version 1.0 
% Hans Soons, NIST, November 2001 
% --------------------------------------------------------- 
 
% generate maps with x and y coordinates 
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  [mx,my] = meshgrid(1:1:vsize(2),1:1:vsize(1)); 
 
% put y coordinate in proper coordinate frame 
   
  my = vsize(1)-my+1; 
   
% generate angle and radius maps 
 
  mr = sqrt((mx-vpos(1)).^2+(my-vpos(2)).^2); 
  ma = atan2((mx-vpos(1)),(my-vpos(2))); 
   
% normalize 
 
  mr = mr/radius; 
 
______________________________________________________________ 

Program 7: zern_estim.m 

 
function [vpar,rmse,spar,tpar,ppar] = 
zern_estim(map,mr,ma,viz,weights,salgor,snoise) 
% function [vpar,rmse,spar,tpar,ppar] = 
zern_estim(map,mr,ma,viz,weights,salgor,snoise) 
% 
% zern_estimate: estimates Zernike coefficients 
% 
% Zernike terms are numbered as follows:  
% (D. Malacara, Optical Shop Testing, 2nd edition, p.465 John Wiley 1992) 
% 
%   term     n    m    l 
% 
%    1       0    0    0 
%    2       1    0    1 
%    3       1    1   -1 
%    4       2    0    2 
%    5       2    1    0 
%    6       2    2   -2 
%    :       :    :    : 
% 
% Where n equals the degree of the radial polynomial and l the angular 
% dependence (exponential) parameter (l=n-2m) 
% 
% map     : matrix or vector with heights 
% mr      : matrix or vector with normalized radii at each point of the map 
% ma      : matrix or vector with angles at each point of the map 
%           (defined relative to y, x corresponds to pi/2) 
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% viz     : vector with the numbers of the zernike terms to be estimated 
% vpar    : estimated parameters (padded with zeros)  
% weights : optional, array having the same size as the phase map used to 
weigh 
%           each observation (e.g., the intensity map). The weights are assumed to  
%           equal the inverse of the noise variance at each point. 
% salgor  : optional, algorithm used to solve the least squares problem 
%           'qr'    : Solution by QR decomposition of the design matrix using 
%                     Householder transformations. This is a numerically accurate 
method but very  
%                     memory intensive. Use for many Zernike terms may yield memory 
problems. 
%           'normal': DEFAULT. This algorithm explicitly calculates the normal 
equations (X'X) b = X'y 
%                     before solving them. The algorithm does not assume 
orthogonality but 
%                     is numerically inferior to the QR procedure. This option is fast and 
%                     not memory intensive, allowing for many Zernike terms to be 
estimated. 
%           'orthogonal' : This algorithm assumes orthogonality of the Zernike terms. 
In practice 
%                     this is only an approximation due to the discretization of the map. 
%                     The algorithm explicitly calculates the relevant elements of the 
normal 
%                     equations. This option is fast and not memory intensive, allowing 
for many 
%                     Zernike terms to be estimated.  
% snoise  : optional, estimate of the standard deviation of uncorrelated 
measurement noise. 
%           If present, this standard deviation is used to estimate the statistical 
properties of  
%           each estimated parameter. If snoise is not defined, the root mean 
squared residual 
%           error is used instead, which is not an accurate measure if the model is 
incomplete. 
% rmse    : root mean squared residual error 
% spar    : estimated standard deviation for each estimated parameter 
% tpar    : t-statistic for each estimated parameter (ratio of parameter value to its 
standard deviation) 
%           As the model is close to being orthogonal, this parameter can be used 
to evaluate the  
%           significance of individual parameters and subsets of parameters. 
% ppar    : probability that an estimated parameter is significant (has a value 
unequal to zero),  
%           assuming Gaussian uncorrelated noise. 
%   
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% The weights are implemented to yield the following problem: 
% 
%   Minimize the sum of  weights .* (map - fitted_map).^2 
 
% This software was developed at the National Institute of Standards and 
Technology 
% by employees of the Federal Government in the course of their official duties. 
% Pursuant to title 17 Section 105 of the United States Code this software is not 
% subject to copyright protection and is in the public domain. This software is an 
% experimental system. NIST assumes no responsibility whatsoever for its use 
by other 
% parties, and makes no guarantees, expressed or implied, about its quality, 
reliability, 
% or any other characteristic. We would appreciate acknowledgement if the 
software is used. 
%   
% This software can be redistributed and/or modified freely provided that any 
derivative 
% works bear some notice that they are derived from it, and any modified 
versions bear 
% some notice that they have been modified. 
%  
%  
% NOTE: STATISTICS NEED TO BE MODIFIED FOR WEIGHTS  
%   
% Version 0.2 
% Hans Soons, NIST, 11/2001, 12/2001, 01/2002 
% --------------------------------------------------------- 
 
% set default values 
 
  if (nargin <= 6), snoise = []; end; 
  if (nargin <= 5), salgor = []; end; 
  if (nargin <= 4), weights = []; end; 
 
  if isempty(weights), weights = ones(size(map)); end; 
  if isempty(salgor), salgor = 'normal'; end; 
% 
% limit evaluation to non NaN values 
% 
  vi = find((~isnan(map)) & ((mr <= 1) & ~isnan(mr))); 
  mr = mr(vi); 
  ma = ma(vi); 
  map = map(vi); 
  weights = weights(vi); 
% 
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% center data 
%  
  rmean = mean(map); 
  map = map-rmean; 
% 
% solve according to desired routine 
% 
  switch lower(salgor) 
    case 'qr' 
      [vpar,mcov,mse] = zern_estim_qr(map,mr,ma,viz,weights); 
    case 'normal' 
      [vpar,mcov,mse] = zern_estim_normal(map,mr,ma,viz,weights); 
    case 'orthogonal' 
      [vpar,mcov,mse] = zern_estim_ortho(map,mr,ma,viz,weights); 
    otherwise 
      error([salgor,' is not a valid algorithm option']); 
  end; 
% 
% add mean 
% 
  vi = find(viz == 1); 
  if ~isempty(vi), 
    vpar(viz(vi(1))) = vpar(viz(vi(1)))+rmean; 
  end; 
% 
% calculate statistical properties 
% 
  rmse = sqrt(mse);  
 
  if isempty(snoise), 
    snoise = rmse; 
  end; 
 
  no = length(map); 
  np = length(viz); 
  nz = max(viz); 
 
  spar = zeros(nz,1); 
  tpar = zeros(nz,1); 
 
  spar(viz) = snoise*(diag(mcov)).^(1/2); 
  tpar(viz) = abs(vpar(viz)./spar(viz)); 
 
  ppar = zeros(nz,1); 
  for i = 1:length(viz), 
    ppar(viz(i)) = tcdf(tpar(viz(i)),no-np); 
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  end; 
 
 
% -------------------------------------------- 
% Subfunction zern_estim_qr 
% -------------------------------------------- 
 
  function [vpar,mcov,mse] = zern_estim_qr(map,mr,ma,viz,weights) 
% 
% zern_estim_qr: estimates Zernike coefficients 
 
% --------------------------------------------------------- 
 
% 
% initialize design matrix 
% 
  no = length(map); 
  np = length(viz); 
  nz = max(viz); 
% 
  mX = zeros(no,np); 
% 
% calculate design matrix 
% 
  disp(' '); 
  disp(' Estimating Zernike Polynomial ...'); 
  disp(' '); 
% 
  for i = 1:np, 
% 
%   get Zernike term 
% 
    vp = zeros(nz,1); 
    vp(viz(i)) = 1; 
      
    mX(:,i) = zern_eval(mr,ma,vp); 
 
  end; 
% 
% Estimate parameters 
 
  vpar = zeros(nz,1); 
% 
% Apply weights 
% 
  weights = weights.^(1/2); 
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  map = map.*weights; 
  for i = 1:np, 
    mX(:,i) = mX(:,i).*weights; 
  end; 
% 
% solve system 
% 
  vpar(viz,1) = mX\map; 
% 
% return statistics 
% 
  mcov = inv(mX'*mX); 
  sse = map'*map-vpar(viz)'*mX'*map; 
  mse = sse/(no-np); 
 
 
% -------------------------------------------- 
% Subfunction zern_estim_ortho 
% -------------------------------------------- 
 
  function [vpar,mcov,mse] = zern_estim_ortho(map,mr,ma,viz,weights) 
% 
% zern_estim_ortho: estimates Zernike coefficients assuming orthogonality of the 
%                   Zernike terms. 
 
% --------------------------------------------------------- 
 
% note: don't worry about scaling and centering the design matrix 
%       columns as the Zernike terms are already scaled 
% 
% initialize 
% 
  np = length(viz); 
  nz = max(viz); 
  no = length(map); 
     
  vX = zeros(np,1); 
  vY = zeros(np,1); 
% 
  disp(' ');   
  disp(' Estimating Zernike Polynomial ...'); 
  disp(' '); 
 
  for ip = 1:length(viz), 
% 
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%   get Zernike term 
% 
    vp = zeros(nz,1); 
    vp(viz(ip)) = 1; 
    [vdes] = zern_eval(mr,ma,vp); 
% 
%   calculate contribution to system 
% 
    vX(ip,1) = vX(ip,1)+vdes'*(vdes.*weights); 
    vY(ip,1) = vY(ip,1)+vdes'*(map.*weights);   
 
  end; 
 
% solve weighted least squares problem 
 
  vpar = zeros(nz,1); 
  vpar(viz,1) = vY./vX; 
% 
% return statistics 
% 
  mcov = diag(vX.^(-1)); 
 
% As orthogonality is only an approximation, the sse estimate will not 
% be correct. Re-evaluation of the full model however takes time 
% that may not be warranted for this option.  
 
  sse = map'*(map.*weights)-2*vpar(viz)'*vY+vpar(viz)'*diag(vX)*vpar(viz); 
  mse = sse/(no-np); 
 
 
% -------------------------------------------- 
% Subfunction zern_estim_normal 
% -------------------------------------------- 
 
  function [vpar,mcov,mse] = zern_estim_normal(map,mr,ma,viz,weights) 
% 
% zern_estim_normal: Estimates Zernike coefficients by explicit calculation 
%                    of the normal equations before solving them. This procedure 
%                    is numerically inferior to say the QR decomposition of the  
%                    design matrix. 
 
% Version 1.0 
% --------------------------------------------------------- 
 
% note: don't worry about scaling and centering the design matrix 
%       columns as the Zernike terms are already scaled 
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% 
% set maximum number of elements in the design matrix to avoid memory 
problems 
 
  nmax = 1E7; 
 
% initialize 
 
  np = length(viz); 
  nz = max(viz); 
  no = length(map); 
     
  mX = zeros(np,np); 
  vY = zeros(np,1); 
% 
  weights = weights.^(1/2); 
% 
% estimate number of sub problems 
% 
  ns = ceil((no*np)/nmax); 
 
  disp(' '); 
  disp(' Estimating Zernike Polynomial ...'); 
  disp(' '); 
 
  ic = 0; 
 
  for is = 1:ns, 
% 
%   set observations in this patch 
% 
    vi = (is:ns:no)'; 
% 
    mdes = zeros(length(vi),np); 
% 
    for ip = 1:np, 
% 
%     get Zernike term 
% 
      vp = zeros(nz,1); 
      vp(viz(ip)) = 1; 
      mdes(:,ip) = zern_eval(mr(vi),ma(vi),vp).*weights(vi); 
% 
      ic = ic+1; 
 
    end; 
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% 
%   calculate contribution to system 
% 
    mX = mX+mdes'*mdes; 
 
    vY = vY+mdes'*(map(vi).*weights(vi));   
  end; 
% 
% solve normal equations 
% 
  vpar = zeros(nz,1); 
  vpar(viz,1) = mX\vY; 
 
% return statistics 
% 
  mcov = inv(mX); 
  sse = map'*(map.*weights)-2*vpar(viz)'*vY+vpar(viz)'*mX*vpar(viz); 
  mse = sse/(no-np); 
 
______________________________________________________________ 

Program 8: foc_effect_no_image.m 

     
close all; 
clear all; 
 
f = 2; %mm, focal length 
A  = 4.5; % mm, half aperature 
 
d = 1000;  %distance objective to camera in mm 
 
f=10; 
partd =  f-.1:0.00001:f+.25; 
s=2*(partd-f)+f; 
 
s_prime = (s*f)./(s-f); 
R = -s_prime + d; 
 
a_prime = A*(R)./s_prime; 
h =abs(R)- sqrt(R.^2-a_prime.^2); 
 
figure 
plot(partd-f,h*1000,'k') 
xlabel('Position of Part (where 0 = f) (mm)') 
ylabel('Sag at camera (micrometers)') 
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title_str = ['focal length is ' num2str(f) ' mm, d is ' num2str(d) ' mm, a is ' 
num2str(A) ' mm' ]; 
%title(title_str) 
grid 
axis([min(partd-f) max(partd-f) 0 3]) 
hold on 
 
______________________________________________________________ 

Program 9: foc_effect_w_image.m 

 
close all; 
clear all; 
 
f1 = 250;       %FL of lens1 
f2 = 100;       %FL of lens2 
f3 = 75.6;       %FL of lens3 
f4 = 130;       %FL of lens4 
 
lo1 = 310;       %dist obj to L1 
l12 = f1+f2;      %dist to L1 to L2  do not change 
 
%using my lookup cahrt for a 0.5 mm part 
      %dist to L2 to L3 
 
l34 = f3+f4;       %dist to L3 to L4  do not change 
l4c =130;       %dist to L4 to Lcam 
 
na = 0.42; 
    
radius_part = 0.5  %mm 
 
l23 = 145;%%using my lookup cahrt for a 0.5 mm part 
      %dist to L2 to L3 
       
fo = 10%mm fL of objective lens 
 A = 4.5% 1/2 width of aperature, mm 
 
 
partd =  fo-2:0.00001:fo+2; 
so=2*(partd-fo)+fo; 
 
%so = 9.2:0.0001:10.2;    
so_p = (so*fo)./(so-fo); 
s1 = lo1-so_p; 
s1_p = (s1*f1)./(s1-f1); 
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s2= l12-s1_p; 
s2_p = (s2*f2)./(s2-f2); 
 
%l23 = 142;       %dist to L2 to L3 
s3= l23-s2_p; 
s3_p = (s3*f3)./(s3-f3); 
s4= l34-s3_p; 
s4_p = (s4*f4)./(s4-f4); 
R = -s4_p + l4c; 
Ml = (f2/f1)*(f4/f3); 
Ac = Ml.*A.*R./s4_p; 
%  
 sag = abs(R)- sqrt(R.^2-Ac.^2); 
 
%figure 
plot(partd-fo,sag*1000) 
xlabel('Position of Part (where 0 = f) (mm)') 
ylabel('Sag at camera (micrometers)') 
title_str = ['morti(with image) f=' num2str(fo) ', Lo1= ' num2str(lo1) ', L23= ' 
num2str(l23) ', L4c= ' num2str(l4c) ]; 
%title(title_str) 
axis([-0.5 0.1 0 10])%0 10]) 
grid 
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APPENDIX C: CALIBRATION DATA 

The laser scale was calibrated using the displacement measuring 

interferometer as follows.  The final calibration is 0.862153 mm per edisplay unit. 

 
SET 1 SET 2 SET 3 SET 4

Moving Stage Up Moving Stage Up Moving Stage Up Moving Stage Down

Steps of ~0.1 mm Steps of ~0.25 mm Steps of ~0.5 mm Steps of ~0.25 mm
Edisplay DMI Edisplay DMI Edisplay DMI Edisplay DMI

0 0 0 0 0 0 0 0

-0.153 0.132 -0.2893 0.2496 -0.5794 0.4998 0.3045 -0.2623

-0.322 0.2781 -0.5715 0.4928 -1.1625 1.0025 0.5981 -0.5151

-0.373 0.3218 -0.8714 0.7515 -1.7457 1.5052 0.8724 -0.7519

-0.4786 0.4129 -1.156 0.9968 -2.321 2.0021 1.1743 -1.0121

-0.5808 0.501 -1.458 1.2572 -2.9165 2.5147 1.4535 -1.2526

-0.7072 0.6101 -1.7336 1.4949 -3.494 3.0128 1.8073 -1.5574

-0.8269 0.7126 -2.0419 1.7607 -4.0904 3.5269 2.0355 -1.7543

-0.937 0.8082 -2.3304 2.0094 -4.636 3.9972 2.3218 -2.0012

-1.065 0.9186 -2.6128 2.253 -5.2376 4.516 2.6108 -2.2503

-1.1795 1.0173 -2.9188 2.5167 -5.8114 5.0107 2.8968 -2.4969

-1.2988 1.1202 -3.1917 2.752 -6.3869 5.507 3.2072 -2.7642

-1.4055 1.2121 -3.4769 2.998 3.4769 -2.9968

-1.504 1.2971 -3.7833 3.2626 3.7676 -3.2475

-1.6239 1.4005 -4.0619 3.5025 4.0545 -3.4948

-1.7395 1.5002 -4.3603 3.76 4.4029 -3.7951

-1.8633 1.6067 -4.6316 3.9938 4.6985 -4.05

-4.9307 4.2516 4.9449 -4.2622
-5.2259 4.5062 5.216 -4.496

Slope -5.5192 4.759 5.521 -4.7588

mm/Scale Unit -5.8042 5.0046 5.7991 -4.9984

SET 1 0.862244 -6.0898 5.2251 6.086 -5.2459

SET 2 0.862004 -6.3862 5.5066 6.3767 -5.4964

SET 3 0.862422 -6.6704 5.7517 6.696 -5.7718

SET 4 0.861944 -6.9628 6.0039 6.9836 -6.0194

-7.2517 6.253

Average 0.8621535 -7.5383 6.5
Std Dev 0.000221 -7.8439 6.7636
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