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ABSTRACT   

BRENT C. BERGNER. Self-Calibration Technique for Transmitted Wavefront 
Measurements of Micro-Optics. (Under the direction of DR. ANGELA DAVIES)      

Micro-optic components and subsystems are becoming increasingly important in 

optical sensors, communications, data storage, and many other applications.  In order to 

adequately predict the performance of the final system, it is important to understand how 

the optical elements affect the wavefront as it is transmitted through the system.  The 

wavefront can be measured using interferometric means; however, both random and 

systematic errors contribute to the uncertainty of the measurement.  If an artifact is used 

to calibrate the system it must itself be traceable to some external standard.  Self-

calibration techniques exploit symmetries of the measurement to separate the systematic 

errors of the instrument from the errors in the test piece.  We have developed a self 

calibration technique to determine the systematic bias in a Mach-Zehnder interferometer.  

If the transmitted wavefront of a ball lens is measured in a number of random orientations 

and the measurements are averaged, the only remaining deviations from a perfect 

wavefront will be spherical aberration contributions from the ball lens and the systematic 

errors of the interferometer.  If the radius, aperture, and focal length of the ball lens are 

known, the spherical aberration contributions can be calculated and subtracted, leaving 

only the systematic errors of the interferometer.  This thesis describes the development of 

an interferometer that can be used to measure micro-optics in either a Mach-Zehnder or 

Twyman-Green configuration.  It also develops the theory behind the technique used to 

calibrate for transmitted wavefront and describes the calibration of the interferometer in 

the Mach-Zehnder configuration. 
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CHAPTER 1: INTRODUCTION   

Micro-optic components and subsystems are becoming increasingly important in 

optical sensors, communications, data storage, and many other diverse applications.  In 

general, the term micro-optics is used to describe optical elements and systems with clear 

apertures from 0.1 to 1 millimeter.1   These may include diffractive elements, gradient 

index (GRIN) lenses, or surface relief refractive structures.  While some of the techniques 

developed in this thesis may also be applied to the evaluation of guided wave optics they 

are not specifically considered.  It is also assumed that the elements and systems are 

symmetric about the optical axis.   

1.1 Applications for Micro-Optics 

Micro-optics have found a wide range of applications.  In order to understand the 

requirements of the measurement system it is important to understand the applications 

and tolerances involved.  This is not an exhaustive survey, but an attempt to define the 

problem and design a measurement system that is adequate for general purpose use. 

Micro-optic elements can be integrated into compact systems.    In addition to free 

space integration, for example using a silicon optical bench, micro-optics can be 

integrated in a planar or stacked manner2 as shown in figure 1.1.  For example, micro-

optic systems can be used for optical interconnects, optical processing, and compact 

instrumentation such as micro-interferometers3.  A critical parameter for such systems is 

the space bandwidth product (SBP), the ratio of the image area to the image spot size.4  
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The higher the SBP, the more information can be transmitted through the system.  The 

image spot size is related to the wavelength, the aperture size, and the wavefront 

aberrations of the system.5   
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Figure 1.1  Examples of micro-optic systems created with planar integrated free space micro-optics 
and stacked micro-optics (adapted from J. Jahns, Planer integrated free space optics in  Micro-
optics, H.P. Herzig ed. ).2  

An application that has gained significant attention involves coupling light 

between single mode optical fibers (see figure 1.2).  This can be used for integration of 

free space optical components such as filters, isolators and optical switches into fiber 

optic communication systems.  Wagner and Tomlinson investigated the effects of 

wavefront aberrations on the coupling efficiency between single mode optical fibers.6  

They found that a peak-to-valley transmitted wavefront error of one fifth wave in the 

imaging system would cause a 0.9 dB loss.   
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Figure 1.2  Arrays of refractive micro-lenses are used to couple optical signals between single mode 
fibers in passive fiber optic components.  

Optical storage devices such as CDs and DVDs have replaced magnetic storage 

media in many applications.7  Figure 1.3 shows a conceptual representation of an optical 

pick up head using stacked micro-optics.  The optical performance of each element in the 

system is critical to obtaining the optimal storage density.    

LD PD
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LD PD

POLWaveplates

Storage 
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Figure 1.3  Stacked planar optics are used to detect polarization changes caused by the storage 
media.  The transmitted wavefronts of each of the micro-lenses, as well as the entire assembly, are 
important to the performance of the system.  

In addition, as with conventional optical systems, alignment of the micro-optical 

elements will affect the final system performance.  An advantage of micro-optics is that it 

is often possible and even convenient to fabricate multiple elements on a single substrate.  

Many systems can then be aligned in a parallel manner by properly aligning the 

substrates.  Ideally, these alignments would be achieved passively using mechanical 

features integrated with the optical elements; however, in many cases the required 



  
4

 
alignment tolerances can only be achieved using active alignment.  This might involve 

visually aligning fiducial marks or monitoring some functional parameter of the system to 

provide the feedback.  In many cases, the aberrations of the transmitted wavefront 

provide an excellent functional measure of the system performance.    

1.2 Fabrication of Micro-Optics 

Micro-optic elements can be fabricated using a variety of methods including ion 

exchange, lithography, diamond machining, and various replication techniques.  For 

example, ion exchange can be used to modify the local index of refraction of a substrate.1   

The change in index will change the phase of a wavefront passing through the substrate.  

As illustrated in figure 1.4, the index change can be controlled to create a gradient index 

(GRIN) region that acts as a lens.4  

 

Figure 1.4  Ion exchange is used to modify the local index of refraction of the substrate creating 
gradient index (GRIN) lenses (from M. Testorf and J. Jahns, Imaging properties of planar 
integrated micro-optics ).4   

The phase of the wavefront can also be controlled using diffraction.    As shown 

in figure 1.5, binary diffractive elements are commonly fabricated using techniques 

similar to those used for micro-electronics.8  The substrate is spin coated with a photo-

sensitive polymer and selectively exposed to ultra-violet light.  A pattern is left on the 

substrate when the resist is developed.  The resist pattern can itself act a phase grating or 

it can be transferred into the substrate by chemical or plasma etching.  A better 
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approximation of the ideal phase profile can be built up by repeating the process to add 

phase levels, or continuous relief structures can be created using grayscale lithography.  

UV UV
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UV UV
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PhotoResist

Expose

Develop

Etch

2 Phase Level 4 Phase Level 

Figure 1.5  Diffractive micro-optic elements can be fabricated using lithographic processes similar to 
those used for micro-electronics (adapted from D.C.  O Shea, T.J. Suleski, A. D. Kathman, and D.W. 
Prather, Diffractive Optics: Design, Fabrication, and Test).8  

Surface relief refractive micro-lenses (shown in figure 1.6) can be fabricated 

using grayscale lithography or reflow techniques.9  In reflow techniques the exposed and 

developed resist pattern is heated just beyond its glass transition temperature and surface 

tension causes the resist to form a hemisphere.  Again, the resist can act as a refractive 

lens or the pattern can be transferred into the substrate.   

Develop EtchReflowDevelop EtchReflow

 

Figure 1.6  Surface relief refractive micro-lenses can be fabricated using a reflow technique.  
(Adapted from G. R. Brady, Design and Fabrication of Microlenses).9   

Single point diamond turning has been used extensively to directly machine 

micro-optics.10  Using precision machine tools and single point diamond cutting tools 

optical quality surface relief structures can be directly machined in non-ferrous metals, 
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polymers, and certain crystals.  For rotationally symmetric elements the substrate is 

attached to the spindle of a lathe and a single point diamond tool is used to profile the 

surface as shown in figure 1.7.    
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Figure 1.7 The substrate is attached to the spindle of a lathe to fabricate rotationally symmetric 
elements and a single point diamond tool is used to profile the surface.   

Finally, surface relief micro-structures can be replicated in polymers, sol-gels, or 

glass by casting, embossing, compression molding, or a variety of other techniques.   The 

mold can be directly produced with methods such as those already mentioned, or a more 

robust copy of the original master can be made using electrolytic nickel platting.11   

1.3 Testing of Micro-Optics 

Systems integrators, designers, and manufactures are interested in a variety of 

dimensional and optical properties of micro-optics.  Some critical parameters are 

illustrated in figure 1.8.  For example, to evaluate the fitness of an as-manufactured optic 

to perform adequately in a particular application, the system integrator would like to 

measure parameters such as the transmitted wavefront quality (TWF), the modulation 

transfer function (MTF), the point spread function (PSF), and the back focal length 

(BFL).12  Along with other dimensional and optical properties such as clear aperture 

(CA), fill factor, and optical efficiency, these can be referred to as functional criteria.  
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Manufacturers are interested in more detailed information about the lens shape such as 

radius of curvature (ROC) and form errors, which can be directly related to the bias and 

stability of the process.  These are can be referred to as process-related measurements.  

s
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Figure 1.8  Important characteristics of a refractive micro-lens are a) Radius of Curvature (ROC),             
b) Surface Form Deviations ( S),    c)  Transmitted Wavefront Deviations ( W), and  d)  Back Focal 
Length (BFL).  CA is the clear aperture of the lens, rms is the root mean square value, N is the 
number of sample points used to compute the rms value, and the sine of 

 

is the image side  
numerical aperture of the lens with an infinite conjugate.  

Form can be measured using mechanical or optical profilers, or interferometeric 

techniques that measure the wavefront reflected from the surface.  Back focal length and 

radius of curvature are commonly measured using a radius slide.13  Transmitted 

wavefront measurements are the primary concern of this thesis.  MTF and PSF can be 

measured directly using a variety of techniques or they can be calculated from the 

transmitted wavefront.14 

Measurements of micro-optics present unique challenges compared to equivalent 

measurements of optics with clear apertures on the order of tens of millimeters or 

larger.15  As discussed in more detail in section 2.2, diffraction effects and retrace errors 
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can become significant as the size of the features of interest approach the order of 

hundreds of micro-meters.  Due to diffraction effects and retrace errors, the TWF of 

micro-optics should be measured in a single pass configuration.  This limits the choice of 

interferometer configurations to those that have a significant non-common path.  Since 

the ROC (or BFL) of the lens tends to be small compared to the focal length of the 

objective used to create a reference wavefront, imaging the surface or aperture of the lens 

onto the image sensor can also present a challenge.   This is discussed in Section 3.2.  

Finally, since the ROC and BFL are usually in the order of a millimeter or less, stage 

error motions in the radius slide can contribute significant uncertainty to the 

measurements of these quantities.   

When measuring micro-optics, wavefront errors in the interferometer can add a 

significant bias to transmitted wavefront measurements.  As discussed in section 2.3, a 

well-corrected reference objective is assumed throughout the literature.  This thesis 

develops and demonstrates a technique to account for the bias in the interferometer 

including aberrations in the reference objective.   We propose to measure the transmitted 

wavefront of a ball lens in a number of random orientations and then average the 

measurements.  The only remaining deviations of the average from a perfect wavefront 

will be due to spherical aberration contributions from the ball lens and the systematic 

errors of the interferometer.  If the radius, aperture, and focal length of the ball lens are 

known, the spherical aberration contributions can be calculated and subtracted, leaving 

only the bias in the wavefront measurement due to the interferometer.     



      
CHAPTER 2: BACKGROUND   

2.1. Self-Calibration Techniques 

Every measurement consists of a combination of the value being measured (the 

measurand), systematic bias, and random noise.  The systematic bias should be reduced 

as much as possible, however some residual will always remain.  If the residual can be 

estimated, it can then be subtracted from the final measurement to obtain a better estimate 

of the measurand.  One method of estimating the residual is to measure a known artifact.   

However, in many cases, artifacts either have uncertainties comparable to the required 

measurement uncertainty, or they do not exist.  This is common in the measurement of 

micro-optics.  In these cases, it is necessary to use self-calibration techniques to 

separate instrument bias from the errors due to the part under test.16 

In general, self-calibration techniques rely on symmetry to eliminate the 

contribution of the artifact to the measurement.17   For example, a straight edge and 

indicator are used to measure the straightness of a slide.  In figure 2.1a, the measured 

deviation, I1(x), will be due to both the straightness errors of the slide, M(x), and any 

deviation of the straightedge, S(x), so that  

       )()()(1 xSxMxI . 

(2.1)  
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Figure 2.1 Straight edge reversal as an example of a self-calibration technique using reversal (from 
C.J. Evans, R.J. Hocken, and W.T. Estler, Self-calibration: reversal, redundancy, error separation, 
and absolute testing ).16  

However, if a second measurement, I2(x), in figure 2.1b is taken with the straight edge 

flipped about an axis parallel to the axis of motion of the stage, then the sign of the 

deviations of the straightedge will be reversed but the deviation due to the straightness 

error will not change sign, so that  

)()()(2 xSxMxI . 

(2.2) 

By averaging these two measurements, the effect of the deviations of the straightedge 

will be eliminated leaving only the deviations due to the straightness errors of the slide, 

as shown in figure 2.1c.   

2)]()([)( 21 xIxIxM . 

(2.3) 

This type of self calibration technique is often referred to as a reversal since it relies on 

reversing the bias in the measurement due to an imperfect artifact. 
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Figure 2.2  Setup for measuring straightness using offset (from C.J. Evans, R.J. Hocken, and W.T. 
Estler, Self-calibration: reversal, redundancy, error separation, and absolute testing ).16  

The bias due to an imperfect artifact can also be removed by offsetting the artifact, as 

shown in figure 2.2.  The original measurement in figure 2.2a will again be 

)()()(1 xSxMxI , 

(2.4) 

and, if the artifact is offset by a distance ( ) along the direction of travel of the stage (as 

shown in figure 2.2b), the offset measurement will be 

)()()(2 xSxMxI . 

(2.5) 

Subtracting the two measurements and dividing by the offset gives the derivative of 

deviation due to the errors in the straightedge, 

)()(

)(

)()( 12 xSxS

xx

xIxI

. 

(2.6) 
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Equation 2.6 can be integrated to retrieve the deviations of the straightedge S(x).  This 

value can then be subtracted from either equation 2.4 or equation 2.5 to find the 

deviations due to the straightness errors of the slide.   

Another important concept in self-calibration is closure, which relies on some 

physical constraint to estimate the bias of the artifact.  For example, the divisions of a 

complete circle must add to 360 degrees.  This technique has been used to measure the 

external angles of a polygonal mirror.18  

In this setup, two autocollimators are set with an angular separation as shown in 

figure 2.3, where N is the number of facets of the polygon and 

 

is the difference 

between the actual angle between the autocollimators (in degrees) and 360/N.    
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Figure 2.3 Setup for determining the angles of a polygon using closure.  

For each pair of adjacent facets the difference in the error signals from the two 

autocollimators will be 

, 

(2.7) 
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where 

 
is the difference between the actual angle between the normals and the ideal 

angle if all of the polygon angles were equal.  Notice that it is not necessary that 

 
be 

small.  Since the angles between the normals must form a complete circle, 

360
360360
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i
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i
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N
N . 

(2.8) 

Therefore, 

. 

(2.9) 

Consequently,  

(2.10) 

and the angle between the autocollimators ( ) is 

. 

(2.11) 

This appears to be equivalent to the reversal technique, but more than two measurements 

are needed to complete the symmetry and eliminate the artifact bias.  Now that the actual 

angle between the autocollimators is known, this value can be used to compute the angle 

between the kth set of facet normals ( k), 
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. 

(2.12) 

A final class of self-calibration techniques that will be discussed here involves 

averaging.  Averaging might be considered a further extension of the techniques 

discussed previously.  However, averaging assumes that the deviations of an artifact can 

be considered to be random and uncorrelated.  If this is a valid assumption, then the 

deviations can be treated similarly to random noise.19   

It is important to notice that in all of these techniques there is still uncertainty 

associated with the calibration process.  It is important to consider how the data were 

taken and analyzed when considering the uncertainty of the bias estimate.  As shown 

below, if the standard deviation of the measurements in the average is used to calculate 

the uncertainty in the bias estimate, then the contribution is the standard deviation divided 

by the square root of the number of measurements. 

The standard equation for the propagation of uncertainty is20 

),(2)()(
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(2.13) 

where uc(y) is the combined uncertainty of the measurand given by y = f(x1, x2,  xN), 

u(xi) is the standard uncertainty of the ith contribution to the result, and ( f/dxi) is called 

the sensitivity coefficient.  The sensitivity coefficient represents the sensitivity of the 

value of the function to small changes in the value of xi as shown in figure 2.4. 
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Figure 2.4 Graphical representation of a general function f(xi) demonstrating the significance of the 
sensitivity coefficient ( f/ xi).  

The term ( f/dxi) u(xi) is the first term in a Taylor series expansion of f(xi).
21  The 

double sum represents the effect of correlations between the contributions where u(xi ,xj) 

is the covariance of the xi and xj terms.  The covariance can be related to the correlation 

between the variables by22 

)()(),(),cov(),( jijijiji xuxuxxcorxxxxu
. 

(2.14) 

For example, assuming small errors and no significant correlations between I1(x) 

and I2(x), the combined uncertainty in the estimate of the straightness error of the slide, 

given by equation 2.3 is 

)()()()()( 1
22

2
1

2
22

2
1 IuIuMuc . 

(2.15) 

If we assume that )()()( 2
2

2
1

2 IuIuIu then  

2

)(
)(

Iu
Muc

. 

(2.16) 
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However, if the uncertainties in I1(x) and I2(x) are perfectly correlated and 

)()()( 2
2

2
1

2 IuIuIu

 
then 

)()()())((2)()()()()( 2
1

2
122

2
122

2
1 IuIuIuIuIuMuc . 

(2.17)  

In general, for the case of averaging N uncorrelated values 
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If )()()()( 22
2

2
1

2 xuxuxuxu N then    

N

xu
xu

N
Nuc

)(
)(

1 2
2

. 

(2.19) 

Self-calibration techniques are common in optical testing.  Jensen23 presented a 

technique for calibrating a Twyman-Green interferometer in 1973.  The three-flat test24 

and N-position test25 are further examples.  Averaging randomly sampled measurements 

of a surface has been used to calibrate roughness measurements.19 Measurements of 

random patches of a large optical flat can be averaged together to estimate systematic 

biases in flatness measurements, and a similar technique using sub aperture patches on a 

ball has been used to calibrate interferometer transmission spheres26 and Twyman-Green 

interferometers used for micro-refractive lens measurements.27  By averaging the 

transmitted wavefronts from a randomly positioned ball lens we have extended the 
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averaging technique to transmitted wavefront measurements in a Mach-Zehnder 

configuration. 

   

2.2. Challenges in Measuring Transmitted Wavefront of Micro-optics 

A double pass interferometeric method using a Fizeau or Twyman-Green 

configuration is commonly used to test the transmitted wavefront of optics.28  Some 

common configurations used for testing microscope objectives are shown in figure 2.5.    
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Figure 2.5 Configurations for testing microscope objectives using a Twyman-Green Interferometer 
(from D. Malacara, Twyman-Green Interferometer in Optical Shop Testing, D. Malacara ed.).28  

Since the wavefront passes through the lens under test twice, the transmitted 

wavefront of the lens is often approximated as half the wavefront error measured in the 

double pass configuration.  For this approximation to be valid, the wavefront leaving the 

exit pupil of the test optic must be imaged with the correct phase back onto the exit pupil 

of the lens under test (see figure 2.6).  
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Figure 2.6  The return wavefront must  be imaged with the correct phase back onto the exit pupil of 
the lens under test.  

Dyson presented a solution for imaging the wavefront back onto the exit pupil 

without third order Seidel aberrations for a unit magnification.29  The imaging system 

consists of a half ball lens and a concave spherical mirror as shown in figure 2.7.  The 

radius of the mirror (R2) is related to the radius of the half ball lens (R1) by  

(2.20) 

where n is the index of refraction of the half ball lens. 
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Figure 2.7    Dyson s configuration for testing a microscope objective (from D. Malacara, Twyman-
Green Interferometer in Optical Shop Testing, D. Malacara ed.).28 
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If the center of curvature of the mirror coincides with the center of curvature of the lens, 

the third order Seidel aberrations of the mirror and ball lens will cancel.  However, form 

errors, alignment, and diffraction will affect this result.   

As a wavefront propagates through free space (see figure 2.8), each spatial 

frequency (1/p) of the wavefront will oscillate in phase and amplitude  with a  

longitudinal period equal to a characteristic length (LF) given by30  

22 p
LF

. 

(2.21) 

For larger optics the distance from the exit pupil to the return flat is much less than this 

characteristic length, and diffraction affects are not significant for most applications.  For 

example, for the spatial frequencies corresponding to the edge of an optic with a twenty-

five millimeter aperture, the characteristic length is almost two-thousand meters.  If the 

return mirror is placed within a meter of the exit pupil, then it is normally assumed that 

the change in the wavefront due to this diffraction will not be significant and that small 

changes in the position of the mirror will have little effect on the result.    However, for a 

lens with an aperture of one half millimeter, the characteristic length is only seven-

hundred and ninety millimeters.   Each spatial frequency in the wavefront will have a 

different characteristic period.  While the return optics may be aligned to correctly 

reproduce the phase of a single spatial frequency, there will be an significant error for 

nearby spatial frequencies.   
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Figure 2.8  For each spatial frequency the amplitude and phase of the wavefront changes as it 
propagates through free space (from M. Bray, Stitching Interferometery Side effects and PSD ).30    

2.3. Techniques for Measuring  Transmitted Wavefront of Micro-Optics 

Microscope objectives and similar optics can be tested with standard 

interferometers using the setups illustrated in figure 2.5.  However, as discussed in 

section 2.2, there are unique challenges to correctly measuring the transmitted wavefront 

of micro-optics.  Several groups have adapted both geometric and interferometeric  

methods for wavefront sensing to instruments specifically designed for measuring the 

transmitted wavefront of micro-optics.  Each system has advantages and limitations.  

These are summarized in table 2.1.           
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Table 2.1 Summary of advantages and disadvantages of selected techniques for measuring the 
transmitted wavefront of  micro-optics. 

Technique Advantages Disadvantages Reference 

Hartman Test - Simple Setup 
- Relatively insensitive to 

vibrations 

- Spatial resolution is 
limited by the pitch of 
the lens array 

31 

Shearing 
Interferometery 

- Lens under test is outside 
the interferometer 

- Non-common path can 
be very short 

- Easily reconfigured for 
reflection or transmission 
measurements 

- Requires two shears in 
orthogonal directions 
to reconstruct 
rotationally variant 
wavefront  

32,33,34 

Double-Pass 
Twyman-Green 

- Simple setup on 
commercially available 
interferometer  

- Double pass 
configuration is 
sensitive to diffraction 
and retrace errors.    

35 

Mach-Zehnder - Single pass 
interferometeric method  

- Large non-common 
path  

9,36,37,38,39

  

The Shack-Hartmann test uses an array of lenses to sample a wavefront.   Each 

lenslet forms a spot on an observation screen (or CCD camera).   As illustrated in figure 

2.9, the position of each spot depends on the local slope of the wavefront at that location 

of the lenslet in the array.  The phase of the wavefront can be determined by integrating 

the slope, either using a point by point discrete integration or by fitting a polynomial to 

the slope and then integrating. 
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Figure 2.9  In a Shack-Hartmann test, a lenslet array is used to sample a wavefront. The positions of 
the spots in on the screen depend on the slope of the wavefront at each lenslet.  In practice, there are 
usually several hundred, or even thousands, of lenslets in the array.    

Pulaski et al.31  measured the transmitted wavefront of a micro-lens using a beam 

expander to magnify the wavefront from the lens under test (see figure 2.10).  They 

calibrated the system by replacing the test lens with a precision lens that they assumed to 

be free from aberrations.   
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Figure 2.10  Arrangement using a Shack-Hartmann sensor to measure a microlens.  (from Pulaski et 
al., Measurment of abearations of microlenses using a Shack-Hartmann wavefront sensor ).31  

Shearing interferometery has also been used to measure the transmitted wavefront 

of micro-optics.32, 33, 34  The wavefront being tested is split.  The two new wavefronts are 

spatially shifted (sheared) with respect to each other and recombined to form an 

interference pattern.   The resulting pattern is related to the derivative of the original 

wavefront in the direction of the shear.  This is similar to the offset method in self-

calibration in that the measured value is the derivative of the measurand.  In order to 

completely reconstruct a rotationally variant wavefront it is necessary to take two 
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measurements with the shear in orthogonal directions.  Sickinger et al.34 used a 

Michelson type shearing interferometer like the one illustrated in figure 2.11 to measure 

the form, focal length, and transmitted wave aberrations of micro-lenses.    
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Figure 2.11 Shearing interferometer used at the National Physics Laboratory (NPL), the United 
Kingdom s national measurement laboratory, to measure transmitted wavefront (from H. Sickinger 
et al., Characterization of microlenses using a phase shifting shearing interferometer ).34  

This technique has several advantages.  Since the lens under test is outside the 

interferometer, the sources can be replaced with fiber without regard to optical path 

length changes in the fiber.  Within the operating wavelengths of the mirrors and beam 

splitters, it is insensitive to wavelength.  However, M4 must be tilted during the 

measurement to get the shear for two orthogonal directions.  In addition, BS2 adds 

systematic spherical aberration to the wavefront, and the defocus added by phase shifting 

can only be ignored if L1 is slow and M5 is only moved a small distance.  They also 

assumed that the microscope objective was diffraction limited and that it did not add 

significant bias.   
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Figure 2.12 Configuration used by Malyak et al.35 to test the transmitted wavefront of micro-lenses.  
It was based on a commercial Twyman-Green interferometer.  

Malyek et al. 35 used a Twyman-Green configuration based on a commercially 

available interferometer to test lenses used to couple light between single mode fibers 

used in telecommunications applications.  The setup is shown in figure 2.12.  The 

coupling efficiency they predicted based on the transmitted wavefront measurements did 

not correlate well with functional tests they performed on the same lenses.  Since the 

aperture of the lenses was on the order of a few hundred wavelengths, diffraction effects 

discussed in section 2.2 may have contributed to a significant error in the transmitted 

wavefront measurement.  These effects can be eliminated when measuring the 

transmitted wavefront in a single pass configuration if the interferometer is focused on 

the exit pupil of the lens system under test.   
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A common method for testing the transmitted wavefront in a single pass is to use 

a Mach-Zehnder configuration.9,36,37,38,39  In a Mach-Zehnder interferometer, a beam 

splitter divides the beam into two paths and the beams are recombined at a second beam 

splitter.  The resultant interferogram is related to the optical path difference between the 

two paths.  Usually, one path contains the object to be tested and the other acts as a 

reference.  The optical path length of either path may be changed in a controlled manner 

to implement phase shifting techniques for analyzing the interference pattern.  

Negative
Lens

Collimating 
Objective

SM 
Fiber

BS1 M1

BS2

Microscope
Objective

Camera
M2 Test 

Lens

Negative
Lens

Collimating 
Objective

SM 
Fiber

Collimating 
Objective

SM 
Fiber

BS1 M1

BS2

Microscope
Objective

Camera
M2 Test 

Lens

 

Figure 2.13  Mach-Zehnder interferometer similar to the one used at NPL (from D. Daly and M.C. 
Hutley, Micro-lens measurements at NPL ).39  

For example, an interferometer used for evaluating micro-lenses at the National 

Physical Laboratory (NPL), the United Kingdom s national measurement laboratory, is 

shown schematically in figure 2.13. The aperture of the lens under test is imaged onto a 

camera by a microscope objective and relay lens.  A well corrected lens pair in the 

reference path is used to match the curvature of the reference wavefront with that of the 

wavefront in the microscope objective.  We have also chosen to use a Mach-Zehnder 

configuration to test the transmitted wavefront.  The details of this system will be 

described in chapter three.  



      
CHAPTER 3: INSTRUMENT DESIGN   

The goal of the overall project was to design an interferometer that can be used to 

measure surface form, radius of curvature, transmitted wavefront, and back focal length 

of micro-refractive lenses.  The concentration of this thesis is on the transmitted 

wavefront calibration and measurement; however, the other applications had to be 

considered when choosing an appropriate design for the interferometer.   

Of particular concern is the back focal length measurement.  It is determined by 

using a radius slide to measure the distance between the confocal position and the cat s 

eye  position13.  The confocal position is the position when the focal point of the lens 

under test coincides with the focal point of the reference objective.  It is located by 

measuring the transmitted wavefront (figure 3.1a).  The cat s eye position is position 

when the focal point of the reference objective is at the vertex of the lens (figure 3.1b).  It 

is measured in reflection and acts as a reference position for both the back focal length 

and radius of curvature measurements.   
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Figure 3.1  Back focal length (BFL) measurement of a micro-lens using a radius slide. 
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3.1. Instrument Configuration 

The configuration of the instrument must be easily changed for reflection or 

transmission measurements without disturbing the lens under test.  One solution is an 

instrument contains both a Twyman-Green and a Mach-Zehnder interferometer along 

with some convenient way to distinguish between the relevant interference pattern and 

those caused by other cavities (see figure 3.2).  
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Figure 3.2 Hybrid Mach-Zehnder/ Twyman-Green interferometer for measuring radius of 
curvature, form error, back focal length, and transmitted wavefront of a micro-lens.    
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One solution is to use a source with low spatial coherence to localize the fringes.  

However, for micro-optics the back focal length is often small.  The coherence length 

would need to be very short, making alignment difficult.40  Therefore, the final design 

must incorporate some method to physically separate the Mach-Zehnder and Twyman-

Green interferometers and allow the user to switch between the two configurations.   

The design should minimize non-common path elements that could add bias by 

adding aberrations to the test or reference wavefront.  If the elements are wavelength 

dependent then the systematic bias would also be wavelength dependent, requiring a 

separate calibration for each wavelength.  The relative losses in the test and reference arm 

should also be considered so that good fringe contrast can be maintained.   

The original concept for integrating the Mach-Zehnder and Twyman-Green 

interferometers (shown in figure 3.3) called for replacing BS1 in figure 3.2 with a fiber 

based splitter.  In addition, the phase of the reference arm was to be shifted using a fiber 

based phase modulator such as a fiber wrapped tightly around a mandrel made of a 

piezoelectric material.41  This would have greatly simplified the opto-mechanical 

requirements since the fiber could be routed around the microscope body in an arbitrary 

manner as long as an acceptable fiber bend radius is maintained.   
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Figure 3.3  Original concept for a hybrid Mach-Zehnder and Twyman-Green interferometer using 
fiber optics.  

However, the optical path length in the fiber is extremely sensitive to 

environmental conditions such as temperature and vibration.  It was originally thought 

that a complicated phase compensation system would be necessary.42  By protecting the 

fiber using furcation tubing, keeping the non-common path lengths as short a possible, 

and mechanically securing the fiber, using fiber without phase compensation proved 

suitable.  Under normal operating conditions the fringe stability was comparable to other 

non-fiber based interferometers in the same laboratory, but phase shifting using a fiber 

based phase modulator complicated the system.  We were not able to design a  system to 

phase shift in fiber that would work for both interferometers.    

Polarization optics can be used to separate the wavefronts reflected from different 

surfaces.  For example, the quarter wave plate ( /4) between the polarizing beam splitter 
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(PBS) and the microscope objective in figure 3.4 could be rotated to select either the 

reflected wavefront or the transmitted wavefront.  The half wave plate ( /2) could be 

rotated to adjust the relative intensities in the test and reference paths.  If the quarter wave 

plate between the polarizing beam splitter and the microscope objective is rotated so that 

its slow axis is oriented at forty-five degrees with respect to the direction of linear 

polarization transmitted by the polarization beam splitter, then the light reflected from the 

surface of the device under test will be rotated ninety degrees when it reaches the 

polarization beam splitter on the return pass and would be reflected into the imaging 

system.  The quarter wave plate in the reference arm allows the light reflected by the 

reference mirror to be transmitted to the imaging arm in a similar manner.     
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Figure 3.4  Hybrid Twyman-Green and Mach-Zehnder interferometer based on polarization optics.  
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If the quarter wave plate between the polarization beam splitter and the 

microscope objective is rotated so that the fast axis of the wave plate is aligned with the 

polarization axis of the polarization beam splitter, then the reflected light will not change 

polarization and will be transmitted back toward the source.  However, light from the 

Mach-Zehnder test path will be split by the polarization beam splitter and some will be 

reflected into the imaging path.   

The major drawback of this technique is that there are several components that are 

not common to both the test and reference paths.  In addition, the retardance of the wave 

plates is extremely wavelength dependent.   

The final system design can be viewed as inserting a fiber based Mach-Zehnder 

interferometer into a conventional Twyman-Green interferometer (see figure 3.5).  In the 

Twyman-Green mode, a microscope objective is used to create a collimated beam from 

the fiber source.  This beam is split into  test and  reference paths by BS2.  The reference 

can be modulated using a mirror mounted on a piezoelectric transducer (PZT).  This 

phase shift was performed using free space optics to avoid complications with keeping 

the system stable while phase shifting in the fiber.  If a fiber-based phase shift is 

implemented in the future, the system would be similar to the original concept presented 

in figure 3.3.  Since the source is both spatially and temporarily coherent, the location of 

this mirror is not critical.  Beam splitter 3 (BS3)  is not necessary for the Twyman-Green 

configuration and attenuates the reference beam and adds non-common path aberrations. 

However, this was an acceptable compromise considering the requirement that the system 

be able to operate in both a Twyman-Green and Mach-Zehnder configuration and that the 

system will be calibrated to remove instrument bias.   
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Figure 3.5 Final system configuration used to measure form errors, radius of curvature, back focal 
length, and transmitted wavefront.  

For the transmitted wavefront measurement the source fiber is switched to the 

Mach-Zehnder path.  This can be done without disturbing the alignment of any of the 

components in either the test or reference path.  For the Mach-Zehnder configuration the 

test and reference paths are separated using a 50/50 biconic fiber splitter.  The reference 

path is routed to a microscope objective which collimates the beam, and the beam is 

reflected by BS3 toward the reference mirror.  The other output is routed to another 

microscope objective which creates a collimated beam that is directed to the entrance 

pupil of the lens under test.  The position of the lens under test is adjusted along the 

optical axis so that the back focal plane of the test lens coincides with the focus of the 

microscope objective.  The distance between lens 2 and lens 3 in the imaging lens system 

is adjusted so that the test lens aperture (or exit pupil) is imaged onto the camera.   
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3.2. Imaging System Design 

The purpose of the imaging system of any interferometer is to image the phase 

distribution of the test wavefront at a specific location onto the plane of the imaging 

sensor.  For surface form measurements the phase distribution of interest is the phase of 

the wavefront at the lens surface.  For transmitted wavefront measurements the phase 

distribution of interest is the normally the phase distribution at the exit pupil of the test 

lens.   This presents a problem when attempting to measure the form of a lens with a 

radius of curvature much smaller than the focal length of the reference objective or the 

transmitted wavefront of a lens (or lens system) with back focal lengths much smaller 

than that of the objective (see figures 3.6 and 3.8) because the distance from the reference 

objective to the image becomes large (see figure 3.7).     
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Figure 3.6  For form measurements, the lens under test is placed so that its center of curvature 
coincides with the focal point of the reference objective.    The image of the test lens surface must be 
relayed to the imaging sensor.    
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Figure 3.7  If  the radius of curvature is small compared with the focal length of the objective then 
LSURF becomes large.  

In designing the imaging system for this interferometer, we followed the method 

described by Schwider43 to design the imaging system of a Twyman-Green 

interferometer used to measure the radius of curvature of micro-lenses.  The problem is 

broken up into two sections.  First, the location of the image of the test lens surface or 

exit pupil formed by the reference objective is determined.  The location of the lens 

aperture with respect to the microscope objective is fixed by the radius of the lens (or the 

back focal length of the lens) and the focal length of the objective (see figure 3.6 and 

3.8).  The rest of the imaging system is designed using this intermediate image as the 

object.  This also determines the proper location of the reference mirror for optimum 

contrast with partially coherent sources. 
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Figure 3.8 For transmitted wavefront measurements, the lens under test is placed so that its back 
focal point coincides with the focal point of the reference objective.  The image of the lens aperture 
formed by the objective must be relayed to the imaging sensor.  However, just like for a small ROC, 
if the back focal length of the test lens is small compared to the focal length of the objective then 
LSURF becomes very large.  

The location of the paraxial image of the aperture is given by: 

BFLffL OBJOBJSURF

111 

(3.1) 

so that the magnification due to the objective is: 

BFLf

L
M

OBJ

SURF
OBJ

 

(3.2) 

If the objective is fixed at a distance LFIXED from the first lens in the imaging system, then 

the location of the intermediate image, LOBJ, in figure 3.9 is given by: 

SURFFIXEDOBJ LLL
. 

(3.3)   
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Figure 3.9 Definition of the variables used to design the imaging system.  

We chose to use two afocal telescopes to image this object (the image formed by 

the reference objective) onto the camera (see figure 3.9).  The first telescope (consisting 

of lens L1 and lens L2) forms an image at an intermediate plane.  This image may be 

virtual (see figure 3.10).  The second telescope (consisting of lens L3 and lens L4) relays 

this image onto the camera.  This must be a real image.  The distance from L1 to the 

reference objective and the distance from L4 to the camera are fixed.  The distance 

between L2 and L3 can be adjusted to focus the system.   

Afocal systems can be formed using two lenses with a common focal point.44  

These systems have zero power and an undefined focal length.  The transverse 

magnification of the pair of lenses is equal to the ratio of their focal lengths (see equation 

3.4). Therefore the magnification of the imaging leg can be changed simply by replacing 

a lens in one of the telescopes independent of position of the intermediate image.  The 

magnification is also insensitive to the axial position of the afocal system.  The system 

can be made telecentric by placing the stop at the common focal point.45    
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Figure 3.10  An afocal system used at finite conjugates.  Notice that for an object outside the focal 
length of the first lens the final object is virtual.  

Since Lens 1 and Lens 2 form an afocal system, the magnification of the lens pair 

is simply the ratio of their focal lengths  

(3.4) 

and the distance between Lens 1 and Lens 2 is the sum of their focal lengths 

2112 ffL . 

(3.5) 

Similarly, for Lens 3 and Lens 4 
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(3.6) 

and 

4334 ffL
. 

(3.7) 

This gives the combined magnification of the afocal imaging systems as: 

1234MMM SYS

 

(3.8) 

so that the total magnification is: 
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OBJSYSTOT MMM

 
(3.9) 

With the total magnification, the percentage the CCD filled by the image of the lens is:  

(3.10) 

where CCDSize is the size of the CCD active area along the smallest (typically 

horizontal) dimension and  is the clear aperture of the lens under test. 
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CHAPTER 4: SELF-CALIBRATION USING A BALL LENS: METHODOLOGY   

By averaging the transmitted wavefronts from a randomly positioned ball lens we 

have developed a self-calibration technique for transmitted wavefront measurements in a 

Mach-Zehnder configuration.  The contributions due to form errors and random index of 

refraction variations of the ball will average to zero, however, a ball lens adds spherical 

aberration to the wavefront.  For an infinite conjugate system, the expected contribution 

to the spherical aberration, with an associated uncertainty, can be calculated from the ball 

diameter and index of refraction, and the aperture size of the system.  This calculated 

value can be subtracted from the averaged data to determine the systematic bias of the 

interferometer.  

The transmitted wavefront may be represented by the phase of the wavefront at 

each point in the field, the coefficients of an orthonormal set of polynomials, a statistical 

description, or some other mathematical means.  We have chosen to use Zernike 

polynomials, due not only to their widespread acceptance in optical testing, but also 

because it is relatively simple to separate rotationally invariant terms from the data set.  

The phase of the wavefront at a point in the aperture is represented by46,47,48  
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where  and are the normalized polar coordinates of the point, L is the number of 

Zernike terms used to approximate the surface, Ar is the rth Zernike coefficient and 

Ur( ) is the rth Zernike polynomial as defined in table 4.1 for the first thirty-six terms. 

Table 4.1  Fist 36 University of Arizona Zernike polynomials with term numbers as used in this 
thesis.46,47 

Term Number 
(r) 

Zernike Polynomial 
(Ur) 

Physical Meaning 

1 Piston 
2 cos Tilt in X Direction (0 degrees) 
3 sin Tilt in Y Direction (90 degrees) 
4 Power 
5 cos Astigmatism at 0 or 90 degrees

 

6 sin Astigmatism at +/- 45 degrees 
7 cos Coma Along Y Axis 
8 sin Coma Along X-Axis 
9 Third Order Spherical 
10 cos

 

11 sin

 

12 cos

 

13 sin

 

14 cos

 

15 sin

 

16 Fifth Order Spherical 
17 cos

 

18 sin

 

19 cos

 

20 sin

 

21 cos

 

22 sin

 

23 cos

 

24 sin

 

25 Seventh Order Spherical 
26 cos

 

27 sin

 

28 cos

 

29 sin

 

30 cos

 

31 sin

 

32 cos

 

33 sin

 

34 cos

 

35 sin

 

36 Ninth Order Spherical 
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4.1. Determining the System Bias 

For each measurement in the calibration, the measured wavefront (Wi) will be a 

combination of the systematic bias of the interferometer, the wavefront aberrations due to 

the ball lens, and noise. 

NOISEicalBALLSpheriBALLFigureiINTi WWWWW ,, )(),(

 

(4.2) 

where WINT is the systematic bias in the measurement due to the interferometer, 

WiBALLFigure( ) is the contribution to the ith measurement due to the figure error (and 

homogeneity variations) of the ball lens,  WBALL( ) is the contribution due to the inherent 

spherical aberration of the ball lens, and WNOISE is the random noise in the system.  If the 

ball lens is truly spherical, homogeneous, and centered on the optical axis, there will be 

no rotational dependence of the transmitted wavefront.  For a real ball lens there will be 

variations to this symmetry due to form errors, surface roughness, and index 

inhomogeneities.  However, if the ball lens in positioned in random orientations and a 

sufficient number of wavefronts are averaged, the effect will be to eliminate the randomly 

varying components.51  The contributions due to the random noise is also zero on 

average.  Thus,  

(4.3) 

as N, the number of the measurements that are averaged, approaches infinity.  We can 

then solve for the systematic bias 
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. 

(4.4)  

4.2. Estimating the Uncertainty  

For the randomly varying components, the random contributions of the ball lens 

and the noise, a reasonable estimate of the standard uncertainty is the standard deviation 

of each Zernike coefficient obtained from fitting the measured data.  As shown in section 

2.1, the sensitivity coefficient for this source of uncertainty is the inverse square root of 

the number of measurements.  The components due to the inherent spherical aberration of 

the ball lens, WBALLSpherical( ), can be calculated from the diameter of the aperture, the 

index of refraction of the ball lens, and its radius of curvature, each with an associated 

uncertainty.  We used ZEMAX® optical design software to perform the calculation.  An 

estimate of the uncertainty in the calculated Zernike terms was obtained by randomly 

varying the input parameters over a reasonable range as determined from manufacture 

specifications.  These uncertainty estimates are discussed in more detail with an example 

in section 5.3.   

As formulated in this thesis, the self calibration technique treats each individual 

Zernike coefficient as a measurand.  The result is a set of biases in Zernike coefficients 

along with stated uncertainties.  In general, the expectation of a linear function can be 

related to the expectations of each term by52 
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Applying equation 4.5 to the first few terms of equation 4.1, the Zernike expansion of the 

wavefront, the expectation of the bias for any particular point in the pupil is 

)sin(][)cos(][][)],([ 321 AEAEAEWE INT 

(4.6) 

where Ai is the coefficient of the ith term in the Zernike polynomial.  The surface 

calculated from the average of the Zernike coefficients found by fitting N phase maps is 

equivalent to the Zernike coefficients found by fitting the point by point average of those 

N phase maps.  However, contributions to the bias from spatial frequencies described by 

higher order Zernike coefficients than those carried through the procedure are lost.  

Appling equation 2.13, the combined standard uncertainty for the calculated bias at any 

particular point in the pupil is 
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(4.7)  

Notice that the combined uncertainty in the phase is dependent on the aperture position.    



      
CHAPTER 5: SELF-CALIBRATION USING A BALL LENS: IMPLEMENTATION   

To demonstrate the technique, the interferometer shown in figure 5.1 was 

calibrated for measuring a micro-refractive lens with a 0.14 NA.   The calibration 

wavefront will not be correct if the numerical aperture (NA) of the ball lens/pinhole 

assembly used for the calibration is not equal to the numerical aperture of the lens that 

will be tested.  Since we are using a set of Zernike coefficients to represent the system 

bias, if the numerical aperture of the test lens does not match the  do not match the 

numerical aperture of the ball lens/aperture used to calibrated the system, then the 

wavefront that is calculated from the calibration and subtracted from the measurement 

will be radially sheared with respect to the actual system bias.  If we assume that the 

dominant biases in the interferometer come from the objective lens, the percent error due 

to this NA mismatch ( rad) is equal to the relative sensitivity of a radial shearing 

interferometer.  This can be approximated by49 

41 Rrad

 

(5.1) 

where R is the radial shear.  In this case R is equal to the ratio of the NAs.  This is a 

worst-case approximation so that, for an error in the calibration factor of less than 1%, 

the NA of the ball lens/pinhole aperture used for the calibration should be within 4% of 

the NA of any of the lenses that will be tested.  
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A Mitutoyo M Plan Apo 10 objective with an NA of 0.28 was chosen from the 

available selection to maximize the size of the image of the aperture on the camera. The 

measurements were performed at a wavelength of 632.8 nm.  An 800 micrometer 

aperture and 4 millimeter BK7 ball lens, resulting in an NA of 0.135, satisfies the 4% 

guideline and was chosen for availability and ease of handling.  The phase-shifted 

interferograms are analyzed using IntelliWave from Engineering Synthesis Design and 

fit to a set of Zernike polynomials.  
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Figure 5.1  Picture of the interferometer used to demonstrate of the technique.  

5.1. Experimental Design 

Three calibration runs were conducted according to the procedure outlined in 

Appendix A.  The ball lens was held in a depression at the center of a pin hole aperture.  

Between each sample the ball lens was perturbed by blowing on it with a puff of air from 

a lens blower brush and allowed to randomly settle back into the depression around the 
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aperture.  Each run contained sixty five samples of the transmitted wavefront measured 

with the ball lens at random orientations.  The number of samples was based on a balance 

between the incremental reduction in the uncertainty of the bias estimate from ball lens 

figure errors (as discussed in section 5.3.1) and practical considerations such as the time 

required to complete the experiment.  Between each calibration run the ball lens and 

aperture were removed and realigned in the interferometer.  During each run some of the 

samples were measured thirty times without changing the lens position in order to gauge 

the repeatability of the measurements (only one of these measurements was included in 

the sample set used for the calibration run).  Figure 5.2 shows an example of an 

interferogram and phase map from a single measurement.    

 

Figure 5.2  Example of an interferogram and computed phase map from a single measurement. 
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Prior to the third calibration run the ball lens/aperture was systematically 

decentered and defocused to experimentally determine the measurement s sensitivity to 

misalignment of the ball lens/aperture assembly.  After the last calibration run, the ball 

lens/aperture assembly was left in place and measurements were taken approximately 

every ten minutes over a ninety minute period to determine the stability of the 

measurements during a single calibration run.  The experimental design used to 

determine the results presented in this thesis is summarized in table 5.1.  

Table 5.1  Experimental design used to determine the bias of the Zernike Coefficients 

Run Sample Description
Number of 
Samples

Number of 
Meas.

1 52 Repeatability test for 52nd sample in first calibration run 30
1 First calibration run 65

2 1 Repeatability test before beginning second calibration run 30
2 Second calibration run 65

-
Laterally misaligned ball lens/aperture and recorded measurements 
with various tilt in both directions 31

-
Axially misaligned ball lens/aperture and recorded measurements at 
various focus positions 21

-
Repeatability test before beginning first attempt at the fourth calibration 
run

3 1 Repeatability test before beginning the third calibration run 30

3 35 Repeatability test for the 35th sample in the third calibration run 30

3 70 Repeatability test for the 70th sample in the third calibration run 30
3 Third calibration run 65

3 70
Measurments taken every 10 minutes over a 90 minute period without 
moving the ball lens. 10

Notes: Removed and realigned ball lens/aperture between each calibration run
Randomly repositioned ball lens between each sample
Averaged 10 phase maps and fit 36 Zernike polynomials for each measurement

Repeatability tests were conducted by measuring the ball lens/aperture 30 times without repositioning the ball 
lens (Note:  only one measurement from each repeatability test was included in the calibration.)

  

Table 5.1 does not represent all of the measurements taken during the experiment.  

Some samples from the first and third calibration runs were truncated to simplify the data 
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analysis, an initial calibration run was not included because the data mask was moved, 

and an initial attempt at the third calibration run was aborted because the microscope 

translation stage moved.    

5.2. Repeatability, Reproducibility, and Stability 

The repeatability and reproducibility of the measurements were determined from 

the five sets of thirty measurements that were made without moving the ball lens.  The 

data were analyzed using and an analysis of variance (ANOVA) technique53 to separate 

the repeatability of a measurement within one sample, the reproducibility of the 

measurements between samples, and the reproducibility of the bias estimate between 

calibration runs.   

The repeatability of the measurement within one sample is the average standard 

deviation of the thirty measurements.  This average standard deviation is equivalent to the 

standard deviation of the noise term in equation 4.2.  It is the instrument s contribution to 

the standard uncertainty of the measurements u(Wi) in table 5.2. 

The reproducibility of the measurements between samples was determined by 

taking the standard deviation of the average of the thirty measurements for different 

samples within the same calibration run.  By averaging the thirty measurements for each 

sample, the effects of random noise within one measurement is decreased leaving the 

effect of randomly orienting the ball along with drifts in the instrument contributions and 

noise between samples.  This is also part of u(Wi).  

The reproducibility of the measurements between calibration runs was determined 

by taking the standard deviation of the averages of the thirty measurements of a single 

sample from each calibration run.   
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Finally, the stability of a single measurement over the time period needed to 

conduct the calibration run was determined by taking the standard deviation of 

measurements from a single sample over a ninety minute period.  The random portion of 

this variation is equivalent to the noise in a single measurement and is included in u(Wi).  

Long term drift of the instrument on a timescale larger than the time period of the 

calibration was not investigated in this study.  If the long term drift of the instrument 

leads to fluctuations larger than that observed in the stability investigation carried out 

here, then an additional bias in the calibration will be present.  This should be 

investigated in the future.  An example of the drift data is shown in figure 5.3.  There is 

no indication of a gradual long term drift, therefore it is likely that the fluctuation 

observed during the calibration run are included in u(Wi).  
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Figure 5.3  Plot of stability of third order aberrations over the period required for one calibration 
run, showing the stability of the instrument can be included with u(Wi). 
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5.3. Uncertainty Estimate 

The contributions of the uncertainty sources to the combined uncertainty of the 

bias estimate  are assumed to be statistically independent and linear so that the combined 

uncertainty of the bias estimate is simply the square root of the sum of the squares of the 

individual standard uncertainties times the associated sensitivity coefficients.54  The 

sources of uncertainty and their relative contributions to the combined uncertainty for one 

Zernike coefficient are summarized in table 5.2.  Similar tables were created for all of the 

first thirty-six Zernike coefficients.  The results are summarized in chapter 6.  The 

remainder of this chapter provides an explanation of each source of uncertainty and the 

assumptions and methods used to determine the standard uncertainty, distribution factor, 

and sensitivity coefficients.    

Table 5.2 The uncertainty analysis for Zernike term 5 (0 degree astigmatism)  

Term 5 Bias Estimate:
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5.3.1. Ball Lens Figure Errors and Noise (Wi) 

For the randomly varying components, a reasonable estimate of the standard 

uncertainty is standard deviation of each Zernike coefficient obtained from fitting the 

measured data.  The samples from the second calibration run were used to calculate this 

standard deviation.  As shown in section 2.1, the sensitivity coefficient for this source of 

uncertainty is the inverse square root of the number of measurements.  Therefore, its 

contribution to the combined uncertainty decreases if more samples are used to calculate 

the average.  However, there are practical considerations such as the  time required to 

complete the calibration.  In addition, the incremental reduction in the sensitivity 

coefficient diminishes as the number of samples is increased.  For example, if thirty 

samples are used to calculate the average, the sensitivity coefficient is 0.182.  If thirty-

one samples are used, the sensitivity coefficient is 0.173.  The incremental difference in 

the sensitivity coefficient between using thirty samples and using thirty-one samples is 

0.003.  The incremental difference between using sixty-four samples and using sixty-five 

samples is 0.001.  We chose to use sixty-five samples so that the contribution to the 

combined uncertainty in the bias estimate due to the ball lens figure errors and noise is 

comparable to the contributions form the other sources of uncertainty.   The value of one 

of the coefficients over seventy measurements is shown in figure 5.4a.  The running 

average, shown in figure 5.4b, indicates that the average value of the coefficient 

converges as the contributions due to the figure errors of the ball lens approach zero. 
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Figure 5.4  Graph of on polynomial coefficient over 70 samples (a) and running average of these 
values (b) indicate that the values are random and that the average converges.   

5.3.2. Inherent Spherical Aberration (WBallSpherical) 

The components due to the inherent spherical aberration of the ball lens, 

WBALLSpherical( ), can be calculated from the diameter of the aperture, the index of 

refraction of the ball lens, and its radius of curvature, each with an associated uncertainty.  

We used ZEMAX® optical design software to perform the calculation.  The stop size was 

defined by setting the entrance pupil diameter.  A paraxial lens is used to image the 

aperture stop onto the image plane and the position of the image plane is determined by 

solving for a marginal ray height of zero.  The model is summarized in figure 5.5. 

   
Type Comment Radius Thickness Glass Diameter 

OBJ STANDARD Infinity Infinity 

 

0

1

 

STANDARD Infinity 5

  

0.8

STO STANDARD Infinity 0

  

0.8

3

 

STANDARD 2

 

2

 

BK7 4

4

 

STANDARD Infinity 2

 

BK7 0.52928

5

 

STANDARD -2

 

2

  

4

6

 

PARAXIAL - 18.06814

  

0.302838

IMA STANDARD Infinity 

  

0.152672

  

Figure 5.5  ZEMAX® model for the ball lens and aperture with a NA =0.14.  
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An estimate of the uncertainty in the calculated Zernike terms was obtained by 

randomly varying the input parameters over a reasonable range as determined from 

manufacture specifications using a Monte Carlo simulation.  The ball diameter, index of 

refraction, and the aperture size of the system were varied over a normal distribution with 

a standard deviation of 1% for the index of refraction, 2.5 microns for the ball diameter, 

and 5 microns for the aperture diameter (see figure 5.6).    

Tolerarance Data Editor
# Type Int1 Int2 Int3 Nominal Min Max Comment

1 STAT 0 2 - - - -
2 TIND 5 - - 1.5168 -0.01768 0.017682 1% index
3 TRAD 5 - - 2 -0.00127 0.00127 2.5 um ball diameter
4 TMCO 1 1 - 0.8 -0.005 0.005 5um EPD

 

Figure 5.6  Tolerance data as used by ZEMAX® to estimate the uncertainty in the inherent spherical 
aberration of the ball lens.  

5.3.3. Aperture Misalignment 

The ball lens is held in place with a pinhole aperture that also acts as the aperture 

stop for the system.  We defined the optical axis of the interferometer to be perpendicular 

to the incident wavefront and nominally centered on this aperture (see Figure 5.7).  The 

lateral position of the optical axis is fixed by the software mask that defines the unit circle 

over which the software fits the Zernike coefficients.  Any misalignment of the 

microscope objective or other optics with respect to this axis contributes to the  bias.  If  

the aperture or  ball lens is not aligned with the optical axis of the interferometer,  the ball 

lens will no longer introduce only spherical aberration to the wavefront.  This 

misalignment  will contribute to an uncertainty in the bias estimate.  
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Figure 5.7   Misalignment of the ball lens and aperture with respect to the optical axis of the 
interferometer introduces an uncertainty into the estimate of the bias.  

Lateral misalignment of the ball and aperture with respect to the optical axis of 

the interferometer will manifest itself as tilt in the wavefront.  It will also contribute to 

higher order aberrations since the ball lens/aperture system is no longer symmetric about 

the axis of the measurement.  To determine the sensitivity of the bias estimate to lateral 

misalignment of the aperture, the ball lens/aperture was systematically misaligned by 

moving the microscope translation stage.  Since it was not practical to add tilt to the 

wavefront along only one axis, the square root of the sum of the squares of the individual 

tilt coefficients was used as a measure of combined tilt.  The values of the Zernike 

coefficients were plotted against the combined tilt (see figure 5.8).  Assuming that the 

relationship between the each Zernike coefficient and the combined tilt is linear over the 

region of interest, the ratio of the standard deviation of the coefficient to the root mean 

square of the standard deviations of the tilt coefficients can be used as a measure of the 

sensitivity of the coefficient to lateral misalignment of the aperture as measured by the 
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combined tilt.  The standard uncertainty for the lateral misalignment is set by the initial 

alignment of the system as described in step 8 of the calibration procedure (see Appendix 

A).  Axial misalignment can be treated in a similar manner using the Zernike power term.   
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Figure 5.8  Plot of Zernike coefficients with respect to the combined tilt coefficient (the square root of 
the sum of the squares of the tilt coefficients) including linear trend lines.  

5.3.4. Aperture Tilt 

The contribution to the uncertainty in the bias estimate due to tilt of the aperture 

with respect to the axis of the interferometer was estimated using the ZEMAX® tolerance 

feature.  We assumed that we could visually align the aperture perpendicular to the axix 

of the interferometer within two degrees.  The  standard uncertainty is the standard 

deviation of the coefficient obtained from a Monte Carlo simulation in which the tilt of 

the aperture/ball lens system about the x and y-axis were varied simultaneously over a 

uniform distribution with a standard deviation of two degrees (see figure 5.9).    

# Type Int1 Int2 Int3 Nominal Min Max Comment
1 TETX 2 5 - - -2 2 X Tilt of Aperture/Ball Lens (+/- 2 degrees)
2 TETY 2 5 - - -2 2 Y Tilt of Aperture/Ball Lens (+/- 2 degrees)

 

Figure 5.9  Tolerance data as used by ZEMAX® to estimate the uncertainty in the bias estimate due 
to tilt of the aperture. 
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5.3.5. Ball Lens Misalignment 

When the ball lens is randomly repositiond, the center of the ball may not fall on 

the center line through the aperture.  This is equivilant to a lateral misalignment of the 

ball lens with respect to the aperture.  We have assumed that this misslignment is zero on 

average.  Lateral misalignment of the ball lens with respect to the aperture will manifest 

itself as tilt in the wavefront.  It will also contribute to higher order aberrations since the 

ball lens/aperture system is no longer symmetric.  The unceartainty in the mean value of 

the misalignment contributes to the unceartainty on the bias estimate.    

The sensitivity coefficiants were estimated using ZEMAX®.  First, the inverse 

tolerance feature was used to determine the lateral displacement required to produce the 

range of tilt coefficients observed in the measured data.  It is difficult to separate the 

effects of tilt about the x-axis and tilt about the y-axis.  Therefore, the root sum square of 

the tilt coefficients is used as a measure of tilt.  The sensitivity of each Zernike 

coefficient to lateral displacement of the ball lens, as measured by this combined tilt term, 

is the ratio of the standard deviation of the combined tilt term to the standard deviation of 

the  Zernike coefficient.  The sensitivity coefficient is assumed to be a constant for each 

Zernike coefficient over the range of interest.  This is similar to the technique used to in 

section 5.3.3 to calculate the sensitivity coefficient for misalignment of the aperture.  The 

standard uncertainty in the misalignment  is the standard deviation of the combined tilt 

term divided by the square root of the number of samples.  It is assumed that these 

misalignments will be normally distributed within the tolerance range given in the 

calibration procedure.    
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5.3.6. NA Mismatch 

As discussed at the beginning of this chapter, we used a simple approximation of 

the sensitivity of a shearing interferometer to choose the numerical aperture of the ball 

lens/ aperture system used for the calibration.  The actual uncertainty in the bias estimate 

due to NA mismatch is dependent on the magnitude and radial order of the aberration.  

However,  as discussed in at the beginning of this chapter, the worst case uncertainty of 

the bias estimate will be 1% of the coefficient s value.    This is the value used as the 

sensitivity coefficient.  It is multiplied by the bias estimate to compute the contribution of 

the NA mismatch to  the combined uncertainty in the bias estimate.      



       
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS   

The interferometer bias for each Zernike coefficients along with the associated 

combined standard uncertainties and expanded uncertainties are stated in table 6.1. Given 

the consistently large number of effective degrees of freedom, the expanded uncertainties 

were calculated using a coverage factor of k=2.0 for a confidence interval of 95.45%.  A 

phase map of the bias and an uncertainty map calculated from equation 4.7 are shown in 

figure 6.1.  The average repeatability of the measurement within a sample and the 

reproducibility of the measurement between calibration runs is included in the table for 

comparison.   

The uncertainties in the bias estimate for the lower order Zernike terms is on the 

order of several hundredths of a wave.  This is a significant proportion of the tolerance 

for many applications (see Chapter 1).  The dominant contributor to the uncertainty for 

many of the coefficients was the lateral misalignment of the ball lens with respect to the 

aperture as measured by the variation of the x and y tilt coefficients within each 

calibration run.  This was most likely due to the poor quality of the indentation used to 

center the ball lens onto the aperture.  A more repeatable fixture might be fabricated by 

turning a cone in a metal blank and grinding the back side until an aperture of the 

appropriate size is created (see figure 6.2).  A three point kinematic mount would be 

ideal, however, it is not clear how the aperture would be defined.  
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Table 6.1 Results of the calibration. 

units are in waves at a wavelength of 632.8 nm

Term 
Number

Bias 
Estimate 

Combined 
Uncertainty

(Uc)

Expanded 
Uncertainty

(U95.45)
Measurement 
Repeatability

Reproducibility 
Between 

Calibration Runs

1 -0.0781 0.0883 0.1766 0.0009 0.0011
2 -0.0875 0.1028 0.2057 0.2980 0.2433
3 0.0982 0.1038 0.2076 0.3153 0.3567
4 -0.0895 0.0779 0.1558 0.0310 0.0327
5 -0.4126 0.0779 0.1558 0.0180 0.0220
6 0.2489 0.0853 0.1706 0.0102 0.0067
7 0.0058 0.0509 0.1018 0.0107 0.0103
8 -0.0005 0.0375 0.0750 0.0124 0.0113
9 -0.0563 0.0069 0.0138 0.0093 0.0105

10 0.0844 0.0116 0.0233 0.0249 0.0315
11 -0.0938 0.0189 0.0377 0.0171 0.0130
12 0.0330 0.0091 0.0183 0.0113 0.0125
13 0.0072 0.0110 0.0220 0.0071 0.0069
14 -0.0159 0.0072 0.0144 0.0253 0.0340
15 0.0177 0.0066 0.0132 0.0065 0.0059
16 0.0050 0.0033 0.0067 0.0076 0.0062
17 0.0024 0.0092 0.0185 0.0272 0.0322
18 0.0670 0.0217 0.0434 0.0190 0.0227
19 -0.0301 0.0059 0.0118 0.0166 0.0201
20 -0.0268 0.0099 0.0198 0.0091 0.0120
21 0.0196 0.0047 0.0095 0.0120 0.0147
22 0.0007 0.0057 0.0115 0.0079 0.0056
23 -0.0157 0.0050 0.0100 0.0103 0.0139
24 -0.0003 0.0045 0.0090 0.0105 0.0119
25 -0.0049 0.0038 0.0075 0.0041 0.0001
26 0.0061 0.0122 0.0243 0.0180 0.0144
27 -0.0517 0.0198 0.0396 0.0170 0.0184
28 0.0188 0.0061 0.0123 0.0167 0.0214
29 0.0305 0.0084 0.0169 0.0137 0.0184
30 -0.0146 0.0054 0.0108 0.0091 0.0129
31 -0.0092 0.0054 0.0108 0.0068 0.0046
32 0.0065 0.0063 0.0125 0.0076 0.0059
33 -0.0031 0.0046 0.0092 0.0049 0.0044
34 -0.0020 0.0062 0.0124 0.0075 0.0087
35 -0.0004 0.0042 0.0084 0.0095 0.0087
36 -0.0081 0.0031 0.0062 0.0057 0.0070
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(a)

(b)

(a)

(b) 
Figure 6.1  Phase maps of the (a) bias estimate and (b) the expanded uncertainty in the bias estimate.  
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ApertureGround
Surface

ApertureGround
Surface 

Figure 6.2 Cross section of proposed mount with integrated aperture to reduce the uncertainty do to 
the ball lens misalignment.  

Astigmatism (term 5 and term 6) appears to be the dominant aberration 

contributing to the system bias.  This agrees with a previous calibration of a different 

interferometer using the same technique and the same reference objective.55   

We have extended the averaging technique for self-calibration to determine the 

systematic bias of a Mach-Zehnder interferometer used to measure the transmitted 

wavefront error for micro-refractive lenses.  This technique should be compared with the 

results obtained by calculating the transmitted wavefront error from accurate form 

measurements or other calibration techniques.  It may also be applied to other test 

configurations for measuring transmitted wavefront such as double pass Twyman-Green, 

Hartman tests and shearing interferometers described in chapter 2.    Finally, this 

technique could be extended to configurations used to measure systems of micro-optics 

including both passive and active components.    
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APENDIX A:  CALIBRATION PROCEDURE   

The following procedure was used to calibrate the interferometer.  It assumes that 

the interferometer has been aligned and is in the Mach-Zehnder configuration.  It also 

assumes that the phase shift has been calibrated.  For further detail on using Inteliwave 

and Zemax® see references 44 and 45. 

1. Select a reference objective.  It should have a numerical aperture larger than, but 

approximately equal to, the numerical aperture of the lenses that will be tested.  

The focal length should be chosen so that the exit pupil of the lens under test can 

be imaged onto the detector as described in section 3.2.  (Alternate objective and 

imaging lens combinations can be evaluated using a simple spread sheet.)  

2. Select a ball lens and pin-hole aperture with a numerical aperture approximately 

equal to the numerical aperture of the test lens as discussed in section 4.2.  (The 

solve feature in ZEMAX® can be used to quickly evaluate ball lens/aperture 

systems designed from commercially available components). 

3. Place the ball lens in the center of the pin hole aperture.  Alignment of the ball 

lens may be aided by slightly indenting the center of the pin hole aperture.  Place 

the ball lens/aperture system into the interferometer in place of the lens under test.  

It may be necessary to place spacers under the assembly so that the ball lens is 

confocal with the reference objective when the axial adjustment of the lens mount 

is in its center of travel.      

4. Visually align the face of the aperture perpendicular to the optical axis of the 

interferometer using the tip/tilt adjustments on the microscope stage. 
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5. Align the ball lens/aperture in the interferometer.  Focus the imaging system on 

the exit pupil of the lens.  Two to three tilt fringes may aid in determining best 

focus.  The edge of the aperture will appear as several thin lines that will converge 

as the aperture is brought into focus.   

6. Create or load an appropriate software mask.  The mask should follow the image 

of the aperture.  The mask may be elliptical depending on the aspect ration of the 

camera and the setting sin Inteliwave .  During the analysis Inteliwave will 

normalize the data in inside the mask to a unit circle before fitting the Zernike 

polynomials.   

7. Set the number of measurements to average to 10.   

8. Take several measurements, moving the ball lens/aperture laterally and axially  to 

minimize the Xtilt, Ytilt, and Power terms in the Zernike polynomial.  (Each term 

should be less than 0.2 waves).   

9. Take a measurement and export the Zernike coefficients to a spreadsheet.   

10. Randomly reposition the ball lens in the aperture with a puff of air from a lens 

blower brush.  Continue to blow on the lens until it settles back onto the aperture 

with less than three fringes of tilt.   

11. Repeat steps 9 and 10 approximately fifty to seventy times.  The contribution of 

the figure error of the ball lens and random noise will decrease in proportion to 

the inverse square root of the number of repetitions. 


