climate

President Obama takes the offensive on climate change

Categories: Group News

Wow. What a speech this afternoon by President Obama on the Georgetown University campus – and a beautiful follow up to his Inaugural Address in January and his State of the Union speech shortly thereafter – noting one satire piece that is worthy of watching. He stepped onto the stage at about 2pm Eastern time and delivered. The backbone was the announcement of the President’s Climate Action Plan (click for PDF). The papers were buzzing – Washington Post for example but there were many many more “responses” to the unveiling of the Climate Action Plan. Twitter was super active from about 2-5 pm Eastern time with #ActOnClimate trending high. I haven’t been around Twitter long enough to see the electricity flowing like this, but watching the speech and the tweets at the same time was pretty inspiring. Entertaining too. Twitter was like a race to see who could point out a quote by @BarackObama the fastest. Obama said a lot of great things, but I like this one.

We don’t have time for a meeting of the Flat Earth society

He pointed out that the Clean Air Act only promoted American innovation and did NOT destroy the economy, and noted that the Clean Air Act passed nearly unanimously with only ONE DISSENTING VOTE. Times have changed! He metaphorically referred to the economic potential of moving to clean energy as the building of a new engine, referring (I presume) to the innovation of the automobile industry in America throughout the 20th century. Clean energy is here in this country now. He said that 75% of wind energy is in Republican districts (!). The community organizer in our President emerged as he gave credit to past Republican efforts to help our environment – the EPA was created under the Nixon administration, for example.

I haven’t found the transcript or the high quality video yet, but June 25, 2013 was a very memorable moment for the USA. I hope it marks the turning point and that the USA leads – like it should, says this US Citizen – the development of a global community around the issue of global warming. I’ll leave you with an amazingly long graphic from the White House page.climate_change_report_62513_final_0

May 2013 climate in North Carolina and the world

With global warming and all of the impacts, it’s very important to constantly consider the question of time and space scales. May 2013 is a good example for those of us living in the Southeastern USA or North Carolina. Namely, North Carolina’s normal-to-cool spring is not at all indicative of how the global temperature is evolving. Let’s see how we can quickly use NOAA NCDC graphs to figure this out.

Global warming refers to the increase in average temperature of the entire Earth. The last part – the entire Earth – is the spatial scale. And that’s a huge spatial scale! When a scientist talks about global warming or that global warming has been detected, you have to step back and say WOW. What on Earth could warm an entire planet? coal_fired_power_plantOver long time scales, of course there are a number of possible reasons (changes in the Sun, Earth’s orbital shape/proximity around the Sun, plate techtonics), but these take so long, they aren’t relevant to the concept of global warming. Even my statement that What on Earth could warm an entire planet? should be more precise and say something like What on Earth could warm an entire planet over a relatively short time period? The simplest, if somewhat incomplete, answer is the combination of greenhouse gases and aerosols emitted into the atmosphere from human activities. Period.

May 2013 analysis of global temperatures are trickling out. NOAA NCDC as always has a wonderfully complete report of climate news for May and for all previous months. My favorite part is the plethora of hyperlinks. NOAA NCDC should really be commended for their public outreach! Here is one of the figures from that webpage201305where you can see how different the Southeast USA is from the world in May 2013 – the world is shades of red, while the Southeast USA is shades of blue (cooler than normal). We’ve had a very pleasant spring in North Carolina. Pull back on the temporal (time) scale to see the March-April-May seasonal average201303-201305 and you can see that the cool spring extends well beyond May in terms of the anomaly. By this, I mean that the blues become deeper when you consider a three month period (March-April-May) and that implies without any quantitative work that March-April were more cooler-than-average. Pull back slightly further to the year-to-date rankings201301-201305and here you see that the Southeastern USA and in fact most of the USA and even Alaska have been right at the climatological normal (which for NCDC is the average temperature from 1981-2010). The short story is that North Carolina below average temperatures for the period from January to May, March to May or just plain old May are not indicative of global temperatures. The real question is why?

Twitter and science

I’ve been starting to use twitter – mainly to supplement my research interests. I have zero confidence in facebook as a useful platform for anything remotely scientific or supportive of science, but twitter somehow seems different. The first twitter account I followed was @BeijingAir early this calendar year as reports of ridiculously bad air quality emerged yet again. I was quickly impressed by this informal but rigorous reporting of hourly (!) air quality relevant metrics such as particulate matter (PM2.5) concentrations.twitter-scienceI even started to develop discussions around the US Embassy in Beijing twitter feed in my Atmospheric Chemistry class this past Spring semester, drawing comparisons between my published research from Africa (of essentially PM2.5) and the measurements reported @BeijingAir. I haven’t read my course reviews yet, so I don’t know whether my students liked these discussions or the problem sets that I made related to twitter. I liked it though because it was current and relevant in questions of applied atmospheric chemistry and thinking about our global society. The problems in our backyard are relevant, but I love to think that we as a global civilization can solve problems in a collective way. This philosophy is a natural fit with the concept of social media, and my opinion is that twitter is a better fit than other social media.

Then while I’m flipping through one of my various science digest emails over lunch one day, I see this article and realize that there is apparently a collective move of scientists to employing twitter as a serious way to connect. The figure above was posted in that article and you can click and see the higher resolution version. The analysis in that post resonates with how I’m thinking about twitter – namely it allows the science I do to have the potential to be much more relevant. Given that many undergraduates leave the university without even knowing what it is that an “assistant professor” does or what the difference is between an “assistant” and “associate” professor (or that the difference exists), I would say it is critical that the academy makes sure that the future minds walk away from their college degrees with some idea of what it is the professionals in front of the classroom or giving seminars are doing. Most of us assistant professors, for example, are not sitting around after classes stop for the summer drinking margeritas, but in all this surveying of people about climate change and global warming, I haven’t seen questions probing this awareness of what the academy is. Thin Ice actually touches on this topic in terms of what it is an Earth scientist does and why.

Which brings me back to twitter. The graphic above has the key points that I will watch for in twitter: 1. 45% of followers are non-scientists, media, general public, and 2. median twitter following is 730 times median department size. The other points are pretty darn good too! If you want to see what I’m tweeting, thinking, following, etc., visit my twitter feed @brianmagi. I’ll continue to sort through ideas and thoughts and announcements on my personal webpage and blog, but twitter will be great during the academic year when teaching takes a big chunk of my time.

Global carbon emissions increased in 2012

Unlike the somewhat misleadingly rosy picture painted by President Obama about (USA) carbon emissions in his Inaugural Address and his State of the Union speech in 2013, the global carbon emissions are what matter. So if the USA continues to mine coal and ship it elsewhere, it is not an improvement except for the USA emissions portfolio. It’s like a gambler who doesn’t count losses at casinos other than the one he or she is sitting at. The International Energy Agency released a report stating that global carbon emissions are up 1.4%.bluemarble.eastI haven’t read the IEA report, but I came across the press release via the excellent energy/economy reporting they are doing. Then I heard the same WA Post reporter on the Diane Rehm show this morning (available for mp3 download via ITunes, for example). Then I read about the IEA article on Climate Central. Whew!

The Diane Rehm show had a good panel, with a requisite global warming “skeptic” (whatever that means!). That skeptic role was played by an analyst from The Heritage Foundation*. The other roles on the panel were the Post journalist, an analyst at the Environmental Defense Fund**, and a research scientist from Rutger’s University***. I would say that Diane Rehm handled the panel well, and I think that the Heritage Foundation representative overplayed his hand to the point where his comments were generally made irrelevant. In other words, he spoke too much and too glibly (is that a word) and made points that undermined his real argument that adaptation may be the most likely pathway (which is actually kind of interesting). The other panelist laid into the sillier points that the skeptic made and shut him down. Rehm left it that way.

Shutting down those punchline-style quips (memes) is really how the discussion should be every time. The Earth is warming. CO2 and other greenhouse gas concentrations continues to rise. The conversation should be about how it is our civilization needs to adapt and change. This is what the IEA discusses. Mitigation of carbon emissions is a huge discussion in the science journals. The IEA report is highlighting that we as a civilization are heading towards a major point in our hunger for fossil fuel based energy. This hunger has been targetted by scientist since the 1980s and arguably since the late 1800s! Think about solutions and strategies when you are thinking of how you want to make an impact on your community or your country or even the world. Think about our Earth and our future. The world needs you.

*The Heritage Foundation webpage states: Founded in 1973, The Heritage Foundation is a research and educational institution—a think tank—whose mission is to formulate and promote conservative public policies based on the principles of free enterprise, limited government, individual freedom, traditional American values, and a strong national defense.

**The Environmental Defense Fund webpage states: We are passionate, pragmatic environmental advocates who believe in prosperity and stewardship. Grounded in science, we forge partnerships and harness the power of market incentives.

***Dr. Jennifer Francis is deeply involved in improving our understanding of how the Arctic affects the USA – see google scholar or video of her talking about her work

Climate science movies

I held a screening of Thin Ice: The Inside Story Of Climate Science on Earth Day in April 2013, the day the film was released. The response from the students was good – they liked seeing Earth scientists working on complex data collection related to improving our collective understanding of the Earth system. thiniceBased on a written survey I asked many to fill out, I would say that the most general concern was that Thin Ice did not show enough data analysis – a great initial exploration into climate data is the National Academy of Sciences documentary on youtube called Climate Change: Lines of Evidence. I personally really appreciated the work of the Thin Ice film makers in showing not only how cohesive seemingly disparate problems in Earth sciences actually are, but also how enthusiastic Earth scientists are about their work. This enthusiasm, this love of their world and trying to understand it, is in my experience “the norm” amongst scientists studying some aspect of the Earth, whether that research is about the climate or climate change or weather or whatever (Earth sciences is a big topic). We love actively trying to solve these mysteries and understand how the physical world works. So I heartily recommend Thin Ice to anyone thinking about majoring in Earth Sciences or Meteorology or Geology or Geography. chasingiceYou may not work with ice cores or ocean-based research or even climate models, but you will have the chance to work with a group of highly dedicated people on problems that are interesting and sometimes poorly understood. Let your passion lead you!

Thin Ice the movie is available for mp4 download for only $10 through June 15 and you can watch from any device that plays mp4s. I will almost certainly screen Thin Ice in the Fall and Spring semesters of the upcoming academic year in my courses (Global Environmental Change and Applied Climatology). I am planning on buying another movie that visualizes change in a much different way called Chasing Ice. I haven’t watched this one yet, but I’ve heard very good things about the sweeping and powerful images of ice melting away before our eyes as the globe continues to warm.

Why is ice the theme of both movies? Well, actually Thin Ice is more about the scientists studying climate and my understanding of Chasing Ice is that it documents the ice as it is now with the implication that the ice will not be this way in even another generation. So, two ice-themed movies, but much different messages. Buy the mp4 of Thin Ice or watch for my screenings announcements. I’m 90% sure I’ll screen Chasing Ice in at least one of my classes as well. Visualizing global warming and seeing what scientists do (and LIKE to do!) is really important.

CO2 in the very merry month of May

The whole month has been an edge-of-your-seat wait-and-see when CO2 will stop hovering above and below 400 ppm and just stay above. Unlike Miguel Cabrera‘s triple crown of 2012 or the thoughts that he could repeat that feat in 2013 or even be the first since Ted Williams to hold a 400 batting average (can he do it – this evidence says yes), the increase in CO2 above 400 ppm is inevitable. Inevitability means you just need patience. Patience for me means more time to think about the numbers.

CO2 data are available from a number of sites

Sites around the world that are monitoring CO2 and other gases in the atmosphere.

Sites around the world that are monitoring CO2 and other gases in the atmosphere.

and there are differences in hemispheric CO2 concentrations that are completely expected due to emissions source location and atmospheric transport times, as discussed earlier. The Mauna Loa CO2 measurements are the ones I’ve been watching with more interest than this year’s baseball season and the daily-averaged CO2 concentrations are reported on the web and via twitter, among other places. Twitter is turning out some good and interesting data like this.

According to the twitter feed, daily-averaged CO2 exceeded 400 ppm on May 13 with CO2 of 400.16 ppm. By my own calculations using the daily tweets, weekly-averaged CO2 exceeded 400 ppm for the first time in the week ending May 19 (CO2 was 400.01 ppm). The next milestone is when the monthly-averaged CO2 exceeds 400 ppm, and then annually-averaged, and so on. We are approaching what should be the peak CO2 this calendar year as the growing season begins and CO2 is drawn down from plants breathing in CO2. Eventually, the Earth will be perpetually impacted by more than 400 ppm CO2 and even the seasonal drawdown in CO2 of 5-6 ppm from May to October every single year as plants in the biosphere convert CO2 into oxygen via photosynthesis will not overcome the long-term trend in CO2. The CO2 will remain in our atmosphere for 100s-1000s of years. The Earth will slowly re-equilibriate to this elevated CO2 through a myriad of processes that include ocean uptake, plant growth, chemical weathering, and finally increased surface and lower atmospheric (tropospheric) temperatures due to the absorptive power of CO2 in the infrared part of the electromagnetic spectrum. The impacts of increased CO2 and other atmospheric components that can force climate into a new state are the main reason climate science remains active. In a post that will be ready as soon as the data is available (June 2), I’ll show the weekly-averaged CO2 trend in the month of May based on the Keeling Curve twitter feed. In other words, I’ll show inevitability.

CO2 and climate sensitivity

On Thursday, May 16, 2013, the official daily-averaged CO2 concentration in the atmosphere was reported by Scripps as (drumroll please)co2-2013-05-16Like I pointed out, 400 ppm is inevitable because CO2 increases by 2 ppm every year, but to actually see a value like that reported makes it more real. Now we await a value that is over 400 ppm for an entire week, and then for a month, and then it’s just a matter of time when we are in a world with 400 ppm of CO2, remembering how different this is than any time in Earth’s recent history as shown in the figure to the right (click to make larger).co2_800kRemember that CO2 in the atmosphere is a pretty simple physical perturbation on the Earth’s energy budget – more CO2 will result in an atmosphere that absorbs more of the infrared energy that the Earth emits to space to try and cool off. The energy that does not escape and is absorbed is then re-emitted towards the surface (and towards space). This forces the Earth to warm in response to try to bring the energy budget back into balance since balance is inevitably what everything in the universe seeks to achieve. This forcing of the Earth’s temperature has never been in doubt. The real question is how the Earth SYSTEM will respond to the extra energy or extra warmth. The SYSTEM is something I will start talking about here and it is certainly the most complicated aspect of climate science. Imagine the complexities associated with trying to understand how the atmosphere, ocean, land and plants, ice, and even humans and animals will all respond and how each affects the other! That is the heart of Earth system science and the heart of the very current discussion about climate sensitivity – a measure of how the system in total will respond to perturbations like more CO2 in the atmosphere. A very nice op-ed in the New York Times by Justin Gillis this week highlights the frank evaluation and debate about climate sensitivity occurring in the scientific community that has arisen from the apparent slowdown in the increase in globally averaged temperature (since about 2002 in the GISS time series or slightly more evident in the NCDC time series below)global-201101-201112The issue is getting a load of attention and, as Gillis wisely acknowledges, the analysis and studies in the peer-reviewed scientific literature will take a couple of years to “settle” on an answer. I agree. The public and policy makers and just about everyone wants to know the answer though so every publication or even statement about climate sensitivity will be intensely amplified. I’ve been reading about this issue myself, mostly as I prepare to bring the very current discussion into the classroom (here, here), but also because I am as concerned about the Earth as anyone. Here’s a final statement by Gillis that I also agree with.

Even if climate sensitivity turns out to be on the low end of the range, total emissions may wind up being so excessive as to drive the earth toward dangerous temperature increases. So if the recent science stands up to critical examination, it could indeed turn into a ray of hope — but only if it is then followed by a broad new push to get the combustion of fossil fuels under control.

Regardless of the climate sensitivity, changes to our lifestyles are inevitable. Will our society and will the USA be seen as forward-thinking or will we revert to the simplest and most destructive way to get energy?

Cold spring and signs of summer

A great description of some of the unusual recent temperature swings in the north central part of the USA by Minnesota State Climatologist office with the original link here:

A taste of summer air surged into Minnesota on May 14th, sending the mercury soaring into the 80s and 90s across a good part of the state. A few locations even cracking 100 degrees. Notable exceptions were locations near ice covered lakes in northern Minnesota and near Lake Superior. At 2pm May 14th, the air temperature was 102 degrees at St. James and 44 degrees at Grand Marais. This kind of temperature range happens occasionally in the spring. One of the more dramatic episodes in recent years was May 19, 2009 when there was a difference of 66 degrees from Grand Marias to Granite Falls. The warmest temperatures found from a National Weather Service Cooperative site was 103 degrees from Sherburne 3 WSW in Martin County and Winnebago in Faribault County. Amboy also had reading of 102 degrees. Extremely dry air was in place as well, with desert-like relative humidity readings in the single digits at St. James. At 2pm while it was 102 degrees at St. James, the dew point temperature was only 28 degrees, creating a relative humidity of seven percent. Very low relative humidity readings happen on occasion. On April 28, 2004 the relative humidity dipped to just 2% at Pipestone. The lowest relative humidity reading ever recorded in the Twin Cities is 10% measured at 5pm April 22, 1953. The statewide hottest maximum temperature for the entire month of May is 112 degrees measured at Maple Plain in Hennepin County on May 31,1934. The Twin Cities had a high temperature of 98 degrees on May 14. This broke the old record high of 95 degrees that was set in 1932. This is also the hottest temperature recorded so early in the season for the Twin Cities. Ironically, despite how cool it has been this spring, 2013 had its first 90 plus degree day in the Twin Cities four days earlier than 2012, which hit 93 on May 18.

That last line is a pretty interesting weather tidbit, noting that the salient graphs from NCDC are below201304201302-201304 North Dakota had its coldest April in 119 years! Yow. Most of the central part of the country was colder than average, but by comparing the April 2013 to the multimonth average February-April 2013 plot, you can see signs of the transition out of spring to summer as well as parts of the country which had an above-average warm month (California, mid-Atlantic, Nevada, Arizona). More about this later – but these “extremes” are exactly the kind of weather we can expect as the Arctic warms or stays warmer than usual due to less sea ice. N_stddev_timeseries-2013-05The Sun will eventually win this battle and the mid-latitudes (southern USA) will inevitably heat up this year (at least I think so!). Here’s the temperature departure for the last week from HPRCC which clearly shows relatively warm temperatures creeping from the Pacific Northwest into the heretofore frozen Great Plains. 7dTDeptUS-2013-05-16 Summer is coming. Will Summer 2013 be like Summer 2012? Another question for another day.

Another week of CO2 from Scripps

An update to my update from the original post. CO2 is rising 2 ppm/year and has been for about the last decade (see graph here). So the daily ups and downs and pretty miniscule. 2 ppm/year is 0.0055 ppm/day, or thought of yet another way – it’ll take about 180 days for CO2 to increase 1 ppm. While we await the inevitable, here’s an update with May 13 at least above 400 ppm, although the measurements are pretty variable for some reason.mlo_one_week-2013-05-14Variability in CO2 during the course of any one day can be for a number of reasons. One that scientists responsible for quality-control of the data have to account for is the simple fact that Mauna Loa is a gigantic shield volcano

Photo taken by me from the Kilauea Caldera in 2007.  Mauna Loa (13000 ft elevation) looms in the background under a shroud of clouds, but it's shocking how small that 13000 ft mountain looks.

Photo taken by me from the Kilauea Caldera in 2007. Mauna Loa (13000 ft elevation) looms in the background under a shroud of clouds, but it’s shocking how small that 13000 ft mountain looks.

Well, scientists are nothing if not rigorous and attentive, so here’s a nice post by a NOAA scientist talking about the volcanic CO2 pulses that occasionally disrupt the background CO2 measurements that Mauna Loa is best known for. I haven’t read the papers about the volcano relevant emissions, but the link at the bottom of the page gives the information needed to track down the publications via google scholar. That being said, it doesn’t look like the variability in the hourly values for May 13 CO2 was due to volcanic emissions.

CO2 hovering above and below 400 ppm

An update from the measurements being reported from Scripps that I discussed earlier. Here’s the screen shot when I checked the “box scores” for our favorite greenhouse gasco2-2013-05-07whew! I know if I patiently wait, the CO2 concentration will rise above 400 ppm in earnest since CO2 concentrations have been increasing by about 2 ppm/year

Global growth rate of atmospheric concentration of CO2

Global growth rate of atmospheric concentration of CO2 from 1959 to 2012 (data from NOAA ESRL in link below). 1959 is the start of in situ measurements. The best-fit line is overlaid for reference. You can see that the correlation coefficient is high. In this case, the R2 = 0.43 means that a line captures about 43% of the variance in the annual data. That, in turn, means that a line is a good approximation for predicting where we are going in the near-future.

for a long time with some indication of acceleration in the last few years as the NOAA ESRL CO2 data repository data indicates. Finally, note that hourly measurements of CO2 have already jumped over 401 ppm at times as shown in this figure from Scripps. 400 ppm is inevitable, but what this means for the world is something that science is trying to figure out.mlo_one_week-2013-05-07