Date: February 21, 2020
Time and location: 11:10am-12:10pm, Fretwell 305
Speaker: Mingyao Li, Ph.D, Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine
Title: Translation of single-cell genomics into human health: methods and applications
Abstract: Recent technological breakthroughs have made it possible to measure gene expression at the single-cell level, thus allowing biologists and clinicians to better understand cellular heterogeneity and modify cell behavior through targeted molecular therapies. However, single-cell RNA sequencing protocols are complex. Even with the most sensitive platforms, the data are often noisy owing to a high frequency of dropout events, and the phenomenon of transcriptional bursting in which pulses of transcriptional activity are followed by inactive refractory periods. In this talk, I will present several statistical and machine learning methods that aim to tackle these challenges for a better understanding of cellular heterogeneity. I will illustrate our methods by showing results from ongoing collaborations on age-related macular degeneration and Alzheimer’s disease. With the growing interest in utilizing single-cell RNA sequencing in biomedical research, our methods will aid biomedical researchers to answer medically related questions and make exciting discoveries.