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Abstract: Dengue fever is a vector-borne infectious disease, which is known to quickly 

develop and spread under favorable weather conditions. This presence of the disease is also 

affected by societal behaviors (population migration and prevention attitude towards the 

disease). We apply a spatial and temporal extension of the kernel density estimation 

algorithm to map space-time clusters of dengue fever in Cali, Colombia for the year of 2010.  

We conduct the Space-Time Kernel Density Estimation (STKDE) in a parallel computational 

framework to account for the computational complexity involved. We extract intricate 

disease dynamics in an interactive manner, using a powerful 3D environment. Computational 

and cartographic impacts of varying space-time bandwidths are presented. The findings from 

our work can help better understand the dynamics of a quickly spreading disease.  

 

Keywords: dengue fever, kernel density estimation, parallel computing, space-time 

visualization 
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1. Introduction 

The outbreak and communicability of infectious diseases across the world are driven by an 

array of complex interrelated factors and processes, such as rapid urbanization, human 

mobility, changes in public health policy, and global climate change (Cooley et al. 2008; 

Eastin et al. 2014; Hu et al. 2012; Kanobana et al. 2013, Wu et al. 2009). Infectious diseases 

such as malaria or dengue fever, pose a critical threat to vulnerable human populations such 

that timely responses are necessary to reduce the burden caused by the diseases. Dengue 

fever for instance is known to vary through time and space, due to a number of factors 

including human host, virus, mosquito acting as disease-vector and environment (Mammen et 

al. 2008). To implement appropriate control measures, public health organizations and policy 

makers must rely on accurate and timely predictions of disease foci monitoring and analyzing 

them under critical space-time conditions. A better understanding on the space-time signature 

of infectious diseases such as their rate of transmission and tendency to cluster should help 

epidemiologists and public health officials better allocate prevention measures. 

 Geographical Information Systems (GIS) and associated spatial analysis methods 

(Haining 1990; Goodchild et al. 1992; Anselin 1999; Fischer and Getis 2009) have received 

considerable attention in the field of spatial epidemiology (Cromley and McLafferty 2011). 

GIS can effectively organize individual or aggregated data, and map the magnitude and 

expansion of these diseases over time. Ultimately, results from GIS and spatial analysis have 

the potential to reduce disease burden by generating new information for the public and 

health agencies, leading to improvement on development of preventive measures and 

strategic allocation of control resources.  

In spatial epidemiology, the development of computational techniques for the 

identification and the visualization of space-time clusters in large databases is a challenge 

(Delmelle, Kim, et al. 2013, Goovaerts and Goovaerts, this issue, Delmelle et al. 2014). Our 

chapter contributes to the field of space-time clustering, specifically the use of Space-Time 
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Kernel Density Estimation (STKDE) for infectious diseases and the visualization of disease 

dynamics in a 3D environment.  The results provide a sense of where outbreaks of dengue 

fever linger around for a longer time (persistence). These patterns might generate clues on 

why dengue outbreaks tend to remain around particular areas. Together with information and 

expertise from local authorities, intervention programs may be conducted about to address 

particular (unique) settings. 

The chapter is organized as follows: Section 2 discusses the importance of spatial and 

space-time analytical methods, and existing visualization frameworks for epidemiology. 

Section 3 discusses the contribution of visual analytics for space-time data and introduces the 

extension of the Kernel Density Estimation (KDE) in time (STKDE). STKDE is particularly 

demanding, from a computational perspective, and to address this issue, we integrate STKDE 

with a parallel computing environment, in Section 4. We illustrate our approach on a set of 

dengue fever cases in the city of Cali, Colombia (2010). A static 3D visualization is used to 

illustrate the spatio-temporal characteristics of this infectious disease. Directions for future 

research are presented in the last section.  

 

2. Space-time visual analytics   

 Representing the multi-dimensionality of geographical space and its phenomena is a 

complex task. Over time, cartographers have proposed a wide variety of techniques; mostly 

two-dimensional, static maps (Bertin, 1983). In spatial epidemiology, disease maps are 

generally presented in one of two forms (Cromley and McLafferty 2011): at an aggregated 

level, divided by the population at risk, resulting in a choropleth map, or at the individual 

level as a scatter map. As scatter maps become very cluttered when incorporating a large 

number of events, an alternative consists of producing a kernel distribution map that 

generates a smooth probability raster that facilitates the discovery of clusters (Bailey and 

Gatrell 1995). 
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 As part of the multi-dimensionality of spatial data, temporal coordinates are often 

present, for instance the time stamp associated with a particular event. Since the development 

of the space-time cube concept (Hägerstraand 1970), several analytical and visualization 

strategies have been developed to integrate the temporal dimension in spatial analysis (Kwan 

2004; Miller 2005; Jacquez, Greiling, and Kaufmann 2005). The availability of personal 

computers, advances in Geographical Information Systems technology, and increasingly 

efficient graphic processing power (Peterson 1995) has allowed the development of new tools 

and techniques to integrate the temporal dimension in the form of cartographic movies 

(Tobler 1970), animations in two and three dimensions (Moellering 1980; Harrower and 

Fabrikant 2006; Brunsdon, Corcoran, and Higgs 2007) and interactive maps or geo-browsers  

(Harrower 2004; Dykes, MacEachren, and Kraak 2005; Hruby, Miranda, and Riedl 2009). 

Graphic user interfaces have been tailored to address particular needs (Jacquez, Greiling, and 

Kaufmann 2005; Rogerson and Yamada 2008; Delmelle et al. 2011). The latter techniques 

are particularly well-suited to analyze infectious diseases exhibiting cyclic patterns—

outbreaks can surge and resurface at particular space-time locations. Thakur and Hanson 

(2010) developed a pictorial representation based on the space-time cube framework, 

providing, in a single display, an overview and details of a large number of time-varying 

information. Their approach is discrete using aggregated county data.  

In this chapter, we follow the continuous approach set forth by Andrienko et al. 

(2010) and Demšar and Virrantaus (2010) by extending the space-time prism framework to 

monitor and visualize disease dynamics.  Recently, Fang and Lu (2011) proposed a 3D space-

time cube, which integrates air pollution scenarios. The base of this cube describes the spatial 

variation of air pollution across a traditional 2D space while the height is used as the temporal 

dimension. As time progresses, the change of air pollution for each location within the base 

2D space is continuously updated. Time periods are represented as layers, which are 

separated from each other by an offset. However, 3D layers may form cluttered maps, even 

with a small number of layers.  
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In certain cases, animations may work better than three-dimensional mapping and 

lead to a more accurate detection of space-time clusters. However, several variables prevent 

full control over these animations, as, among others, frame duration and speed of transition 

must be calibrated (Harrower and Fabrikant 2008). In spite of the advances, 3D visualization 

remains a cartographic challenge (Langran, 1994), and not enough is known about its 

effectiveness for mapping the temporal dimension along the third axis (Fabrikant 2005; 

Andrienko et al. 2010). In this chapter, we use a 3D space-time cube framework to map the 

stability and strength of spatial clusters over time.  

 

3. Methodology 

a. Kernel Density Estimation (KDE) 

Kernel Density Estimation (KDE) (Bailey and Gatrell 1995; Delmelle 2009) is a spatial 

analytical technique, which maps the spatial distribution of point events across an area. KDE 

produces a raster surface reflecting the spatial variation of the probability that an event will 

occur. One of the benefits of KDE is its ability to delimit the spatial extent of disease 

occurrences (Delmelle et al. 2011). For infectious diseases, these maps are used in 

conjunction with prevention and control programs to guide disease-vector control and/or 

surveillance activities (Eisen and Eisen 2011; Eisen and Lozano-Fuentes 2009). KDE is 

computed at each grid cell, which receives a higher weight if it has a larger number of 

observations in its surrounding. Let s (x,y) represents a location in an area R where the kernel 

density estimation needs to be estimated, and s1,…sn the locations of n observed events   

(Silverman 1986): 

𝑓(𝑥, 𝑦) =
1

𝑛ℎ𝑠
2 ∑ I(di < hs )𝑘𝑠(

𝑥−𝑥𝑖

ℎ𝑠
,

𝑦−𝑦𝑖

ℎ𝑠
)𝑖        (1)                                       

The term hs is the search radius, or spatial bandwidth, which governs the amount of 

smoothing, and ks is a standardized weighting function, known as the kernel that determines 
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the shape of the weighting function. Here di is the distance between location s and event si, 

which is constrained by
si hd  , such that only the points which fall within the chosen 

bandwidth contribute to the estimation of the kernel density at s.  The number of points 

participating in the kernel density estimation affects the computation time linearly, while 

smaller cell sizes (finer grid) result in an exponential increase in the overall computation 

time.  

 Point events generally have a time stamp associated with them s(x,y,t). One critical 

challenge is time integration in KDE, which may help to address the questions of (1) whether 

the distribution of events varies over time, and (2) whether the occurrence of the underlying 

process is repeated in certain areas and exhibit a cyclical pattern, in turn indicating a spatio-

temporal process. Two approaches exist to integrate the temporal dimension in the KDE. In 

the first approach, we query data for different temporal intervals -time period 1, time period 

2…time period t-, and the spatial kernel density is repeated sequentially for those intervals. 

We call this approach sequential KDE –sKDE-. Usually, the resulting kernel density images 

are arranged in an animation framework or side-by-side as a multiple. In the second 

approach, the kernel density estimation method is explicitly extended in time –STKDE- by 

adding a temporal bandwidth (Nakaya and Yano 2010; Demšar and Virrantaus 2010), and 

visualized in a 3D environment. Computationally, the space-time kernel density estimation 

(STKDE) is much more challenging and cartographically more complex, but it has the 

advantage of summarizing the spatio-temporal clustering pattern in one image. The two 

approaches are explained in detail in the following paragraphs. 

 In the Sequential Kernel Density Estimation (sKDE) the KDE procedure can be 

repeated over several time intervals (granularity of one day, one week, one month), producing 

different KDE layers. These layers are then arranged in a mosaic framework side-by-side. 

This so-called “multiple” arrangement has the disadvantage that users must move from one 

image to another and reconstruct the movement of the clusters. An alternative proposed 

earlier is the use of animation (Dorling 1992; Harrower and Fabrikant 2006; Brunsdon, 
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Corcoran, and Higgs 2007). The sequential Kernel Density Estimation does not explicitly 

take time into account; rather, each map is a snapshot of a particular situation at a specific 

time interval. 

According to Nakaya and Yano (2010) and Demšar and Virrantaus (2010), a mosaic of 

two dimensional kernel densities does not facilitate simultaneous visualization of the 

geographical extent and duration of point patterns and spatial clusters, unless they are 

adequately arranged in an animation framework, or stacked on top of each other in a 3D 

environment. An alternative is the extension of the kernel density estimation in time 

(STKDE). The STKDE approach requires mapping a volume of probabilities. Its main 

advantage lies in seeing all probabilities and clusters at once, rather than the need to recreate 

a mental image through animation. We apply an extension of Silverman’s spatial kernel 

density which incorporates the temporal dimension, as described in Nakaya and Yano (2010). 

The space-time density f̂(x, y, t) at s is thus estimated by: 

 

f̂(x, y, t) =
1

nhs
2ht

∑ I(di < hs,ti < ht)ks (
x−xi

hs
,

y−yi

hs
) kt(

t−ti

ht
)i ,    (2)  

 

where 𝑑𝑖 and 𝑡𝑖 are the Euclidean (or network) distance and temporal differences between 

location s and event 𝑠𝑖. 𝐼(𝑑𝑖 < ℎ𝑠,𝑡𝑖 < ℎ𝑡)𝑘𝑠 is an indicator function taking value 1 if 𝑑𝑖 <

ℎ𝑠 and 𝑡𝑖 < ℎ𝑡.  ℎs is the search radius (or bandwidth), governing the amount of smoothing. 

ℎt is the temporal search window. 𝑘𝑠 is a standardized weighting function, known as the 

kernel that determines the shape of the weighting function. 𝑘𝑡 is a standardized temporal 

weighting function. Generally, a space-time count statistic (K-function) can be used to 

estimate the optimal global bandwidths (ℎs
2ℎt) in space and time, although different 

approaches have been suggested.  
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b. STKDE implementation 

We used the procedure presented in Figure 1 to compute the STKDE. First, based on the 

extent of the study region and a desired voxel1 size, a 3D grid is generated. This process is 

also known as three-dimensional discretization. Second, for each voxel centroid, we compute 

the space-time kernel density (z0) using appropriate bandwidths (hs, ht)
2 and Equation 2 to 

identify the disease events that will participate in the computation. An additional constraint is 

added that only considers nearby points. Voxels that fall outside of the study region or where 

the density value is equal to zero (z0=0) are excluded. Both added constraints reduce 

computational time.  The STKDE algorithm is coded in the Python environment. Finally, 

density results are visualized in a three-dimensional visualization environment (Voxler, 

Golden, CO) where the appearance of the cluster can be adjusted according to the distribution 

of density values. To detect micro-patterns, a fine grid is generally preferred to the cost of a 

heavier computation and longer rendering time. Results are visualized in a 3D environment, 

allowing a better understanding of complex disease dynamics in an interactive manner.  

 

Figure 1. STKDE computing framework. Boxes in bold (2) and (4) denote computing intensive procedures, 

while the dashed box (3) is optional.  

 

c. A parallel computing approach 

The estimation of space-time kernel densities in point pattern data consumes considerable 

amount of computing resources. This method requires handling each voxel in the space-time 

cube at a time. Consequently, when the number of voxels or the number of points in the 

                     

1 A voxel can be conceived as the extension of a grid cell in a third dimension. It is a volumetric element. 
2 A space-time K-function is used to estimate the optimal bandwidths of space-time clusters of dengue fever 

(Delmelle et al. 2011). 
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spatiotemporal point pattern is excessively large, a significant amount of computation may be 

required to complete the derivation of space-time kernel densities. Thus, we prefer using a 

parallel computing approach (Armstrong 2000; Wang and Armstrong 2009; Tang and 

Bennett 2011; Tang 2013) to cope with the intense computational efforts related to the 

derivation of spatiotemporal kernel density. In this study, we follow the strategy proposed by 

Wilkinson and Allen (2004) for the efficient estimation of space-time kernel densities. The 

parallel computing resources that we used include 54 nodes with 432 computing cores. A 

dual Intel Xeon X5570 processor with 2.93 GHz of clock rate was used, with each processor 

having 24 GB of memory.  

 

4. Results 

a. Dengue fever and geospatial datasets 

Dengue fever, which is an arboviral disease endemic to tropical and subtropical areas is 

among the most dangerous infectious diseases. It has a global presence and poses a threat to 

more than 2.5 million people. Dengue fever is a problem to communities and health entities, 

necessitating the control and the prevention of the virus (Méndez et al. 2006; WHO 2009). 

Dengue fever is transmitted to humans by a mosquito of the genus Aedes (Monath 1988). The 

Aedes aegypti mosquito lives and reproduces in warm climates where temperatures range 

between 18⁰ and 25⁰ C (Wu et al. 2009).  

Colombia is one of the many countries where dengue fever is endemic and constitutes 

a serious health problem.  The population living in areas at risk of contracting the disease 

totals 26 million individuals.  These areas are characterized by elevations below 1,800 meters 

(Colombianos 2011). The City of Cali, which is the focus of this study, is considered an 

endemic dengue fever zone. It is located in the valley of the Cauca River 1,000 meters above 

sea level and has an average daily temperature of 23⁰C. Annual precipitation in the driest 



10 
 

 

 

zones reaches 900 mm and 1,800 mm in the rainiest.  The city’s annual precipitation average 

is 1000 mm (Cali 2008). According to the health municipality of the City of Cali (Cali 2010) 

there have been three severe dengue outbreaks between 1990 and 2009: 1995, 2002, and 2005 

(Cali 2010). During 2009 and the first quarter of 2010 more than 7,000 cases of dengue fever 

where reported in the city (Cali 2010). By the end of January of that year a total of 990 

dengue fever cases were registered with the number increasing to 3,540 by week 10 (mid-

March).  At this point the signs of an epidemic were evident.  By August of 2010 a total of 

9,310 cases of dengue fever had been reported. In this chapter, we map space-time clusters of 

individuals infected by dengue fever within the city of Cali for the year 2010, a year that 

corresponds to a strong outbreak of the disease.  

The dengue fever dataset corresponds to cases of dengue reported in the “Sistema de 

Vigilancia en Salud Pública” (SIVIGILA, English: Public health surveillance system) for the 

City of Cali (provided by the health municipality of the City of Cali) for the year 2010.  An 

entire description of the geospatial dataset, and geocoding procedure is given in (Delmelle, 

Casas, et al. 2013). Individuals report dengue fever symptoms on a daily basis (unit=Julian 

date) at a local hospital. Hospital records include patient information (sex, age, race, address, 

neighborhood, and occupation), date of diagnosis, epidemiological week, and day symptoms 

started. There were 11,760 cases reported in 2010. The data was geocoded  to the intersection 

level to guarantee patient privacy (Kwan, Casas, and Schmitz 2004). Eighty one percent of 

the total cases were perfectly matched. The 19% that could not be matched constitute non-

existent addresses or addresses with errors that could not be fixed.  From the 9,555 that were 

successfully geocoded, as described in (Delmelle, Casas, et al. 2013), the majority of the 

cases occurred during the first 4-5 months of the year, after which the municipality invested 

time and efforts to further eradicate mosquito breeding habitats.  

We now illustrate the results from the STKDE algorithm on all patients exhibiting symptoms 

of dengue fever in Cali, Colombia, in 2010. We discuss the benefits of the parallel approach, 

and the sensitivity of the STKDE. 
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b. Parallel computing results  

We use a space-time K-function, a scan statistic (see HELP in Delmelle et al. (2011)), to 

identify the geographical and temporal scale at which clusters of dengue are the strongest 

(determined as hs=1500m and ht=10days). We implement the STKDE algorithm with those 

space-time parameters. We also estimate the robustness and sensitivity of the STKDE 

algorithm against different cell sizes and bandwidths, among others.  

Figure 2a reports the running time to conduct the STKDE for the entire city of Cali on 

a single CPU, and hereafter referred to as ‘sequential’.  The STKDE is estimated on a 3D grid 

of resolution 100m *100m * 1 day. The running time significantly decreases when using 

larger voxel sizes, since STKDE is estimated on a much smaller set of 3D gridded data 

points. The same reduction in running time is observed in Figure 2b which summarizes the 

maximum computational effort when using a parallel computing approach. Although the 

shapes of the curves in Figure 2a and Figure 2b are similar, the time range is much smaller in 

the latter.  As the cell size increases, the running time to compute the STKDE decreases, in an 

exponential fashion.  Figure 3a reports the ‘sequential’ time for different spatial bandwidths. 

As expected, the running time increases in a linear fashion when using larger bandwidths, 

since a greater number of points are included in the computation. The same pattern is 

observed in Figure 3b, which illustrates the maximum computational effort when using a 

parallel computing approach.  
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Figure 2. Running time for the STKDE on one CPU (a), 96 CPUs(b), speedup (c) and sensitivity to search 

radius in (d) based on different cell sizes. Note the values along the Y-axis are different. 

  

Figure 3. Sensitivity of the STKDE running with variation in spatial bandwidth, on one CPU (a), 96 CPUs(b). 

Note the values along the Y-axis are different. 

 

c. 3D visualization  

The kernel density volume is extracted by computing the Kernel Density Estimation of each 

voxel in our 3D area. It is then visualized by color-coding each voxel according to its kernel 

density value. The transparency level is also adjusted to concentrate the focus on those 

regions with higher density values (Figure 4). The KDE values range from 0 to 1 (on the 

map). Voxels having a KDE of 0.3 or less are colored in dark and lighter blue shades and 

voxels with a value between 0.3 and 0.5 are colored yellow. Voxels between 0.5 and 0.7 are 

colored green and voxels with higher KDE values are colored in red or purple tones. The 

highest KDE values are usually found in a couple of cores within the voxel cloud (not at the 

edges). Since those higher densities are the phenomenon we are interested to capture and thus 

visualize, different transparency levels are used depending on the KDE value of each voxel. 

In this case, voxels with lower KDE value (<0.25) were brought to a high transparency level, 

allowing the visualization of underlying voxels, with higher KDE values. For values of 0.3 to 

1 the transparency was lowered in a linear fashion.  
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Figure 4. Transparency scheme adopted in Voxler for visualizing STKDE values ranging from 0 to 1 (on the 

map).  

 

We reinforce the importance of clusters by using so-called ‘egg shells’. These are created by 

computing an isosurface around voxels having a value of 0.7. When visualizing these 

isosurfaces, interestingly they create an envelope capturing areas with higher KDE values. 

Also, these isosurfaces allow us to visualize the shape of the outbreak in space and time. This 

isosurface can be visualized in two ways, one is a smooth surface, and the other one is a TIN-

like surface. Both surface types have the same shape and encapsulate the same space-time 

areas, but are represented in a different way. 

 

d. 3D visualization results 

We map the space-time stamp of dengue cases in Figure 5a and the space-time kernel density 

in Figures 5b with isovolumes and 5c with triangulated irregular networks using hs=1500m 

and ht=10days at a discretization level of 125m*125m*1 day (finer discretization level may 

provide more details, but at a cost of a larger storage). The distribution of cases is particularly 

strong in the beginning of the year. In Figures 5b and 5c, the observed pattern clearly shows 

cyclic reoccurrence of the cluster of the disease, although this particular infectious disease 

may follow a pyramid like-pattern: dengue fever may saturate in the population over time and 

as a consequence exhibits skinnier clusters. Several space-time clusters are constant, with 

high intensity. These correspond to areas in the central part of the city (clusters 1 and 2), the 

west side close to the foothills (cluster 5), while clusters (3) and (4) are in proximity in the 
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south west part of the city (see Figure 5b). All clusters are more intense in the beginning of 

the year since the highest number of cases occurred between January and March of 2010.  

Among the five clusters, clusters (1) and (2) cover a larger spatial extent, but short in time. 

Cluster (1) is concentrated throughout a relatively shorter time period compared to the other 

four clusters. This is an area with old urban neighborhoods composed of households with 

large families, which increases the risk of people being exposed to the disease. On the other 

hand, policy measures might work more effectively in those areas because of the pre-existing 

bond between people and their willingness to work together to eradicate the epidemic, which 

might be the reason for the quick eradication of the disease in that area. Cluster (5) has a 

more focused spatial extent in the foothills to the west of the city. It corresponds to a 

neighborhood of low stratification where individuals are more likely to maintain water 

containers serving as breading sites for the mosquito to reproduce. This cluster prevails over 

time, more so than cluster (1) and (2). Clusters (3) and (4) are located in Commune 18 (a 

commune is a group of neighborhoods). This commune is characterized by the presence of a 

military base with a high concentration of individuals living and interacting in very close 

proximity due to the confined space. Mosquitoes usually do not fly further than 200 meters. 

However, in parts of the city where higher densities are encountered, one mosquito holding 

the virus might cause a large amount of people being infected. This explains the shape of the 

cluster, small extent and long period of time.  This particular commune has been identified by 

the secretary of health municipality of the city of Cali as being at high risk of contracting 

dengue fever.   
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Figure 5. Space-time distribution of dengue fever cases for the year 2010 in Cali, Colombia in (a). STKDE using 

a cell size of 125 meters with shaded isovolumes in (b) and isovolumes in a triangulated fashion in (c). Clusters 

numbers (1)-(5) are discussed in the text. 

5. Discussion and future research 

Dengue fever is a vector-borne infectious disease, which can take dramatic proportions when 

conditions (e.g. population, disease-vector, climate, behavior) are optimal. Mobility of 

humans is known to affect the spread of the disease. However, less research has been 

conducted on visualizing clusters of infectious diseases, in particular, in a spatiotemporal 

dimension. In this chapter, we apply a spatial and temporal extension of the kernel density 

estimation algorithm to map space-time clusters of dengue fever in Cali, Colombia for the 

year of 2010.  We used a parallelized computation framework which, significantly reduces 

the running time and thus allows the problem solving to be more manageable.  We illustrate 

and extract complex disease clusters using a 3D environment. We can observe different 

cluster shapes, which might correspond to different neighborhood and population setting. 

Elongated temporal clusters denote that the disease tend to remain contained over a 

geographic area for a longer time (for instance, a military base that tend to be hermetic, 

meaning the disease does not spread further form the base borders). Larger yet less intense 
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clusters which are less intense generally occur in areas with a high degree of human 

movement. Such visualizations are very valuable to better understand the resurgence cycle of 

infectious diseases and necessary for public health managers to decide on the allocation of 

appropriate resources. The findings from our work can help better understand the dynamics 

of a quickly spreading disease and may help build different strategies depending on distinct 

socio-environmental settings within the area at stake. 

We see the followings for future research. First, the extension of the kernel density estimation 

in time can be used to estimate the speed at which the disease tend to spread, and whether it 

tends to have a directional preference. Second, computational time could further be reduced 

by using space-time adaptive (and directional) windows. Third, it is necessary to simulate 

points datasets (Monte Carlo simulations) to extract the significance of the clusters.  Of 

importance is the accuracy of the geocoded data itself (Delmelle et al. 2014, DeLuca and 

Kanaroglou, this issue): if the accuracy is very low, authorities might want to improve their 

surveillance strategies in the future. Finally, more research is needed to evaluate the 

effectiveness of 3D versus animated cartography when mapping disease cluster dynamics.  
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