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Glossary
Delaunay Tessellation A geometrical triangulation

technique based on Thiessen polygons connecting

nearby points, resulting in triangles. This method is

extremely useful in determining the neighbors in the

direct vicinity of an event.

Monte Carlo Simulation A process by which a set of

events is simulated randomly several times. The

ultimate goal is to derive a sampling distribution via

simulation of the null hypothesis. Monte Carlo

simulations create several realizations of a phenomenon

as it potentially varies over space.

Moving Window A filtering process, in which the

value at the center of the moving window is computed as

a function of the surrounding cells, or events located

within the window.

Poisson Process A nondeterministic process used to

model the locations of random incidents in geographic

space. Random incidents are independently occurring.

The Poisson parameter l stands for the intensity of the

process.

Smoothing A process (or result of a process) where

values are averaged based on surrounding values,

following a moving window for instance. Smoothing

also refers to procedures that amend an existing

grid.

Basic Visual Exploration of Point Patterns

A spatial point pattern refers to data in the form
of points, where a point denotes the location of an
event. In geography, it is usually desirable to analyze
whether these particular events, such as crimes, car
accidents, fires, emergency calls and diseases for instance,
exhibit a spatial pattern (e.g., hot spot), in the hope
to better understand the underlying process that gener-
ated the events. Such events are considered discrete,
because they occur at specific locations. A visual in-
spection of a map showing the locations of those events
(e.g., scatter plot) may not always bring a correct inter-
pretation of the true pattern, especially when events
occur repeatedly at the same location. True clusters
may go unnoticed. Events that occur repeatedly in time
at the same location can be represented using a bubble
plot, where the size of the bubble is a function of the
event frequency.

General Descriptive Methods

A wide variety of descriptive statistical techniques exist to
describe the geographical characteristics of a point pat-
tern, such as its central tendency (the ‘center’ of the point
pattern) or its dispersion (the degree of separation or
clustering among the points). To measure central ten-
dency, a first step consists of computing the mean center
of a set of events. The mean center is the central or
average location of a set of points, computed as the mean
x- and y-coordinate values for all the events in the study
region

x̄mc ¼
Pn

i¼1 xi

n
; ȳmc ¼

Pn
i¼1 yi

n
½1�

where x̄mc and ȳmc are the coordinates of the spatial mean,
and xi and yi are the coordinates of an event i, and n is
the number of events. The mean center is significantly
affected by the presence of outliers as well as the fre-
quency of occurrence in the case an incident happens
more than once at the same location. The introduction
of weights in eqn [1] can reflect the importance of some
events, which extends eqn [1] to the notion of weighted
spatial mean. The weight is an interval or ratio value
associated with a feature attribute. The weighted mean
center is given by

x̄wmc ¼
Pn

i¼1 wi xiPn
i¼1 wi

; ȳwmc ¼
Pn

i¼1 wi yiPn
i¼1 wi

½2�

where the subscript ‘wmc’ stands for weighted mean
center. The addition of weight is particularly useful
for areal data since some regions can be larger, or
simply more important than others. The weighted mean
center is an important indicator, especially in locating
facilities, which will serve the entire population. The
location of a new emergency service is an excellent
example since we try to minimize the distance to the
population.

Dispersion of Point Distribution

The spatial mean indicates the central location of a set
of events, but does not reflect the dispersion of the point
distribution. Indeed, two point patterns may have the
same mean center, yet one may be very clustered around
that mean center, whereas the other may have a highly
dispersed, uniform pattern. The standard distance SD
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indicates the dispersion of point events from the spatial
mean.

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � xmcÞ2 þ

Pn
i¼1ðyi � ymcÞ2

n

s
½3�

When point events are very dispersed, the SD value
will be higher than when incidents are clustered around
the spatial mean.

Orientation of Point Distribution

In which direction do events tend to cluster? To illustrate
the spatial spread of a set of point locations, the use of a
standard deviational ellipse is a common and effective
visualization tool, because it captures the directional bias
in a point distribution. For instance, events occurring
along a road network, such as bike accidents, will exhibit
a linear pattern. The deviational ellipse is characterized
by three parameters: the angle of rotation y, deviation
along major axis a, and the deviation along the minor axis
b. As a result, we obtain the directions of maximum and
minimum spread. Figure 1 illustrates the mean center
and directional ellipse for two distinct point patterns.
The point pattern represents the origins of patients being
treated at a city hospital in Cali, Colombia for the
months of September and July 2004. A larger ellipse
denotes that patients are clearly more dispersed in
September; the north-northeast (NNE) direction of the
ellipse is affected by the presence of patients in the
northern and northwestern part of the city. In July,
however, the ellipse is compacted (closer to a circle), and
points in the east-northeast (ENE) direction. As a result,
the mean center is closer to the hospital.

The absolute coordinate values of event i (xi, yi) are
transformed to relative values (xi

0, yi
0) based on the

location of the mean center. The center of the trans-
formed coordinate becomes (0, 0).

xi
0 ¼ xi � xmc

yi
0 ¼ yi � ymc

½4�

The angle of rotation y is given by:

tan y ¼Pn
i¼1 xi

02 �
Pn

i¼1 yi
02� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi

02 �
Pn

i¼1 yi
02

� �2þ4
Pn

i¼1 xi
0yi
0

� �2
q

2
Pn

i¼1 xi
0yi
0

½5�

where a negative tangent implies a rotation of the
angle counterclockwise, and a positive tangent implies a
clockwise rotation, respectively. Finally, to reconstruct
the ellipses, the deviations along the x- and y-axes must
be known:

dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi

0 cos y� yi
0 sin yð Þ2

n

s
;

dy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi

0 sin yþ yi
0 cos yð Þ2

n

s
½6�

General Clustering Methods

Quadrat Analysis

The general descriptive techniques discussed in the
previous section do not inform on the clustering level of

September July

Patients
Hospital
Mean center
Neighborhoods
Cali boundary
Directional ellipse

0 1.25 2.5 5km

Figure 1 Patients being treated at a city hospital in Cali, Colombia, for the months of July and September 2004.
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the data; rather they indicate the potential spread and
orientation of the dataset. One spatial statistical method
to measure potential clustering among events is a quadrat
analysis. It consists of overlaying a uniform grid, which
is made out of equal-sized quadrats, onto the map con-
taining point incidents. The number of events within
each cell (or quadrat) is determined. Essentially, the
analysis compares the actual count of events within each
quadrat with the expected frequency of occurrence if
the process generating those events was random in nature
(known as complete spatial randomness or CSR). Com-
plete spatial random processes, also called Poisson
processes, are characterized by the fact that each point is
likely to occur at any location. In general, we are inter-
ested in the hypothesis that the current phenomenon
does not follow a Poisson process – in other words, that
points are more clustered or more dispersed than would
be expected under a Poisson process.

Define P(X¼ x) as the probability of finding x events
within a specific quadrat. Assuming a Poisson process,
this probability can be calculated as follows:

PðX ¼ xÞ ¼ e �l
l x

x!
½7�

where l is the intensity of the process. The true value of
the term l is usually unknown, but can be computed as
the average number of events per quadrat. For instance, if
a grid of 100 cells is imposed over a study area, and 67
events occur within this area, a good estimate of intensity
is l̂ ¼ :67. The probability of finding no event within a
cell is P(X¼ 0)¼ .5117, one event P(X¼ 1)¼ .3428, and
two events P(X¼ 2)¼ .1149.

Determining the presence or absence of

clustering

The variance mean ratio (VMR) is a formula for meas-
uring the degree of clustering within a study region based
on quadrat analysis.

VMR ¼

Pm
i¼1ðxi � lÞ2

m� 1
l

½8�

where m is the number of cells of equal size, l the mean
number of points per cell, and xi the number of cells
containing i events. The numerator stands for the vari-
ance of the frequency of cells containing i events, and
the VMR index is then used to standardize this variance
relative to the mean cell frequency. A VMR value less
than 1 characterizes patterns that exhibit a tendency
toward uniformity. However, when the VMR value is
greater than 1, cells are characterized by either a much
greater or a much lower number of events than expected
which indicates a highly clustered spatial pattern. A VMR
value close to 1 is typical of a random, Poisson process.

Example

Figure 2 illustrates a simulated point process of 100
events. Half of those points are generated in a random
fashion, while the remaining half is explicitly clustered
within three blocks, two of size 20 by 20, and one of size
7 by 7. The size of the study region is 100 by 100 units.
If we divide the area in four rows and four columns for
instance, it creates 16 squared cells of 25 side units each.
The corresponding VMR ratio is 2.54, characterizing
a pattern of strong spatial clustering, since there is a
substantially greater and lower number of events in each
of these 16 cells than expected.

Advantages and limitations of the technique

Besides the relative easiness to implement the quadrat
analysis and the quick results it provides, the technique
has some drawbacks, mostly related to cell size, and the
ability of the method to differentiate different spatial
patterns of points.

The size of the quadrat is of paramount importance.
A cell too small in size may cause a high variability in
quadrat counts, which will result in several empty cells
and consequently clustering may go unnoticed. When the
cell size is too coarse on the other hand, the within-cell
patterns will be missed. Figure 3 shows the variation of
the VMR value as a function of the cell size. As could be
expected, when the cell size is too small, the spatial
pattern is unnoticed. It is usually desirable to fix the
cell size to obtain an average of 1.6 to 2 events per
cell. As opposed to the nearest neighbor approach
(see below), quadrat analysis does not look at the
interseparation distance between events. Additionally,
the technique solely relies on frequency counts and
the spatial arrangement of the events is not explicitly
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Figure 2 Simulated point pattern where half of the points are

generated at random, and the other half is clustered within the

three boxes.
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considered. In Figure 4, two distinct patterns of incidents
have been simulated. However, their VMR value is
exactly the same. In the right Figure 4b, a clear
clustering occurs in the northwestern part of the study
area, while on the left Figure 4a, incidents seem to be
spread out.

Nearest neighbor

The nearest-neighbor technique avoids the problem of
quadrat size determination. Essentially, the nearest-
neighbor statistic is used to test whether a set of incidents
are closer together than would be expected by random
distribution. The statistic computed R is the ratio
between the observed average distance between all
events and the expected value if the events were

distributed in a random fashion:

R ¼ Ro

Re

¼ d̄

1

2
ffiffiffi
l
p

½9�

where d̄ is the mean of the distances from incidents
to their nearest neighbor and l is the total number of
incidents in the area. The term Ro denotes the observed
average distance between incidents and their nearest
neighbors, while Re is the expected distance between
incidents under random circumstances. When the near-
est-neighbor statistic R is equal to 0, all points are in one
location. When Ro¼ Re , we have a perfectly random
pattern. For a square area, when R¼ 2.14, we have a
perfectly uniform pattern where incidents are spread out
evenly.

Example

The point pattern from Figure 2 exhibits a Ro-value of
3.186, a Re-value of 4.896, and an R-value of 0.651, which
confirms that the pattern is clustered. Confirming the
presence of clustering can also be accomplished using
Monte Carlo methods, by simulating a random pattern
many times, and obtaining the Re-value based on those
random patterns. For instance, following 1000 Monte
Carlo simulations, an average Re-value of 3.731 was
obtained, and R was equal to 0.854, which confirms
that the point pattern was clustered. The Monte Carlo
approach is especially useful when the study area is
irregularly shaped.

Advantages and limitations of the technique

The shape of the study area will decrease the nearest-
neighbor statistic, especially if it is narrow, because
events will necessarily be next to one another. Another
problem commonly noted in the literature is that
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Figure 3 Change in VMR with varying cell size. Uniform

patterns are observed when the quadrat size is small, while

clustering is obvious at coarser scale (cell size greater than 17),

and maximum for a cell size of 50 (study area divided into 4
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Figure 4 Two very distinct spatial patterns exhibiting a similar VMR value of 3.2 (cell size is of unit 1).
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clustering may only be detected on a relatively small
scale. In that case, it is possible to extend the statistic
to higher orders (second or third nearest neighbor).
It should be noted that it is possible to compute the
cumulative distribution of separating distances, which
in turn sheds light on the spatial scale of clustering.
In Figure 5, a thick line denotes the cumulative distri-
bution of the clustered dataset mapped in Figure 2. Not
surprisingly, the curve increases sharply close to the
origin since many events are located next to one another,
which suggests clustering due to inter-event attraction
within certain parts of the study area. The curve flattens
out beyond a separating distance of 100 units, indicating
an absence of spatial clustering at that scale. The dotted
line is the cumulative distribution of a random point
pattern. At short separating distances, this pattern
exhibits a greater amount of pairs of points than in the
case of a symmetric pattern. Finally, the last curve rep-
resents the cumulative distribution following a perfectly

symmetric (regular) point pattern. Since the events
are very spread out from one another, the potentiality for
a spatial clustering pattern is always below a random
point pattern.

The nearest-neighbor technique solely relies on
the distances between events, not whether there is a high
concentration of events next to each other. In Figure 6
for instance, two distinct patterns of incidents have
been simulated. Although their nearest-neighbor values
are exactly the same, their spatial patterns are totally
different. Patterns may vary when calculating the neigh-
bor statistic at different orders of distance (second or
third nearest neighbor for instance).

Most geographic information systems (GISs) offer the
flexibility to compute this statistic. Since a complete
search for the nearest neighbor of each point is carried
out, the procedure can be time consuming when n is
large. It is however possible to construct a Delaunay
tessellation of the n events and search for nearest-
neighbor distances within the tessellation.

K-Function

The K-Function provides an alternative to the nearest-
neighbor statistic as a technique aimed at determining
the amount of clustering at a wider range of scales. To
compute the statistic, a circle of a specified radius (h) is
placed over each point in the set (i ). Points within this
circle (j ) are counted and the circle is then moved to the
next point to begin the process again. When this has been
done for all existing points n, the radius is then expanded
and the process is repeated until a specified maximum
radius is reached.

K ðhÞ ¼ A

n 2

X
iaj

X
Ihðdij Þ ½10�

where dij is the distance between two events i and j within
the study region, A the size of the study area, and Ih(dij) an
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Figure 5 The cumulative distribution of pairs of points as a

function of the separating distance (since n¼100, there are n2

possibilities).
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Figure 6 Two very distinct spatial patterns exhibiting a similar nearest-neighbor value.
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indicator function defined as:

Ihðdij Þ ¼
1 if dijrh;

0 o:w:

(
½11�

In general, a high value of K(h) denotes clustering. The
value of K(h) can be graphed against the distance (h) to
show the scale(s) at which the point pattern exhibits
randomness, clustering, or dispersion. These values can
be tested using Monte Carlo methods in which K func-
tions are computed for a large number of randomly
generated point patterns. For each h value, the 5%
highest and 5% lowest K-values for these random pat-
terns form the upper and lower significance envelopes
under the null hypothesis of CSR. Figure 7 illustrates
this concept, where the dotted lines represent the 5% and
95% confidence intervals, and the thick line represents
the observed K-function values (for different h-values) for
the dataset of Figure 2. When the observed value for a
given h is between the upper and lower envelopes, we
conclude that the point pattern is random at that spatial
scale (h). When the K-function is above the envelopes, we
observe a clustered pattern, whereas the pattern is spread
out when the K-function is below the envelopes. The
K-function value increases as h increases since more
observations are counted within the radius h.

Advantages and limitations of the technique

The K-function is superior to the nearest-neighbor
technique in that it analyzes possible point patterns at
different scales, while the nearest-neighbor approach
uses distances only to the closest events, hence nearest
neighbor only considers the smallest scales of patterns.
The K-function is however relatively time consuming to
compute, and it is recommended to use specific software,
such as CrimeStat.

Kernel Density Estimation

Neither the nearest neighbor, nor the K-function, nor the
quadrat analysis, identify locations of clusters; rather,
they determine an overall tendency toward clustering,
randomness, or dispersion. Kernel density mapping pro-
vides a means for visually identifying clustered areas.
An advantage of the density mapping is that most GIS
softwares support the method.

To calculate this density, the entire region is divided
into a grid and a search radius is drawn around each grid
point g in a similar way to a moving window average.
A suitable window – defined by the radius size t – is
moved over the fine grid of locations, and the intensity at
each grid point is estimated from the event count per
unit area within the window centered on that grid point.
The total number of events i that fall within the search
radius is divided by the size of the window resulting in a
density value for each grid point. Kernel density mapping
extends this method by assigning weights when per-
forming the search so that points closer to the center of
the window receive a higher weight than those further
away. Mathematically, the kernel density at a grid point is
denoted l̂tðgÞ and can be estimated as follows:

l̂tðgÞ ¼
X
hirt

3

pt 2
1� h2

i

t 2

� �
½12�

with hi the separating distance between an event i and the
grid point g. The bandwidth t determines the amount of
smoothing. The size of the bandwidth t will affect the
outcome of the map as a smaller search area will result in
more distinct events to be highlighted. On the other
hand, a larger radius can identify broad zones where a
high number of incidents exist. A bandwidth that is too
large will stretch the kernel and the surface will appear
flat. The choice of the bandwidth may depend on the
purpose of the study.

Example

Figures 8 and 9 represent the surface following a kernel
density passed on the events from Figure 2, where
bandwidths of 5 units and 10 units were used, respect-
ively. The peaks denote regions where there is a strong
concentration of events, which coincide with the three
blocks highlighted in Figure 2. As expected, the intensity
of the peaks is higher when the bandwidth is smaller,
and a greater smoothing occurs when the bandwidth
increases. Interestingly enough, many small peaks appear
on Figure 8 when the bandwidth is t¼ 5, which suggests
that this bandwidth was not appropriate, as those peaks
correspond to a single event. The Kernel map appears
more flat in Figure 9, because a greater bandwidth
(t¼ 10) smoothes out the concentration of events.
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Figure 7 The K-function for the clustered dataset of Figure 2.

Note the lower and upper envelopes, which were obtained after

100 Monte Carlo simulations.

Point Pattern Analysis 209

Author's personal copy



Spatial Patterns on a Network

One drawback to using these aforementioned spatial
clustering methods is that they assume that events can
be located anywhere in the study area. However, many
point events occur on a network, such as car crashes
or pedestrian accidents. Such events are most often
restricted to the existing road network; so ideally, the
analysis should focus solely on the places where it is
possible for accidents to occur. Recently, network-based
point pattern analysis methods have been developed that

provide a more accurate computation of accident clus-
tering. However, such methods remain computationally
intensive and to this date they are not supported by
any GIS.

Conclusion

The techniques presented in this article are excellent
tools to analyze spatial point patterns, and remain
relatively easy to perform, either within a GIS or by
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Figure 8 The kernel density surface for the clustered point dataset of Figure 2, calculated with a bandwidth t¼5.
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Figure 9 The kernel density surface for the clustered point dataset of Figure 2, calculated with a bandwidth t¼10.
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programming. However, one must remain careful, and
consider the various limitations of each technique.
For instance, the nearest-neighbor distance analysis is
prone to errors associated with irregular boundaries,
while quadrat analysis is prone to errors associated with
edge effects and variability within quadrat cells. Atten-
tion must also be paid to a few key issues such as spatial
scale, edge effects, and events occurring on a network.
It is usually desirable to conduct a test for clustering at
different scales to evaluate the magnitude of this clus-
tering. These issues are being researched now; however,
most of them are not available yet in commercial GIS.

See also: Edge Effects; Monte Carlo Simulation; Scale

Analytical; Spatial Autocorrelation; Spatial Clustering,

Detection and Analysis of; Spatial Data Mining, Cluster

and Pattern Recognition; Spatial Data Mining,

Geovisualization; Spatial Filtering/Kernel Density

Estimation.
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