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Summary

After samples of a primary variable are collected, it is possible to
augment the initial set by collecting additional measurements at
other locations, a method known as second-phase sampling.

Objectives are to gather new information:

• away from existing points

•where the phenomenon under study exhibits a strong spatial
variation

•where covariates can not predict accurately the outcome of the
primary variable.
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single non-linear weighted-objective function

Scenarios for sample collection.

• Sequential addition, adding one sample at a time to initial set.

• Simultaneous addition, adding a new set of samples once.

•Hybrid combination (metaheuristic).

Which heuristics?

� Total enumeration � Simulated annealing
� Greedy � Simulated annealing with greedy start

Findings

•Greedy: good solution in a limited time-frame.

• Simulated annealing: fast convergence towards
optimal solutions.

– Cooling schedule impacts quality of solution

•Metaheuristic: Pairing SA with greedy start cap-
italizes on the rapidity of the greedy algorithm and
the ability of SA to escape from a local optimum.

Kriging variance

With initial samples, the kriging variance is computed at each lo-
cation using a covariogram function. Additional observations are
gathered away from existing points, where the kriging variance is
large (see for instance Van Groenigen and Stein 1998).
If process is not stationary, should sampling efforts should
be directed in those strategic locations exhibiting strong spatial
variation locally (Delmelle and Goovaerts 2009)?

Kriging variance: A variable of interest Y has been measured
at m locations within a study region, D. Measurements are de-
noted y(si), ∀i = 1 . . . m (Goovaerts 1997). Using data values
of the primary variable and a covariogram function, the kriging
variance at a gridpoint sg:

(
σk(sg)

)2
= σ2 − cT (sg) · C

−1 · c(sg), (1)

where C−1 is the inverse of the covariance matrix C based on
the covariogram function. The term c is a column vector and
cT its corresponding row vector. The Average Kriging Variance
(AKV ) is obtained by integrating Equation 1 over the area D.
Computationally, discretizing D over a fine grid of points (set G):

AKV =

∫

D

(
σk(sg)

)2
≈

1

⌊G⌋

∑

gǫG

(
σk(sg)

)2
(2)

⇓

I. Maximizing change in kriging

variance

Our first objective Z[S] is to select a set of n points to our ex-
isiting set of m samples, which will maximize the change in kriging
variance by as much as possible. This process can be thought as
a simulation of what the change in kriging variance is expected
to be, without having to collect additional points, assuming the
covariogram structure would remain constant (Burgess, Webster
and McBratney 1981 as well as Cressie 1993). Specifically:

Maximize︸ ︷︷ ︸
{sm+1,...,sm+n}

Z[S] =
1

⌊G⌋

∑

gǫG

(
σold

k (sg)
)2

−
(
σnew

k (sg)
)2

, (3)

where S denotes the sampling scheme.

Spatial roughness

The kriging variance is a function of the sampling pattern, sample
density, the numbers of samples and their covariance structure,
and assumes a stationary process, an assumption violated in
practice (Deutsch and Journel 1992; Armstrong 1994).

Safest scenario for interpolation?
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can attribute information be used in reformulating

sampling objective?

Computing roughness with filter process:

Let ŷ(sg) be the interpolated value of the primary variable Y at
a grid node sg. Estimate squared difference between interpolated
value at grid node from its surrounding points sj (j = 1, 2, . . . J)
using a circular filter with moving window size J .
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Figure 1: A 3 × 3 moving window filter process.

Distance factor d(sj, sg) and parameter β regulate the importance
given to nearby points. The weight λ(sg) becomes:

λ(sg) =

J∑

j=1,j 6=g

d(sj, sg)
−β ·

(
ŷ(sj) − ŷ(sg)

)2

∑J
j=1,j 6=g d(sj, sg)−β

(4)

λ(sg) will exhibit great values when β < 1, because more weight is
given to far away data points. As β increases, λ(sg) decreases and
flattens out for high values of β.
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II. Maximizing change in weighted

kriging variance: a non-linear problem

Our second objective is to account for non-stationarity under
the form of weights → single-weighted objective:

Maximize︸ ︷︷ ︸
{sm+1,...,sm+n}

Z[S] =
1

⌊G⌋

∑

gǫG

λ(sg) ·

∣∣∣∣
(
σold

k (sg)
)2

−
(
σnew

k (sg)
)2

∣∣∣∣ (5)

Heuristic techniques

Simulated annealing (SA) has the ability to escape local optima.
The algorithm employs a random search that accepts changes im-
proving the objective function, but also non-improving moves with
probability δT (T= current temperature and cools down as the al-
gorithm progresses).

δT

{
J(k) → J(k + 1)

}
= 1 if Z

[
J(k + 1)) ≥ Z

[
J(k)

]

δT

{
J(k) → J(k + 1)

}
=

1

1 + e

(
△Z
T

) if Z
[
J(k + 1)) < Z

[
J(k)

]

To find the optimal point s∗ to be added -or nearly optimal s+,
use a high starting temperature Tini and a cooling factor κ close
to 1 → algorithm escapes local maximum.

Total enumeration evaluates all possible solutions to the sequen-
tial addition, but may still be suboptimal.

Greedy allocates new samples which corresponds to the highest
peak of the surface.

Simulated annealing with greedy start allows improvement upon
a first very good solution. When greedy solution is near optimal,
SA may experience difficulties to improve upon that incumbent.

Application

To illustrate our methodology, we use primary data on soil
concentration of Chromium (Cr) in a study area near La Chaux
de Fonds, in the Swiss Jura (see, Goovaerts 1997 for the dataset).
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Figure 2: Kriged map of the Cr content and the weighted surface

In simulated annealing, at each temperature level, a fixed number
of iterations Tit is run, then the temperature cools with factor κ,
and so does the step size for determining new neighbors.

Illustration of SA with greedy start. First 15 dynamic
moves, with SA parameters κ = .875, ζ = .9. The location
exhibiting the highest weighted kriging variance (point
a = s+

m+1) is selected and serves as a starting point for SA, yet

the latter is unable to locate a better point, hence a = 1 = s+
m+1.

That point is added to the set M and the weighted kriging
variance is re-computed accordingly. Location b = s+

m+2 is the
point with the highest kriging variance and is selected as the
starting point. SA finds a better sample at location 2 (white
dot). In the following 17 additions, SA will ameliorate the
incumbent greedy solution
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Figure 3: Simulated annealing algorithm using a greedy start

approach for the first 15 points (A). (Black dots = initial points using

greedy). The arrows point to the locations obtained using SA.

Time (min) ∆Z (%) Opt. gap (%)
Total enumeration 229.72 14.768 .75
Näıve 8.56 [2.869; 7.521] [80.72; 49.45]
Greedy 8.04 12.537 15.74
SA-Greedy(κ = .875, ζ = .9) 106.76 14.768 .75
SA-Greedy(κ = .35, ζ = .45) 33.35 14.649 .8
SA(κ = .95, δ = .965) 241.06 14.733 .98
SA(κ = .35, δ = .45) 33.82 14.420 3.08
SA(κ = .05, δ = .05) 26.50 13.95 6.24
Simultaneous heuristic SA 1500 14.879 0
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Figure 4: Percentage reduction in weighted kriging variance, with
sensitivity of the sequential SA coupled with greedy to the cooling factor
κ to the right.

References:
Armstrong M. (1994). Is research in mining geostats as dead as dodo? In : Dimitrakopoulos R.

(Ed.) Geostatistics for the Next Century. KLuwer Academic Publisher. Dordrecht: 303-312.

Burgess T.M., Webster R. and A.B. McBratney (1981). Optimal interpolation and isarithmic

mapping of soil properties: IV. Sampling strategy. Journal of Soil Science, vol. 32: 643-659.

Cressie, N., 1991. Statistics for Spatial Data. Wiley, New York, USA, 900p.

De Gruijter, J., Brus, D.J., Bierkens, M.F.P. and Knotters M., 2006. Sampling for Natural

Resource Monitoring. Springer, 332p

Delmelle E. and P. Goovaerts (2009). Second-phase sampling designs for non-stationary

spatial variables. Geoderma 153: 205-216

Deutsch C.V. and A.G. Journel (1997) Gslib: Geostatistical Software Library and User’s

Guide. Oxford University Press, 2nd edition, 369p.

Goovaerts P., 1997. Geostatistics for natural resources evaluation. 483p.

Michalewicz Z. and D. Fogel (2000). How to Solve It: Modern Heuristics. Springer. 467p.

Muller, W., 1998. Collecting Spatial Data: Optimal Design of Experiments for Random

Fields. Heidelberg: Physica-Verlag.

Van Groenigen, J.W. and Stein, A., 1998. Constrained optimization of spatial sampling using

continuous simulated annealing. Journal of Environmental Quality, vol. 27: 1078-1086.


