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Model-based criteria and for
second-phase spatial sampling

Second-phase spatial sampling is the process of colleatidional measurements of a variable of interest
within a two-dimensional framework. Different criteriaisixto determine the "optimal” location of these new
observations. The inherent goal is to capitalize on spatiaielation information gathered during the first-
phase sampling phase to improve spatial estimation. Sesezrand-phase sampling objectives are discussed
in this chapter. These are generally non-linear and reguireethod to find the set of additional locations
among candidate locations, which will optimize a given skmgpobjective. In this chapter, the merits of
simulated annealing (SA) are discussed, and an examplg 8girfor the minimization of the is given with
the the Austrian dataset.

1.1 Introduction

In sampling, the and time available at hand usually detezsiine number of samples that can be collected,
and careful attention must be paid to design an appropriaibservations. It is generally recognized that a
sampling configuration which will minimize the variance@sated with the estimation is more desirable. For
one-dimensional problem&K), Cochran (1946) has suggested thatratified randondesign will always
be more efficient than endomdesign to provide an unbiased estimate of the samplingnegiaCochran’s
initial work was later extended to sampling desighi&?) by Quenouille (1949) and Das (1950) who used
a linear model. With non-linear autocorrelation functimwever,systematicampling is the most efficient
technique, followed bystratified randomsampling andandomsampling (Zubrzycki 1958). Those results
were later confirmed in a series of articles by Matérn (198@)ry and Baker (1968), Bellehouse (1977),
Ripley (1981) and lachan (1985). In spatial sampling, messents at specific areas must be acquired instead
of trying to obtain information at every possible locaticeé, e.g.; Cochran 1963; Daltehal. 1975; Rip-
ley 1981; Arbia 1989; Haining 1990; Hedayat and Sinha 199&s€§le 1991; Stehman and Overton 1996;
Mueller 1998 and Thompson 2002 for various summaries).Adtfh a full inventory will reflect the varia-
tion of the variable of interest, this process is rather tonasuming and constrained by the available . On
the other hand, sparse sampling is less costly, and the ofaifieble may not be captured properly (Berry
and Baker 1968). This chapter is concerned with (and ) dpsatiapling designs to acquire (and complement,
respectively) information on the of a variable, for instaric the form of a map, or as a summary measure,
which highlights the scales of variation.

In spatial sampling, the location of the samples is critanadl may be influenced by the of the variable: for
phenomena with little variation, samples can be spaced maely without the risk of not detecting varia-
tions at smaller ranges. Unfortunately, this variation nmgsestimated, and an objective is to design sampling
patterns which will capture a maximum amount of informatifrwe in some areas, the of the variable of
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2 Model-based criteria and for second-phase spatial sagplin

interest is not captured. In spatially autocorrelated §igtdversampling may result in redundant data (Griffith
2005).

Once samples of the primary variable have been collectdd,gbssible to augment the initial set by
collecting additional measurements at other locationsethod known as sampling (Cressie 1991, Muller
1998, van Groenigen and Stein 1998, and de Grugtjel. 2006). The inherent objective of a second-phase
sampling strategy is to improve spatial prediction with @dithformation. Following a first sampling phase,
spatial covariance structure is summarized through a ganofunction, and the computed at each location.
Generally, are gathered away from existing points, thatien the is large. However, when the process under
study is not stationary, sampling efforts should be dirggt¢hose strategic locations exhibiting strong locally
(Rogersoret al. 2004, Delmelle and Goovaerts 2009). In this chapter, | disaeveral sampling criteria
are discussed. Whether the function accounts primarilyfferminimization of the , or increase sampling
efforts in areas of strong , the optimization problem is fiarar, and calls for robust methods, for instance
. This chapter is structured as followsr st, geometric and geostatistical are presented in secti@ard
1.3. Second, strategies to support a sampling design are discu3dedd, the framework to implement a
procedure is presented in section 1.4, applied to a samgéieign. This arises due to the non-linearity of the
problem and that a complete enumeration of all possibldisalsiis not feasible in a timely manner. This is
illustrated in section 1.5 with an application to the Austridataset.

1.2 Geometric and geostatistical designs

There exists different sampling schemes for the purposevofdimensional sampling with no prior
information available (these are generally termed randiystematic or stratified approach). Assuming that
a limited number of samples: are allocated in a study area denof®dthe spatial variableZ is then
measured onn supports,{z(s;)|i = 1,2,...m}. In a simple random samplindesign,m sample points
in © are selected randomly (King 1969, Ripley 1981), and thectiele of a sample should not influence the
selection of any other one. Practically, the coordinatethefsample the paifz;, y;} are randomly drawn
on the interval [(minX, maxX),(minY, maxY)]. For boundasiéor non rectangular region), a point can still
be drawn at random in the minimum bounding rectangle, faidwy ai nsi de algorithm to determine
whether the point will fall within the study region. In thosiuations, there is still a risk to experience edge
effects. In asystematic samplindesign, the population of interest is divided intointervals of equal size
(the same applies for non-squared areas). The first elememdomly or purposively chosen within the first
interval ﬁ (as long that interval is within the boundary of the studyioag, starting at the origin, while the
location of the remainingn — 1 elements are aligned regularly by the size of the interval.

L L
$i=$1+(i—1)ﬁ yi:yl‘f'(j_l)ﬁ Vi,j=1,...,/m. (1.1)
The most common regular geometric configurations are thélageral triangular grid, the rectangular
(square) grid, and the hexagonal one (Cressie, 1991). Nentajes of a systematic design lies in a good
coverage of the observations. This design presents twonecgences, however:

() the distribution of distances between pointstbfs not represented fairly since many pairs of points are
separated by the same distance,

(ii) there is a danger that the spatial process shows evideneewfing that will remain uncaptured. This is
a critical issue of systematic design that coincide in feggpy with a regular pattern in the landscape (Griffith
and Amrhein, 1997; Overton et al., 1993).s&kstematic random methapproach, which combines both
systematic and random procedures (Dalton et al. 1975, Kd&@)Lcan prevent the latteBtratified random
partitions the population (dD) into non-overlapping strata, and for each stratum, a fipesst of samples
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is collected, for instance a greater number of samples maplected in a geographic area due to greater
population.

Efficiency of spatial sampling designs.

Different criteria have been proposed to evaluate the mefgampling designs (Muller 1988). An example
is an estimator for the global mean that estimates the acgofdhe global mean estimates. Careful attention
must be paid to the fact that some designs may be optimal ®icdterion, yet not very efficient for other
criteria. Another example is the minimization of the of theet surface (as discussed later). A design that
leads to an accurate estimation of the global meais desirable:

5.
zp =—= [ z(s)ds (1.2)
[®] Jo
In this respect, it is desirable to select a configuration thiaimizes the prediction error afy for a given

estimator, for instance the arithmetic mean (Equation: 1.3)

DI C) (13)

Efficiency is calculated for all possible realizations oé tariablez by var¢[23 — zp]. This is generally
implemented usingZ, which is the geostatistical , defined in the next sectiontehms of the sampling
variance stratified random sampling at least always equally or more accurate themdom samplingits
relative efficiency is a monotone increasing function of gensize.

Sampling spatial variables in a geostatistical context.

Spatial information from closeby measurements is genenall accounted for in classical sampling theory.
Geostatistics describes the spatial continuity that is ssemial feature of many natural phenomena (see,
e.g., Matérn, 1960; Whittle, 1963). The variablés modeled as a random process that can take a series of
outcome values, according to some probability distribui@oovaerts, 1997). Central to geostatistics is , an
interpolation method which predicts the valuezcdt unsampled locations (usually on a &ebf grid points
{sylg = 1,2...G}, keeping the (also called ) to a minimum (Isaaks and Srivastt989). is based on a ,
which summarizes the variance of values separated by a@plartdistance lagh) is defined:

) = 575 X (- ) a4

whered(h) is the number of pairs of points for a given lag value, afs]) is the measured attribute value
at locations;, a the ando? the sill, wherey(h) levels out (Cressie, 1991). Once the lag distance exceeds th
ranger, there is no spatial dependence between sample sites. fEnedtated, kriged value at a locatieim

9D is a weighted mean of surrounding values; each value is wegigiccording to the model:

I
2(s) = Z w;(9)2(s;), (1.5)

with I the set of neighboring points used to estimate the intetpdlgalue at locatios, andw;(s) is the
weight associated with each neighboring point. It is aitim have a wide range of distances in order to
estimate the accurately, that is a good coverage of sangpléssirable (Russo 1984, Van Groenigdral.
1999). But this configuration should be supplemented by svantee that a few pairs of points are separated
by very small distances, critical to estimate the . Webster @liver (1993) have indicated a minimum of
m = 150 samples over the study area is necessary to estimate thénhjdig also influenced by the over
(phenomenon with less variation may need less samples)stiénegth of the is also partly dependent on the
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number of pairs of points available within each distancesld@he (WM) criterion attempts at reproducing
an a priori defined ideal distribution of pairs of points fetimating the covariogram:

K K
Juym(S) =aY wi(§ = &) +bY_ o(mi), (1.6)
1=1 1=1
;@—;@—ﬁ, (1.7)

wherei denotes a given lag class of the covariograhrepresents the total number of classes, the parameters
a, b, andw; are user-defined weights. The te¢tnis a prespecified number of point-pairs for tfelass¢;

is the actual number of distances within that class, @fd;) is the standard deviation from the median of
the distance lag class (Warrick and Myers 1987 and Delm@l®R Equation 1.7 expresses the total number
of possible distance pairs, given the number of samplesthnaimilar criterion suggested in the literature

is theMinimization of theMean of theShortestDistancesrequiring sampling points to be spread evenly over
the study region (Van Groenigem al. 1999).

Sampling designs minimizing the

The quantifies the prediction uncertainty at a particulaatmn in space. This uncertainty is minimal at
existing sampling points and increases with distance ton#aest samples. One common criterion is to
design a sampling configuration, which minimizes the @ewith a known, a priori (or estimated) structure
(Van Groenigert al., 1999). Equation 1.8 formulates the at a IocatiamhereC]Q1 is the inverse of th€,,
based on the covariogram function (Bailey and Gatrell, 1985 denotes the set of initial samples and has
cardinalitym. The termcis a column vector and’ the corresponding row vector, as given in Equation 1.10.

oi(s) =a® —cl(s)-Cy/ - c(9) (1.8)
o2 Cia - Cim
Con 02 o Cop
Cy = _ _ (1.9)
Cm,l Cm,2 02
o2
Cx
c=| |, = [02 Ciy - Cuim (1.10)
le

Computationally, the study aréais and the summed over all grid poirsis Alternatively, it can be computed
at each sample candidate location. The (average) beconséaélle 2009):

1
AKV = = ;5: oi(s,) (1.11)

The only requirement to calculate the is to have an initialacmgram and the locations of the initial
sample points. It then depends solely on the and configurafithe observations (Cressie, 1991). Ifirat
stage initial measurements of the variable are collected tdcale the . However, this step may not always
be required when a reliabke priori estimation of the is available. Designs minimizing the témdpread
samples evenly in the study region. An example optimizirtgainsamples for the minimization of the index
is given in section 1.5.
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1.3 Augmented designs. sampling

Second-phase sampling occur when there is a need to go dwt field to gather additional samples about
the variable of interest. One important aspect is to capéain the spatial covariance information obtained
during a first sampling phase, for instance under the form iofdaxvariogram. Based on this covariance
structure, the is computed at each grid node. The objectimsists of locating those additional samples
strategically to maximize the change in , that is locatimmsthsamples away from existing ones.

1.3.1 Additional Sampling Schemes to Minimize the krigisuggvice

Our first objectiveJ[S] is to select a set of additional points to our exisiting set @t samples, which
will maximize the change in by as much as possible. This m®can be thought as a simulation of what the
change in is expected to be, without having to collect addi points, assuming the structure would remain
constant (Burgess, Webster and McBratney 1981 as well asier&991). Specifically:

MAXIMIZE  J[S] = ﬁ > (ag'd(sg))2 - (a,'geW(sg))Q, (1.12)
) 9<G

with S denotes the sampling scheme. Objective 1.12 aims to coleecsamples to reduce the or uncertainty
by as much as possible. Equation 1.13 formulates the changej over all grid pointss,, with the addition

of a new setV of sizen. The change\c? is the difference between the of the initial &1 with the 07"

of the augmented set:

1
sot = | L ot¥(s) - Lot (113)
geG geG
Ugld(sg) =0’ - c(sy) x Ej X CT(Sg) (1.14)
[Lom]  [m] [m.1]
ap"(sy) = 0% — c(sy) x Ej x cl'(sy) - (1.15)

[1,m+n] [m+n] [m+n,1]

The objective function (Equation 1.16) is to find the optirsat.S* containingm + n points that will
maximize this change in (Christakesal. 1992, Van Groenigeat al. 1999, Rogersoet al. 2004), wheres
is a specific sampling scheme.

1 2/
MAXIMIZE  J(S) = > Aoi(sy:S) (1.16)
{Sm+1;5-,Sm4n} geG

The set of new points is selected from the set of candidatgitmtP. With a total of(ﬁ) possible sampling
combinations, it is too time-consuming to find the optimalisg#ng combinatorics and requires methods as
defined in section 1.4. The initial sampling problem whichimiizes the (or maximizes the change in) is a
simplification of equation 1.16 with the set= 0.

1.3.2 A weighted approach

Many authors have advocated the use of the as a measure ofaimigelt can be misused as a measure of
reliability of the kriging estimate, as noted by severahaus (Deutsch and Journel 1992; Armstrong 1994).
The rationale for this criticism is that the is merely a fuantof the sample pattern, sample density, the
numbers of samples and their covariance structure (Dednagltl Goovaerts 2009). The assumes that the
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errors are independent of each other, a situation refeoras t This means that the process is , an assumption
violated in practice. Stationarity entails that the vaoiatof the primary variable between two points remains
similar at different locations in space, as long their safiag distance remains unchanged. Mathematically, if
we measure the difference in absolute value between twagspiands; separated by a distandés;, s;), and

if we measure that difference again at two other pasptands; separated by a similar distandésy, ), the
results should be similar. In other wordsg(s;) — y(s;)| = |y(sk) — y(s)| for d(s;, s;) = d(sk,s). Bailey
and Gatrell (1995) mentions that it is a matter of judgmenetibr to assume some stationarity in the
variable of interest. Note that the letterdenotes a row vector containing tHe:, y} coordinate of the
point. Figure 1.1 illustrates the problem in one dimensipnhere ten hypothetical temperature values have
been randomly simulated (after Goovaerts 1997). The figntb@right depicts the interpolated temperature
values calculated using an exponential fitting model. Frioisigraph it is possible to determine the values at
locationss; ands,. As Goovaerts points out, the variation in the close neighdod of locatiors; is much
greater thams,, because it is surrounded by a very low and a very high valoedder, the is similar at both
ands,, since their neighbors are at an equal distance. If a sanopi¢ip added to the initial set of 10 points,

it preferably should be poird;, as it exhibits a greater amount of around its location tiarTherefore,
one issue pertains to choosing a good indicator to quaritdyspatial uncertainty at a data point. The can
certainly not be used as the sole indicator, but should béawad with other sampling criteria. This example

40
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kriging variance
o
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temperature
@
3

N
o

20

15

Figure1l.1 Example of nonstationarity. Poinss ands; have the same . However, the local variancs, a much greater than ag
because there is much greater temperature variation artongighboring points. After Goovaerts (1997).

illustrates some of the shortcomings of using the as theatienization criterion. Rogerson et al. (2004),
Brus and Heuvelink (2007) and recently Delmelle and Godsa@009) have proposed different criterion
alternatives. For instance, Delmelle and Goovaerts (280§yest to weight the where the weights reflect the
spatial variation. Their application to an exhaustive setéead to better reconstruction of the image.

There are two different approaches to formulate the sammdioblem. Either the problem is defined as
a single-weighted objective with no constraints, where wlegghts reflect the sampling objectives, or as
a single objective where the weights become constraints.siitgle-weighted approach was suggested by
Cressie (1991) and has been applied by Van Groeragein (1999) and Rogersast al. (2004) to weight the

by a suitable weighting functiom(-). The importance of a location to be sampled is representedisight
w(s), that is location-specific. The objective is to find the ogtirsampling schem&* containingm + n
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points that will maximize this change in weighted :

MAXIMIZE,  J(S) = > w(sy) - Aoi(se: S) (1.17)
{577L+1;---7s1n+n} g€G

Computational implementation

The inverse of the covariance mati®,, IS necessary to compute the . Since the initial maiix
(Equation 1.9) has been augmentedrbyows andn columns. However, it is possible to calculailgfuN
without having to invert the entire matrix. Consider in Ejoa 1.18 the augmented mati®@a,u v

2
o e C’1.,m Cl,erl o Cl,ern
2
C B Cm,l T o Cm,m+1 T Cm,m+n
M
Cuun = G (1.18)
2
C1m+1,1 e C1m+1,7n g e Cm+1,m+n
2

_Cm+n,1 et Cm+n,m Cm+n,m+l et g |

whereB is the covariance matrix between initial and new added pdift is the transpose @& adCy is the
covariance matrix among the new, added samples. A new ntdtsizen x n is introduced in Equation 1.19
for simplification purposes and called tReamatrix.

P=[Cy— (B -C;}  B) (1.19)

Keeping in mind this simplification of matrix notificatiome inverse of the augmented mat@x,_y can be
formulated as (Horn and Johnson 1985):

CX;UN = o’ 0 I

c-1.g]"
B ? ] (1.20)

Cy) 0]

_CJT/[I . B‘| pl

where! is an identity matrix of sizex x n. The0-matrix is filled with zero element<;,, is a function
of C;j that remains constant, regardless of which new samples@mahtany of those are added. Only the
matricesP andB vary when new points are added.

1.4 A simulated annealing approach

Whether for initial sampling or sampling, the objective asfind the optimal location of samples which
will minimize an objective function. That set of optimal spies is selected from a set of candidate locations
P, which is relatively large in practice, forbidding a totalueneration for the optimal set (Michalewicz and
Fogel 2000). AH guides the search for an optimal sample Set(or near optimalS*) c P. The setS*
is optimal to the objective functiori defined in Equation 1.16. The efficiency of a depends on ita@ap
to give as often as possible a solutiSi close toS* (Grotschel and Lovasz 1995). Adive optimization
selectingn points at random would not return a very good valuefpand is therefore not efficient. gimul-
taneousaddition selects a set of samples one time. The major cotiesrin the selection of those points:
for an initial sampling set of, say: = 50 with a candidate sei = 445, there is a combinatorial explosion
() = (%), while in additional sampling, with an initial set = 50 and an additional set of = 20, the
number of combinations becomg¥) = (**3.°%). With such a high number of possible combinations, it is
recommended to use intelligent search techniques, fanestsimulated annealing, which is detailed in the
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next paragraph.

Simulated annealing (SA) has been used as an optimizatioce@ure in initial and sampling; Van
Groenigen and Stein (1998) and Delmelle (2005) furthendises the implementation of in spatial sampling.
SAis amethod by which a metal cools and freezes into a minienengy crystalline structure. The algorithm
was originally proposed as a means of finding the equilibraomfiguration of a collection of atoms at a
given temperature. Kirkpatrickt al. (1983) made the connection between the cooling technigdettan
mathematical minimization problem. The major advantag8Afs its ability to avoid becoming trapped at
local maxima. The algorithm employs a random search tha&mschanges improving the objective function,
but also non-improving moves. The latter is accepted withbpbility P whereT' stands for the current
temperaturel’ cools down as the algorithm progresses, and so does thehjilitybaf acceptance. Different
authors document the use of simulated annealing for spsdialpling (Van Groenigest al. 1999, Lark
2002, Delmelle and Goovaerts 2009). The optimization staith a randomly selected sampling scheme
S(i) = M UN where M is the initial set, andV the set of additional sample®V(C P \ M). The setV
can be selected at random or is determined from a greedyndtarice using samples corresponding to the
peaks of the surface area (Delmelle and Goovaerts 2009)objeetive functions [S(z’)] is evaluated and
called the incumbent solutio$i(i) = {s; + ...+ Sn + sjnﬂ. +...+9),,,} is created as the union of the
initial sample sef\/, augmented by a set of new sample posjts,. From the first iterations3 (i) becomes
S(4) and will serve as the initial sampling scheme for simulatedesling. Since the space of solution has
not been explored yet, the value jifS(z’)] is kept in memory as the best solutiit;) = ST = S° found
so far.S (i) becomesS(j). One sampleé > M is swapped for a pointe M, and at that times'(j) becomes
S(G+1).

Follows a sequence of random perturbatisias + 1) of S(;j) that have a probability’r { S(j) — S(j + 1)}
of being accepted, whegg, ., ; is swapped in favor of/ ) :

Pr{S@G) = S(G+1)} =1 if J[SG+1)]<J[S3G)] (1.21)

1

Pr{S(j) = SG+1)} = it J[S(+1)] > J[S()] (1.22)

14 e(5)
The sampling schem&(j) becomesS(j + 1) when J[S(j + 1)] > J[S(j)], or when J[S(j +1)] <
J[S(j)] atest must be conducted as followsp[—(c‘mwé’i—?”coz’j)] >rand(), with £ a parameter reflect-
ing changes in the objective function J.49f;j + 1) is accepted, it becomes the incumbent solutiSn=
S(j+ 1), and serves as a starting point for a next schélye+ 2). The process continues in a similar fash-
ion, until a certain level of iteratiori&;, has been reached. Note that the temperature and stepdezease

as the algorithm progresses. As the system cools down, timbility of accepting non-improving moves
decreases with temperature decrease. The algorithm sto@s the temperatur€ has reached its cutoff
valueTj,. To find the set of optimal points to be added-or nearly optimaf, a high starting temperature
T and a cooling factoff ;.. close to 1 are necessary. In these conditions, simulategading can escape
from a local maximum, but too slow of a cooling schedule wittriease the running time of the algorithm. A
trade-off between optimality gap and running time has to &teminined. As a rule of thumb, it is advisable
to have a large step sizein the beginning of the algorithm, allowing wide jumps ac@s when there
are different maxima across the map. Simulated annealitigeiefore sensitive to the choice of the cooling
factor, that governs the search procedure. Additionallg, suggested to conduct the simulated annealing in
two stages, where the second one consists of conductingénehsaround the best solution found so far dur-
ing the first stage (Delmelle 2005). During the second timedwer, a smaller step sizeis used. Note that
the simulated annealing algorithm does not always convérgseudocode for the algorithm is given below:
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def kv = function computing

set incSet;incObj—kv(incSet)

set T, K, Trin

WhileT> Tt
candSet-neighbor(incSet,K)
candObj—kv(candSet)

If candObk bestObj
incObj—candObj, incSet-candSet
bestObj—candObj, bestSetcandSet

Elsel f expl[-{cend2l—ncOb)] > rand()
incObj—candObj, incSet-candSet

EndIf

T=TXTgec, KK X K gec

End While

1.5 Illustration:

In this section, we apply simulated annealing to the AustBata to gain insight into the problem
structure and behavior. The goal is to find the location dfiihand additional) sample points which will
keep the to a minimum. All computational results were ol&dinsing Matlab v. 2010.

Initial sampling designs.

There are different sampling objectives exist in the litera when little (or no) a priori spatial
information is known on the variable of interest. Assumiogng spatial covariance information (range
nuggets and sillo2), the sampling design can be optimized to minimize the .rinftion on the covariance
structure from previous study can have a strong influencaé@sampling , with large rangevalues
spreading observations throughout the study region, vghitet ranges bring these closer to one another. In
the Austrian dataset, the centroid of each statisticalignised as a candidate location in the optimization,
that isp = 445. We use an exponential covariogram model with parameter$0000m, o2 = 200 and a
nuggete = 1. We optimize the location of initial samples:(= 30 andm = 50, respectively) for the
minimization of the using randomly selected points as theisg set (see Figure 1.2 for an illustration) The
o7 is measured and displayed on each statistical unit suggoihe is measured on the points which can
also serve as to be included in the sampling set. Since ttistist@ unit support are not exactly distributed
in a grid pattern in the region (especially in the outer edga)eful attention must be paid when evaluating
over the study region. The average (Equation 1.11) is lowemamore measurements are used in the initial
sampling phase. Due to a large range, the optimization idthgotends to spread the points as far as possible
from one another, guaranteeing a certain level of coverBlgegraphs to the right illustrates the simulated
annealing algorithm, which accepts several non-improwioges in the beginning of the optimization, but
eventually converge to a minimum .

Augmented designs

We illustrate the example of augmented designs for the nimaition of the . Additional samples are
usually taken away from existing samples (van Groenigersdanh 1998, Delmelle 2005), that is where the
is maximum. The at unsampled locations can be determinddmiittiple design scenarios. An augmented
design is said optimal to Equation 1.16 when the configunatiaximizes the change in . Figure 1.3
illustrates the addition of = 10 andn = 25 points to an initial randomly selected samplesset= 50. The
large, black triangles are the locations of additional dasgn both cases, the initial sampling set (red
triangles) is the same, but the locations of new samplesgehdrhe algorithm tends to these areas with
additional samples away from initial samples. When the remolbadditional samples increases, the drops
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Figure 1.2 Two initial sampling designs withn = 30 samples (top figure) anch = 50 (bottom figure) fromp = 445 candidate
locations, minimizing the . Light grey triangles represeatential locations while black triangles are selectedgas The graph on the
right illustrates the converge of the optimization proce#th simulated annealing.

significantly. For visualization purposes, the at eachistieal support is assigned to the polygon its belong
to, and a map in Figure 1.4 indicates that the remains higharmotter edges of the region.

1.6 Discussion:

In this chapter, we have illustrated a framework for iniiad spatial sampling problems based on the
change in . Different objectives exists to account for fegeneity of the spatial variable, for instance by
weighting the by locally-varying priorities. These weiglean reflect local non-homogeneity. Another
approach consists of using locally varying variograms @4£200). Due to the non-linearity of the objective,
it is recommended to use a technique to find a suitable setltRed our application to the Austrian dataset
illustrates the suitability of to optimize initial and augnted sampling set.
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