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Model-based criteria and for
second-phase spatial sampling

Second-phase spatial sampling is the process of collectingadditional measurements of a variable of interest
within a two-dimensional framework. Different criteria exist to determine the ”optimal” location of these new
observations. The inherent goal is to capitalize on spatialcorrelation information gathered during the first-
phase sampling phase to improve spatial estimation. Several second-phase sampling objectives are discussed
in this chapter. These are generally non-linear and requirea method to find the set of additional locations
among candidate locations, which will optimize a given sampling objective. In this chapter, the merits of
simulated annealing (SA) are discussed, and an example using SA for the minimization of the is given with
the the Austrian dataset.

1.1 Introduction

In sampling, the and time available at hand usually determines the number of samples that can be collected,
and careful attention must be paid to design an appropriate of observations. It is generally recognized that a
sampling configuration which will minimize the variance associated with the estimation is more desirable. For
one-dimensional problems (IR), Cochran (1946) has suggested that astratified randomdesign will always
be more efficient than arandomdesign to provide an unbiased estimate of the sampling variance. Cochran’s
initial work was later extended to sampling designs (IR

2) by Quenouille (1949) and Das (1950) who used
a linear model. With non-linear autocorrelation function however,systematicsampling is the most efficient
technique, followed bystratified randomsampling andrandomsampling (Zubrzycki 1958). Those results
were later confirmed in a series of articles by Matérn (1960), Berry and Baker (1968), Bellehouse (1977),
Ripley (1981) and Iachan (1985). In spatial sampling, measurements at specific areas must be acquired instead
of trying to obtain information at every possible location (see, e.g.; Cochran 1963; Daltonet al. 1975; Rip-
ley 1981; Arbia 1989; Haining 1990; Hedayat and Sinha 1991; Cressie 1991; Stehman and Overton 1996;
Mueller 1998 and Thompson 2002 for various summaries). Although a full inventory will reflect the varia-
tion of the variable of interest, this process is rather time-consuming and constrained by the available . On
the other hand, sparse sampling is less costly, and the of thevariable may not be captured properly (Berry
and Baker 1968). This chapter is concerned with (and ) spatial sampling designs to acquire (and complement,
respectively) information on the of a variable, for instance in the form of a map, or as a summary measure,
which highlights the scales of variation.

In spatial sampling, the location of the samples is criticaland may be influenced by the of the variable: for
phenomena with little variation, samples can be spaced moreevenly without the risk of not detecting varia-
tions at smaller ranges. Unfortunately, this variation must be estimated, and an objective is to design sampling
patterns which will capture a maximum amount of information. If we in some areas, the of the variable of
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2 Model-based criteria and for second-phase spatial sampling

interest is not captured. In spatially autocorrelated fields, oversampling may result in redundant data (Griffith
2005).

Once samples of the primary variable have been collected, itis possible to augment the initial set by
collecting additional measurements at other locations, a method known as sampling (Cressie 1991, Muller
1998, van Groenigen and Stein 1998, and de Gruitjeret al.2006). The inherent objective of a second-phase
sampling strategy is to improve spatial prediction with added information. Following a first sampling phase,
spatial covariance structure is summarized through a variogam function, and the computed at each location.
Generally, are gathered away from existing points, that is where the is large. However, when the process under
study is not stationary, sampling efforts should be directed in those strategic locations exhibiting strong locally
(Rogersonet al. 2004, Delmelle and Goovaerts 2009). In this chapter, I discuss several sampling criteria
are discussed. Whether the function accounts primarily forthe minimization of the , or increase sampling
efforts in areas of strong , the optimization problem is non-linear, and calls for robust methods, for instance
. This chapter is structured as follows.First, geometric and geostatistical are presented in sections 1.2 and
1.3. Second, strategies to support a sampling design are discussed.Third, the framework to implement a
procedure is presented in section 1.4, applied to a samplingdesign. This arises due to the non-linearity of the
problem and that a complete enumeration of all possible solutions is not feasible in a timely manner. This is
illustrated in section 1.5 with an application to the Austrian dataset.

1.2 Geometric and geostatistical designs

There exists different sampling schemes for the purpose of two-dimensional sampling with no prior
information available (these are generally termed random,systematic or stratified approach). Assuming that
a limited number of samplesm are allocated in a study area denotedD, the spatial variableZ is then
measured onm supports,{z(si)|i = 1, 2, . . .m}. In a simple random samplingdesign,m sample points
in D are selected randomly (King 1969, Ripley 1981), and the selection of a sample should not influence the
selection of any other one. Practically, the coordinates ofthe sample the pair{xi, yi} are randomly drawn
on the interval [(minX, maxX),(minY, maxY)]. For boundaries (or non rectangular region), a point can still
be drawn at random in the minimum bounding rectangle, followed by ainside algorithm to determine
whether the point will fall within the study region. In thosesituations, there is still a risk to experience edge
effects. In asystematic samplingdesign, the population of interest is divided intom intervals of equal size
(the same applies for non-squared areas). The first element is randomly or purposively chosen within the first
interval L√

m
(as long that interval is within the boundary of the study region), starting at the origin, while the

location of the remainingm− 1 elements are aligned regularly by the size of the interval.

xi = x1 + (i − 1)
L√
m

yi = y1 + (j − 1)
L√
m

∀i, j = 1, . . . ,
√
m. (1.1)

The most common regular geometric configurations are the equilateral triangular grid, the rectangular
(square) grid, and the hexagonal one (Cressie, 1991). The advantages of a systematic design lies in a good
coverage of the observations. This design presents two inconveniences, however:

(i) the distribution of distances between points ofD is not represented fairly since many pairs of points are
separated by the same distance,
(ii) there is a danger that the spatial process shows evidence of recurring that will remain uncaptured. This is
a critical issue of systematic design that coincide in frequency with a regular pattern in the landscape (Griffith
and Amrhein, 1997; Overton et al., 1993). Asystematic random methodapproach, which combines both
systematic and random procedures (Dalton et al. 1975, King 1969) can prevent the latter.Stratified random

partitions the population (orD) into non-overlapping strata, and for each stratum, a specific set of samples
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is collected, for instance a greater number of samples may becollected in a geographic area due to greater
population.

Efficiency of spatial sampling designs.
Different criteria have been proposed to evaluate the merits of sampling designs (Muller 1988). An example

is an estimator for the global mean that estimates the accuracy of the global mean estimates. Careful attention
must be paid to the fact that some designs may be optimal for one criterion, yet not very efficient for other
criteria. Another example is the minimization of the of the true surface (as discussed later). A design that
leads to an accurate estimation of the global meanzD is desirable:

zD =
1

[D]

∫

D

z(s)ds (1.2)

In this respect, it is desirable to select a configuration that minimizes the prediction error ofzD for a given
estimator, for instance the arithmetic mean (Equation 1.3):

z =
1

m

m∑

i=1

z(si) (1.3)

Efficiency is calculated for all possible realizations of the variablez by varξ[z
∗
D
− zD]. This is generally

implemented usingσ2
k, which is the geostatistical , defined in the next section. Interms of the sampling

variance,stratified random samplingis at least always equally or more accurate thanrandom sampling; its
relative efficiency is a monotone increasing function of sample size.

Sampling spatial variables in a geostatistical context.
Spatial information from closeby measurements is generally not accounted for in classical sampling theory.

Geostatistics describes the spatial continuity that is an essential feature of many natural phenomena (see,
e.g., Matérn, 1960; Whittle, 1963). The variablez is modeled as a random process that can take a series of
outcome values, according to some probability distribution (Goovaerts, 1997). Central to geostatistics is , an
interpolation method which predicts the value ofz at unsampled locations (usually on a setG of grid points
{sg|g = 1, 2 . . .G}, keeping the (also called ) to a minimum (Isaaks and Srivastava, 1989). is based on a ,
which summarizes the variance of values separated by a particular distance lag(h) is defined:

γ̂(h) =
1

2d(h)

∑

|si−sj |=h

(
z(si)− z(sj)

)2

, (1.4)

whered(h) is the number of pairs of points for a given lag value, andz(si) is the measured attribute value
at locationsi, a the andσ2 the sill, wherêγ(h) levels out (Cressie, 1991). Once the lag distance exceeds the
ranger, there is no spatial dependence between sample sites. The interpolated, kriged value at a locations in
D is a weighted mean of surrounding values; each value is weighted according to the model:

ẑ(s) =
I∑

i=1

wi(s)z(si), (1.5)

with I the set of neighboring points used to estimate the interpolated value at locations, andwi(s) is the
weight associated with each neighboring point. It is critical to have a wide range of distances in order to
estimate the accurately, that is a good coverage of samples is desirable (Russo 1984, Van Groenigenet al.

1999). But this configuration should be supplemented by to guarantee that a few pairs of points are separated
by very small distances, critical to estimate the . Webster and Oliver (1993) have indicated a minimum of
m = 150 samples over the study area is necessary to estimate the , butthis is also influenced by the overD
(phenomenon with less variation may need less samples). Thestrength of the is also partly dependent on the
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number of pairs of points available within each distance class. The (WM) criterion attempts at reproducing
an a priori defined ideal distribution of pairs of points for estimating the covariogram:

Jw/m(S) = a
K∑

i=1

wi

(
ξ∗i − ξi

)2
+ b

K∑

i=1

σ(mi), (1.6)

K∑

i=1

ξ∗i =
K∑

i=1

ξ∗i =
m · (m− 1)

2
, (1.7)

wherei denotes a given lag class of the covariogram,K represents the total number of classes, the parameters
a, b, andwi are user-defined weights. The termξ∗i is a prespecified number of point-pairs for theithclass,ξi
is the actual number of distances within that class, andσ(mi) is the standard deviation from the median of
the distance lag class (Warrick and Myers 1987 and Delmelle 2009). Equation 1.7 expresses the total number
of possible distance pairs, given the number of samples. Another similar criterion suggested in the literature
is theMinimization of theMean of theShortestDistances, requiring sampling points to be spread evenly over
the study region (Van Groenigenet al.1999).

Sampling designs minimizing the
The quantifies the prediction uncertainty at a particular location in space. This uncertainty is minimal at

existing sampling points and increases with distance to thenearest samples. One common criterion is to
design a sampling configuration, which minimizes the overD, with a known, a priori (or estimated) structure
(Van Groenigenet al., 1999). Equation 1.8 formulates the at a locations, whereC−1

M is the inverse of theCM ,
based on the covariogram function (Bailey and Gatrell, 1995). M denotes the set of initial samples and has
cardinalitym. The termc is a column vector andcT the corresponding row vector, as given in Equation 1.10.

σ2
k(s) = σ2 − cT (s) · C−1

M · c(s) (1.8)

CM =




σ2 C1,2 · · · C1,m

C2,1 σ2 · · · C2,m

...
...

. . .
...

Cm,1 Cm,2 · · · σ2




(1.9)

c =




σ2

C21

...
Cm1



, cT =

[
σ2 C12 · · · C1m

]
(1.10)

Computationally, the study areaD is and the summed over all grid pointssg. Alternatively, it can be computed
at each sample candidate location. The (average) becomes (Delmelle 2009):

AKV =
1

G

∑

gǫG

σ2
k(sg) (1.11)

The only requirement to calculate the is to have an initial covariogram and the locations of them initial
sample points. It then depends solely on the and configuration of the observations (Cressie, 1991). In afirst

stage, initial measurements of the variable are collected to calibrate the . However, this step may not always
be required when a reliablea priori estimation of the is available. Designs minimizing the tendto spread
samples evenly in the study region. An example optimizing initial samples for the minimization of the index
is given in section 1.5.
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1.3 Augmented designs: sampling

Second-phase sampling occur when there is a need to go out in the field to gather additional samples about
the variable of interest. One important aspect is to capitalize on the spatial covariance information obtained
during a first sampling phase, for instance under the form of aindexvariogram. Based on this covariance
structure, the is computed at each grid node. The objective consists of locating those additional samples
strategically to maximize the change in , that is locating those samples away from existing ones.

1.3.1 Additional Sampling Schemes to Minimize the kriging Variance

Our first objectiveJ [S] is to select a set ofn additional points to our exisiting set ofm samples, which
will maximize the change in by as much as possible. This process can be thought as a simulation of what the
change in is expected to be, without having to collect additional points, assuming the structure would remain
constant (Burgess, Webster and McBratney 1981 as well as Cressie 1991). Specifically:

MAXIMIZE︸ ︷︷ ︸
{sm+1,...,sm+n}

J [S] =
1

⌊G⌋
∑

gǫG

(
σold
k (sg)

)2

−
(
σnew
k (sg)

)2

, (1.12)

with S denotes the sampling scheme. Objective 1.12 aims to collectnew samples to reduce the or uncertainty
by as much as possible. Equation 1.13 formulates the change in△σ2

k over all grid pointssg, with the addition
of a new setN of sizen. The change△σ2

k is the difference between the of the initial setσold
k with theσnew

k

of the augmented set:

△σ2
k =

1

G

[∑

gǫG

σold
k (sg)−

∑

gǫG

σnew
k (sg)

]
(1.13)

σold
k (sg) = σ2 − c(sg)︸ ︷︷ ︸

[1,m]

×C−1

︸︷︷︸
[m]

× cT (sg)︸ ︷︷ ︸
[m,1]

(1.14)

σnew
k (sg) = σ2 − c(sg)︸ ︷︷ ︸

[1,m+n]

× C−1

︸︷︷︸
[m+n]

× cT (sg)︸ ︷︷ ︸
[m+n,1]

. (1.15)

The objective function (Equation 1.16) is to find the optimalsetS∗ containingm+ n points that will
maximize this change in (Christakoset al.1992, Van Groenigenet al.1999, Rogersonet al.2004), whereS
is a specific sampling scheme.

MAXIMIZE︸ ︷︷ ︸
{sm+1,...,sm+n}

J(S) =
1

G

∑

gǫG

△σ2
k(sg;S) (1.16)

The set of new points is selected from the set of candidate locationP . With a total of
(
p
n

)
possible sampling

combinations, it is too time-consuming to find the optimal set using combinatorics and requires methods as
defined in section 1.4. The initial sampling problem which minimizes the (or maximizes the change in ) is a
simplification of equation 1.16 with the setn = 0.

1.3.2 A weighted approach

Many authors have advocated the use of the as a measure of uncertainty. It can be misused as a measure of
reliability of the kriging estimate, as noted by several authors (Deutsch and Journel 1992; Armstrong 1994).
The rationale for this criticism is that the is merely a function of the sample pattern, sample density, the
numbers of samples and their covariance structure (Delmelle and Goovaerts 2009). The assumes that the
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errors are independent of each other, a situation referred to as . This means that the process is , an assumption
violated in practice. Stationarity entails that the variation of the primary variable between two points remains
similar at different locations in space, as long their separating distance remains unchanged. Mathematically, if
we measure the difference in absolute value between two pointssi andsj separated by a distanced(si, sj), and
if we measure that difference again at two other pointssk andsl separated by a similar distanced(sk, sl), the
results should be similar. In other words,|y(si)− y(sj)| ≈ |y(sk)− y(sl)| for d(si, sj) = d(sk, sl). Bailey
and Gatrell (1995) mentions that it is a matter of judgment whether to assume some stationarity in the
variable of interest. Note that the letters denotes a row vector containing the{x, y} coordinate of the
point. Figure 1.1 illustrates the problem in one dimensional, where ten hypothetical temperature values have
been randomly simulated (after Goovaerts 1997). The figure on the right depicts the interpolated temperature
values calculated using an exponential fitting model. From this graph it is possible to determine the values at
locationss1 ands2. As Goovaerts points out, the variation in the close neighborhood of locations1 is much
greater thans2, because it is surrounded by a very low and a very high value. However, the is similar at boths1
ands2, since their neighbors are at an equal distance. If a sample point is added to the initial set of 10 points,
it preferably should be points1, as it exhibits a greater amount of around its location thans2. Therefore,
one issue pertains to choosing a good indicator to quantify the spatial uncertainty at a data point. The can
certainly not be used as the sole indicator, but should be combined with other sampling criteria. This example
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Figure 1.1 Example of nonstationarity. Pointss1 ands2 have the same . However, the local variance ats1 is much greater than ats2
because there is much greater temperature variation among its neighboring points. After Goovaerts (1997).

illustrates some of the shortcomings of using the as the soleoptimization criterion. Rogerson et al. (2004),
Brus and Heuvelink (2007) and recently Delmelle and Goovaerts (2009) have proposed different criterion
alternatives. For instance, Delmelle and Goovaerts (2009)suggest to weight the where the weights reflect the
spatial variation. Their application to an exhaustive dataset lead to better reconstruction of the image.

There are two different approaches to formulate the sampling problem. Either the problem is defined as
a single-weighted objective with no constraints, where theweights reflect the sampling objectives, or as
a single objective where the weights become constraints. The single-weighted approach was suggested by
Cressie (1991) and has been applied by Van Groenigenet al. (1999) and Rogersonet al. (2004) to weight the
by a suitable weighting functionw(·). The importance of a location to be sampled is represented bya weight
w(s), that is location-specific. The objective is to find the optimal sampling schemeS∗ containingm+ n
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points that will maximize this change in weighted :

MAXIMIZE︸ ︷︷ ︸
{sm+1,...,sm+n}

J(S) =
1

G

∑

gǫG

w(sg) · △σ2
k(sg;S) (1.17)

Computational implementation
The inverse of the covariance matrixCM∪N is necessary to compute the . Since the initial matrixCM

(Equation 1.9) has been augmented byn rows andn columns. However, it is possible to calculateC−1
M∪N

without having to invert the entire matrix. Consider in Equation 1.18 the augmented matrixCM∪N

CM∪N =

[
CM B
BT CN

]
=




σ2 · · · C1,m C1,m+1 · · · C1,m+n

...
. . .

... · · · · · · · · ·
Cm,1 · · · σ2 Cm,m+1 · · · Cm,m+n

Cm+1,1 · · · Cm+1,m σ2 · · · Cm+1,m+n

...
...

...
...

. . .
...

Cm+n,1 · · · Cm+n,m Cm+n,m+1 · · · σ2




(1.18)

whereB is the covariance matrix between initial and new added points,BT is the transpose ofB adCN is the
covariance matrix among the new, added samples. A new matrixof sizen× n is introduced in Equation 1.19
for simplification purposes and called theP-matrix.

P =
[
CN − (BT · C−1

M · B)
]

(1.19)

Keeping in mind this simplification of matrix notification, the inverse of the augmented matrixCM∪N can be
formulated as (Horn and Johnson 1985):

C−1
M∪N =

[
C−1

M 0

0
T 0

]
+

[
−C−1

M · B
I

]
· P−1 ·

[
−C−1

M · B
I

]T

(1.20)

whereI is an identity matrix of sizen× n. The0-matrix is filled with zero elements.C−1
M∪N is a function

of C−1
M that remains constant, regardless of which new samples and how many of those are added. Only the

matricesP andB vary when new points are added.

1.4 A simulated annealing approach

Whether for initial sampling or sampling, the objective is to find the optimal location of samples which
will minimize an objective function. That set of optimal samples is selected from a set of candidate locations
P , which is relatively large in practice, forbidding a total enumeration for the optimal set (Michalewicz and
Fogel 2000). AH guides the search for an optimal sample setS∗ (or near optimalS+) ⊂ P . The setS∗

is optimal to the objective functionJ defined in Equation 1.16. The efficiency of a depends on its capacity
to give as often as possible a solutionS+ close toS∗ (Grötschel and Lovàsz 1995). Anäıve optimization

selectingn points at random would not return a very good value forJ , and is therefore not efficient. Asimul-
taneousaddition selects a set of samples one time. The major concernlies in the selection of those points:
for an initial sampling set of, saym = 50 with a candidate setp = 445, there is a combinatorial explosion(
p
n

)
=

(
445
50

)
, while in additional sampling, with an initial setm = 50 and an additional set ofn = 20, the

number of combinations becomes
(
p
n

)
=

(
445−50

20

)
. With such a high number of possible combinations, it is

recommended to use intelligent search techniques, for instance simulated annealing, which is detailed in the
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next paragraph.

Simulated annealing (SA) has been used as an optimization procedure in initial and sampling; Van
Groenigen and Stein (1998) and Delmelle (2005) further discusses the implementation of in spatial sampling.
SA is a method by which a metal cools and freezes into a minimumenergy crystalline structure. The algorithm
was originally proposed as a means of finding the equilibriumconfiguration of a collection of atoms at a
given temperature. Kirkpatricket al. (1983) made the connection between the cooling technique and the
mathematical minimization problem. The major advantage ofSA is its ability to avoid becoming trapped at
local maxima. The algorithm employs a random search that accepts changes improving the objective function,
but also non-improving moves. The latter is accepted with probability PT whereT stands for the current
temperature.T cools down as the algorithm progresses, and so does the probability of acceptance. Different
authors document the use of simulated annealing for spatialsampling (Van Groenigenet al. 1999, Lark
2002, Delmelle and Goovaerts 2009). The optimization starts with a randomly selected sampling scheme
S(i) = M ∪N whereM is the initial set, andN the set of additional samples (N ⊂ P \M ). The setN
can be selected at random or is determined from a greedy , for instance using samples corresponding to the
peaks of the surface area (Delmelle and Goovaerts 2009). Theobjective functionJ

[
S(i)

]
is evaluated and

called the incumbent solution.S(i) = {s1 + . . .+ sm + sjm+i + . . .+ sjm+n} is created as the union of the
initial sample setM , augmented by a set of new sample pointssjm+i. From the first iterations,S(i) becomes
S(j) and will serve as the initial sampling scheme for simulated annealing. Since the space of solution has
not been explored yet, the value ofJ

[
S(i)

]
is kept in memory as the best solutionS(i) = S+ = S⋄ found

so far.S(i) becomesS(j). One samplei ∋ M is swapped for a pointi ∈ M , and at that timeS(j) becomes
S(j + 1).

Follows a sequence of random perturbationsS(j + 1) of S(j) that have a probabilityPT

{
S(j) → S(j + 1)

}

of being accepted, wheresjm+i is swapped in favor ofsj+1
m+i:

PT

{
S(j) → S(j + 1)

}
= 1 if J

[
S(j + 1)] ≤ J

[
S(j)

]
(1.21)

PT

{
S(j) → S(j + 1)

}
=

1

1 + e

(
△J

T

) if J
[
S(j + 1)

]
> J

[
S(i)

]
(1.22)

The sampling schemeS(j) becomesS(j + 1) when J
[
S(j + 1)

]
≥ J

[
S(j)

]
, or whenJ

[
S(j + 1)

]
≤

J
[
S(j)

]
a test must be conducted as follows:exp[− (candObj−incObj)

ξ×T ] >rand(), with ξ a parameter reflect-
ing changes in the objective function J. IfS(j + 1) is accepted, it becomes the incumbent solutionS⋄ =

S(j + 1), and serves as a starting point for a next schemeS(j + 2). The process continues in a similar fash-
ion, until a certain level of iterationsTfin has been reached. Note that the temperature and step sizeκ decrease
as the algorithm progresses. As the system cools down, the probability of accepting non-improving moves
decreases with temperature decrease. The algorithm stops when the temperatureT has reached its cutoff
valueTfin. To find the set of optimal pointss∗ to be added-or nearly optimals+, a high starting temperature
T and a cooling factorTdec close to 1 are necessary. In these conditions, simulated annealing can escape
from a local maximum, but too slow of a cooling schedule will increase the running time of the algorithm. A
trade-off between optimality gap and running time has to be determined. As a rule of thumb, it is advisable
to have a large step sizeδ in the beginning of the algorithm, allowing wide jumps across D, when there
are different maxima across the map. Simulated annealing istherefore sensitive to the choice of the cooling
factor, that governs the search procedure. Additionally, it is suggested to conduct the simulated annealing in
two stages, where the second one consists of conducting the search around the best solution found so far dur-
ing the first stage (Delmelle 2005). During the second time however, a smaller step sizeκ is used. Note that
the simulated annealing algorithm does not always converge. A pseudocode for the algorithm is given below:
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def kv = function computing

set incSet;incObj←kv(incSet)

set T, K, Tfin

While T> Tfin

! candSet←neighbor(incSet,K)

! candObj←kv(candSet)

! If candObj<bestObj

! incObj←candObj, incSet←candSet

! bestObj←candObj, bestSet←candSet

! ElseIf exp[-(candObj−incObj)
ξ×T

] >rand()

! incObj←candObj, incSet←candSet

! EndIf

! T=T×Tdec, K=K×Kdec

End While

1.5 Illustration:

In this section, we apply simulated annealing to the Austrian Data to gain insight into the problem
structure and behavior. The goal is to find the location of (initial and additional) sample points which will
keep the to a minimum. All computational results were obtained using Matlab v. 2010.

Initial sampling designs.
There are different sampling objectives exist in the literature when little (or no) a priori spatial

information is known on the variable of interest. Assuming some spatial covariance information (ranger,
nuggeta and sillσ2), the sampling design can be optimized to minimize the . Information on the covariance
structure from previous study can have a strong influence on the sampling , with large ranger values
spreading observations throughout the study region, whileshort ranges bring these closer to one another. In
the Austrian dataset, the centroid of each statistical unitis used as a candidate location in the optimization,
that isp = 445. We use an exponential covariogram model with parametersr = 50000m, σ2 = 200 and a
nuggeta = 1. We optimize the location of initial samples (m = 30 andm = 50, respectively) for the
minimization of the using randomly selected points as the starting set (see Figure 1.2 for an illustration) The
σ2
k is measured and displayed on each statistical unit support(s). The is measured on the points which can

also serve as to be included in the sampling set. Since the statistical unit support are not exactly distributed
in a grid pattern in the region (especially in the outer edge), careful attention must be paid when evaluating
over the study region. The average (Equation 1.11) is lower when more measurements are used in the initial
sampling phase. Due to a large range, the optimization algorithm tends to spread the points as far as possible
from one another, guaranteeing a certain level of coverage.The graphs to the right illustrates the simulated
annealing algorithm, which accepts several non-improvingmoves in the beginning of the optimization, but
eventually converge to a minimum .

Augmented designs
We illustrate the example of augmented designs for the minimization of the . Additional samples are

usually taken away from existing samples (van Groenigen andStein 1998, Delmelle 2005), that is where the
is maximum. The at unsampled locations can be determined with multiple design scenarios. An augmented
design is said optimal to Equation 1.16 when the configuration maximizes the change in . Figure 1.3
illustrates the addition ofn = 10 andn = 25 points to an initial randomly selected sample setm = 50. The
large, black triangles are the locations of additional samples. In both cases, the initial sampling set (red
triangles) is the same, but the locations of new samples change. The algorithm tends to these areas with
additional samples away from initial samples. When the number of additional samples increases, the drops
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Figure 1.2 Two initial sampling designs withm = 30 samples (top figure) andm = 50 (bottom figure) fromp = 445 candidate
locations, minimizing the . Light grey triangles representpotential locations while black triangles are selected samples. The graph on the
right illustrates the converge of the optimization processwith simulated annealing.

significantly. For visualization purposes, the at each statistical support is assigned to the polygon its belong
to, and a map in Figure 1.4 indicates that the remains high in the outer edges of the region.

1.6 Discussion:

In this chapter, we have illustrated a framework for initialand spatial sampling problems based on the
change in . Different objectives exists to account for heterogeneity of the spatial variable, for instance by
weighting the by locally-varying priorities. These weights can reflect local non-homogeneity. Another
approach consists of using locally varying variograms (Haas 1990). Due to the non-linearity of the objective,
it is recommended to use a technique to find a suitable set. Results of our application to the Austrian dataset
illustrates the suitability of to optimize initial and augmented sampling set.
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