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Abstract—In geographic sampling, once initial samples of the 

primary variable have been collected, it is possible to take 

additional measurements, an approach known as second-phase 

sampling. It is generally desirable to collect such additional 

samples in areas far away from existing observations to reduce 

redundancy, which coincide with regions where the kriging 

variance is maximum. However, the kriging variance is 

independent of data values and computed under the 

assumption of stationary spatial process, which is often 

violated in practice. Weighting the kriging variance with 

another criterion, giving greater sampling importance to 

locations exhibiting significant spatial roughness, can serve as 

an alternative objective (Delmelle & Goovaerts 2009). This 

roughness is computed by a spatial moving average window.  

Another objective function consists of locally determined 

variogram models to obtain local kriging variances, reflecting 

non-stationarity (Haas 1990). The benefits and drawbacks of 

these three approaches are illustrated in a case study using an 

exhaustive remote sensing image. Combinations of first-phase 

systematic and nested sampling designs (or patterns) are 

generated, while the location of additional observations is 

guided in a way which optimizes each objective function. 

Augmented sampling sets minimizing the weighted kriging 

variance or minimizing the kriging variance computed by local 

variograms lead to better reconstruction of the true image, 

while patterns minimizing the kriging variance computed by a 

global variogram lead to reconstruction similar to a random 

addition. This indicates that accounting for spatial roughness 

in second-phase sampling improves the overall accuracy of the 

prediction. 
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I.  INTRODUCTION 

When surveying a phenomenon characterized by spatial 
variation, it is necessary to find optimal sample locations in 
the study area D. This problem is referred to spatial or two-
dimensional sampling (Haining 2003, de Gruijter et al. 2006, 
Muller 2007, Delmelle 2009). Sampling efforts are usually 
concentrated in areas deemed to be critical. Once initial 
samples of the primary variable have been collected and the 
variogram estimated, the primary variable is interpolated 
throughout a study region using kriging for instance.  
Second-phase sampling is necessary when interpolation 
results from the initial set are judged inaccurate due to a lack 
of samples or poor sampling design. The lack of accuracy is 
generally measured by the kriging variance, which is a 
function of sampling patterns, sampling density and 

covariance structure.  The kriging variance is minimal at 
existing sample points, and increase away from them. The 
kriging variance is unfortunately misused as a measure of 
reliability of the kriging estimate (Deutsch and Journel, 
1997). 

One objective in second-phase sampling is to collect new 
samples to reduce the kriging variance or uncertainty by as 
much as possible (Van Groenigen, Siderius and Stein, 1999). 
The addition of new samples to minimize the kriging 
variance allocates new measurements at intermediate 
positions between existing samples while ignoring the 
underlying spatial variation (Delmelle and Goovaerts 2009). 
However, the magnitude of the spatial variation can be 
expressed in the form of weights combined with the kriging 
variance. A weighted objective aims at collecting new 
samples to maximize the change in weighted kriging 
variance (Cressie 1991, Rogerson et al. 2004).  

This paper compares the benefits of allocating new 
samples according to the optimization of three objectives: (1) 
the reduction of the kriging variance, (2) the change in 
weighted kriging variance where the weights reflect spatial 
roughness and (3) the decrease in kriging variance computed 
from locally determined variograms. The quality of each 
objective is measured by comparing how far the predictions 
are from the true image.  

  

II. SECOND-PHASE SAMPLING 

In a first sampling phase, a variable of interest Y is 
collected at m locations, . For notation 
purposes, the initial sampling set is denoted M. Differences 
in data values can be plotted using a variogram cloud, which 
graphs the difference in value between two points i and k 
separated by distance h.  

  

(1) 

The variogram cloud is sensitive to outliers and it may be 
computationally time-consuming to find an appropriate 
fitting model. However, it is not subject to additional 
parameters which must be tuned, such as lag size, number of 
lags and tolerance. Given three parameters (nugget effect, 
sill, range), an exponential variogram model is fitted on the 
variogram cloud using a non-linear least square strategy. 
When the number of pairs of data points is high, this fitting 



procedure is rather time-consuming and it is desirable to rely 
on optimization routine. In this paper, a Nelder-Mead 
algorithm is used to fit the cloud. 

A. Kriging variance  

Kriging is performed over a set of grid nodes

. The associated kriging variance  

measures the uncertainty of the prediction:  

  (1) 

where  is the inverse of the covariance matrix C 
obtained the covariogram function. Integrating equation (1) 
over the study region yields the total kriging variance, but it 
is computationally easier to calculate an average kriging 
variance (AKV) over a fine set of grid node G: 

 
  (2) 

A common second-phase sampling objective is to find an 
augmented sampling pattern S which will maximize the 
change in kriging variance by as much as possible over the 
study region (Van Groenigen, Siderius and Stein, 1999): 

   (3) 

 (4) 

where Q stands for the objective function. The n 
additional samples are selected from a set of p potential 
locations P which, for simplicity, coincide with the set of 
grid nodes.  

B. Weighting the kriging variance 

The kriging variance does not account for the variation of 

the kriging estimates reflected by differences in data value 

between nearby grid nodes. Let  be the interpolated 

value of the primary variable Y at node .  

 
Figure 1.  A 3x3 filter facilitates the detection of spatial variation between 

a grid node from neighboring nodes. In computing the grid node specific 

weight, greater importance is sgiven to nearby nodes. 

 

The objective consists of estimating by how much that 
grid node is different in value from its surrounding nodes  

defined by a neighborhood J (Delmelle and Goovaerts 2009). 
From Fig. 1, a window is constructed around each grid node 

 encompassing its neighbors. The squared difference in 

interpolated values between the central grid node  and 

the surrounding ones  is computed. The process moves 

from one node to another and is repeated for each grid point. 
The squared difference is then summed over the set G. To 
regulate the importance of nearby nodes, a distance factor 

 and a parameter β are introduced in the weight: 

  
  (5) 

To account for the spatial roughness of the primary variable, 

equation [3] is modified by introducing a location-specific 

weighting factor, defined in equation [5]. The second-phase 

sampling problem is then formulated as a single-weighted 

objective (Cressie 1991): 

 

                                                                   (6) 

 

where α is a parameter controlling the importance given to 

the weights.  A value of α= 1 is used in this paper, but when 

α= 0, equation [6] reduces to equation [3]. 

C. Kriging variance from locally determined variograms 

The kriging variance at each grid node is generally 
calculated according to a similar variogram model. It is, 
however, feasible to compute a locally-varying covariance 
model for each grid node, and obtain a kriging variance 
reflecting local variation (Haas 1990). This directly 
addresses the problem of covariance non-stationarity. 
Practically, a search window containing a minimum number 
of initial sampling points is imposed around each grid node 

. These points are used to compute a locally determined 

variogram cloud. Locally dependent variogram parameters 
are determined for each grid node, and the kriging variance 
locally computed. In this context, the second-phase 
sampling objective allocates samples in these regions 
characterized by strong local variance. These points are used 
to compute a locally determined variogram cloud. Locally 
dependent variogram parameters are determined for each 
grid node, and the kriging variance locally computed. In this 
context, the second-phase sampling objective allocates 
samples in these regions characterized by strong local 
variance. 

III. SIMULTANEOUS GREEDY ADDITION 

A simultaneous addition consists of supplementing the 
initial set M with a set N of n additional measurements in one 
time. The major concern lies in the selection of those points. 
A total enumeration is not recommended because of 
combinatorial explosion The goal of the greedy algorithm in 
simultaneous addition is to supplement the initial sampling 
set by adding n points exhibiting a high kriging variance (or 
weighted kriging variance) value. The major problem 
consists of locating these new samples in a way that they are 



 

not too close to each other. A solution consists of introducing 
a minimum separating distance Dmin = ζ among selected 
points. Figure 2 illustrates how the selection of 10 new 
samples is implemented, depending on the distance 
constraint. The curve represents the weighted kriging 
variance, and is interpolated over 50 candidate locations. 
These candidate points, separated by 100m-interval, range 
from 0 to 5000m. From the graph on the left, the point with 
the highest function value is selected by default, and the 
closest second point is added if 

. This continues in a sequential fashion 
until all n points have been found.  
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Figure 2.  One-dimensional illustration of the simultaneous greedy 
addition under distance constraints Dmin ≥  100m. Black dots are potential 

samples, while blue dots are the resulting locations of the new samples, 

after the greedy algorithm has been applied. 

 
Figure 3.  Top left figure: contour of the exhaustive dataset. The 10by10 

design consists of 100 gridded points while the remaining 72 are clustered 

around 18 samples. The bottom figures depict the kriging variance and 
local kriging variance, respectively.  

 

IV. CASE STUDY 

A small case study illustrates the spatial sampling 
problem structure. The objective is to allocate a set of new 
samples using a greedy addition algorithm in order to 
maximize the change in either three objectives. An 

exhaustive remote sensing image is used to illustrate the 
procedure but also to test which augmented sampling 
patterns lead to better predictions. The sampling strategy is 
tested using a SPOT High Resolution Visible (HRV) scene 
of a 4km

2
 area covered by tropical forests and savannah 

(Goovaerts 2002). Fig. 3 illustrates the dataset. The image is 
divided into 50 rows and columns, yielding a set of 2500 
pixels. All computational results are obtained using Matlab 
v. 7.6. running on a Linux desktop, while the Nelder-Mead 
function fminsearch was used to fit the variogram cloud. 

A. Initial sampling patterns 

To guarantee coverage over the study region and to 
estimate the variation of the variogram at small distances, 
initial patterns are designed using a combination of 
systematic and nested sampling. A 10x10 pattern divides the 
study region into 100 cells or intervals (10 rows and 
columns), generating 1 systematic sample of 100 sample 
points. The coordinates of the first sample are purposively 
chosen within the first interval and correspond to a location 
close to the origin. Depending on the location of the first 
sample, the remaining 99 samples are aligned regularly by 
the size of the cell. Nested sampling is carried out next by 
adding 4 more clustered observations around 18 randomly 
chosen systematic samples, yielding a total sampling size of 
172 observations.   Next, a fixed neighborhood is drawn 
around each of the 18 randomly selected samples and 4 
samples are selected at random within this neighborhood. 
Twenty five total different sets of gridded and clustered data 
are selected to attenuate the impact of sampling fluctuations. 
This is implemented by shifting the origin of the systematic 
sampling pattern, while new clustered data are selected at 
random. The pixel value at each sampling location is 
extracted. Exponential models with varying variogram 
parameters are tested, and the model exhibiting the lowest 
sum of squares is kept. The variable Y is interpolated over 
the set of grid points G (2500 nodes) using ordinary kriging. 
The average absolute error of prediction (MAE) is reported: 

  (7) 

where  is the interpolated value of the primary 

variable at a grid node, and  its true value. Ultimately, 

the goal is to find an augmented sampling pattern reducing 
equation [7] by as much as possible, leading to a better 
reconstruction of the "true" image. 

B. Spatial roughness 

For each of the 25 sampling realizations, local variations 
in interpolated values are computed with equation [5] for 
each grid point using its 4 nearest neighbors (|J| = 4), and 
parameter β= 1.5. Fig. 4 illustrates the weights reflecting the 
spatial roughness of sampling realization case 8, which are 
then multiplied with the kriging variance map. The weighted 
kriging variance map contrasts from the map of the weights 
in that more importance is given to location away from initial 
points.  

C. Second-phase sampling 

Given an initial sampling set M, the objective is to select 
an additional set N (|N| = 10, 20, 30, 40 and 50) at which the 

 



 

exhaustive dataset will be sampled. The underlying goal is to 
gather information in those strategic locations, (a) where the 
kriging variance is maximum, (b) where the weighted 
kriging variance is the highest and (c) where the local kriging 
variance is the greatest.  Although some regions on the edge 
of a study region may exhibit high kriging variance, those 
are not considered as potential locations as they will have a 
minimal impact on the Eq. [3]. To test whether these 
augmented designs lead to better predictions (i.e. 
reconstruction of the "true" image), we compare the merits of 
these 3 approaches to the average of 100 random simulations 
(100simulations for each of the 25 sampling realizations).  

 
Figure 4.  The weighted kriging variance is a combination of weights (top 

figure) with the kriging variance (figure 3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Reduction in the Mean Average Error (MAE) from the true 
image as a function of the second-phase sampling set size (|N|), and the 

methodology adopted to allocate these points. Random (AVG) is the 

average of 100 simulation of augmented sets, for each sampling realization.  

Fig. 5 graphs the reduction of MAE for the different 
sampling strategies as a function of the number of additional 
points (|N|). Regardless of the strategy adopted to allocate 
additional samples, the overall improvement in reducing 
MAE increases when a greater number of additional points 
are added to the initial set. The relative reduction decreases 
however as the size of the second-phase sampling becomes 
larger. Augmented sampling designs maximizing the change 

in weighted kriging variance (WKV) strongly contrast with 
augmented designs maximizing the kriging variance (KV) 
alone. The former leads to better reconstruction of the true 
image, which is very significant. The same pattern is 
observed for sampling designs maximizing the change in 
kriging variance, when the latter is computed from local 
variograms (Local). Interestingly, designs maximizing the 
kriging variance alone perform slightly better in reducing the 
overall error than by random addition alone. 

V. DISCUSSION AND FUTURE RESEARCH 

In this paper, three different sampling objectives have 
been used to augment an initial sampling set. The objectives 
which maximize the change in weighted kriging variance or 
minimize the kriging variance computed from local 
variograms tend to allocate new samples in areas of strong 
spatial roughness. Additional samples optimizing the change 
in kriging variance are allocated more geometrically, 
ignoring the underlying spatial variation. Empirical results 
show that additional samples added in areas of strong spatial 
variations have a greater impact in improving the overall 
interpolation accuracy, rather than measurements added in a 
geometric fashion, far away from existing points. Future 
research is necessary in 3 different arenas. First, the results in 
this paper should be extended to various sampling densities 
of lower and higher order (e.g. 6by6, 8by8, 12by12, etc…). 
Secondly, the additional points have been allocated 
following a greedy approach, which is suboptimal. Other 
search algorithms such as simulated annealing or tabu search 
may provide better results. Finally, a variogram model was 
fitted onto the variogram cloud, while computationally it is 
easier to work with empirical variograms rather than clouds.  
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