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SPATIAL OPTIMIZATION METHODS 

Spatial optimization is concerned with maximizing or minimizing an objective related to a 

problem of geographic nature, such as route selection, location-allocation modeling, spatial 

sampling and land-use allocation among others. Location-allocation analysis is used to determine 

optimal locations for a single or more facilities with respect to the spatial distribution of demand; 

applications can range from locating a hazardous waste site or siting a landfill as far as possible 

from existing population, determining optimal bus stop locations to minimize walking distance 

from home, finding a location for a new cell tower to maximize population coverage, to 

determining a biological reserve for habitat recovery or the optimal location for a recreational 

site in a neighborhood.  

Solving a geographic problem translates in the formulation of an objective function 

subject to some constraints. In the example of bus stops allocation where the objective is to 

maximize potential ridership, it may not be possible to locate bus stops everywhere since the 

geographic space is constrained. Additionally, if potential commuters live beyond a critical 

distance, they will be discouraged from walking to the closest bus stop. In the cell tower example 

potential locations for new towers may be rather limited; not only is it desirable to locate new 

base stations at higher elevation to minimize obstructions, but also not too close from residential 

areas (Not in My Backyard effect).  



Single and Multiple Objectives 

Different approaches exist in the literature to solve geographical problems. Depending on the 

nature of the problem, a single or multiple-objective approach can be taken. The optimal location 

of a recreational site may have a single accessibility objective in which the distance from 

residential units to the site is minimized. In locating an obnoxious facility such as a landfill, one 

objective may be to maximize the separating distance from population centers, but also to 

minimize transportation costs. Some objectives may be conflicting, and it is oftentimes desirable 

to reach a pareto solution. 

Heuristics 

Once a problem has been formulated with an objective function and constraints, a solver is 

generally used to find an optimal solution (e.g. Cplex, Lingo). Exact solution methods such as 

integer or linear programming, branch and bound as well as Lagrangian relaxation have often 

limited success, given that an increase in the number of variables will cause an exponential 

increase in the solution time. In some instances, the size of a spatial problem can create a 

combinatorial explosion, and heuristic search techniques are preferred. Heuristics are algorithms 

which are able to find a solution (optimal or not) for a given problem in a limited time frame. 

Some heuristics reach a suboptimal solution rapidly (e.g. myopic, naïve strategy), while others 

can lead to an optimal (simulated annealing, genetic algorithms, tabu search), at the cost of a 

longer running time. Limited research has been devoted to comparing the benefits and drawbacks 

of several heuristics and metaheuristics (combination of heuristics) in the context of spatial 

optimization. 



Naive or random strategy 

The naïve strategy randomly chooses a number of locations from a set of candidate 

locations. This approach does not account for the structure of the solution space and is therefore 

very inefficient. Nevertheless, the numerical results following the use of this algorithm provide a 

good lower bound to evaluate other heuristics. 

Total enumeration 

This method consists of evaluating which of all candidate locations optimizes the 

objective function the best. Total enumeration is sensitive to the size of the problem, but is 

optimal in the one-facility location problem as long the set of candidate solutions is finite 

(discrete). The method would however be inappropriate when the spatial problem calls for the 

allocation of more than one facility, because of combinatorial explosion.  

Greedy algorithm 

Greedy (or myopic) starts with a feasible solution. The current solution is then exchanged 

for another one only if the objective function improves. The process continues until no further 

improvements can be made. The algorithm is easy to implement and returns a good solution, 

which may be sub-optimal however. The algorithm can be effective when applied repeatedly as 

long the starting feasible solution is changed. 

Simulated annealing 

The greedy approach, as well as the total enumeration in the one-facility location usually 

get stuck in a local optimum while simulated annealing is able to reach optimality. The major 

advantage of Simulated Annealing is its ability to avoid becoming trapped at a local maximum. 

The algorithm employs a stochastic search that accepts changes improving the objective 



function, but also non-improving moves, which are accepted with a certain probability. The 

probability of acceptance decreases as the temperature (or system) cools down.  

Tabu Search 

Simulated annealing allows non-improving moves. Tabu search however deals with 

cycling problems of non-improving moves, in which the heuristic momentarily forbids swapping 

of solution that would return to a previously visited solution. The so called ―tabu-list‖ records 

these forbidden moves. 

Metaheuristics 

The combination of two heuristic methods—also called a metaheuristic—allows one to 

improve upon a first solution. For instance, because the greedy heuristic may yield a suboptimal 

solution, an improvement may be desirable; simulated annealing can use the greedy solution at 

the start of its optimization procedure.  

Genetic algorithm 

A genetic algorithm is a metaheuristic that uses techniques from evolutionary biology to 

find better solutions at each iteration. The algorithm improves feasible or suboptimal solutions 

by operations which combine individuals of an improving population. The quality of each 

individual is evaluated, and several of them are randomly selected from the current solution, 

based on their solution quality. Solutions are then modified using mutation or crossover to form a 

new basic feasible solution.  
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See also Spatial Multicriteria Evaluation, Spatial Decision Support Systems, Location-Allocation 

Modeling.  
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